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Ant colony optimization (ACO) [1–8] is a
class of algorithms for tackling optimization
problems that is inspired by the pheromone
trail laying and following behavior of some
ant species. While foraging, ants leave on
the ground a chemical substance, called
pheromone, that attracts other fellow nest-
mates [9]. The pheromone trail laying and
following behavior of the ants induces a
positive feedback process whereby trails with
high concentration of pheromones become
more and more attractive as more ants follow
them [10–12]. As a result, whenever two
paths to the same food source are discovered,
the colony is more likely to select the short-
est one because ants will traverse it faster
and thus it will have a higher pheromone
concentration than the longer one.

ACO algorithms exploit a mechanism
analogous to the one that allows colonies of
real ants to find shortest paths. In ACO,
(artificial) ants construct candidate solutions
to the problem instance under consideration.
Their solution construction is stochastically
biased by (artificial) pheromone trails, which
are represented in the form of numerical
information that is associated with appro-
priately defined solution components, and
possibly by heuristic information based on
the input data of the instance being solved.
A key aspect of ACO algorithms is the use
of a positive feedback loop implemented
by iterative modifications of the artificial
pheromone trails that are a function of the
ants’ search experience; the goal of this
feedback loop is to bias the colony toward the
most promising solutions.
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The ACO metaheuristic is a high-level
algorithmic framework for applying the
above ideas to the approximate solution
of optimization problems. When applied
to a specific optimization problem, this
ACO framework needs to be concretized
by taking into account the specifics of the
problem under consideration and possibly
by adding additional techniques such as
problem-specific solution improvement proce-
dures. The development of effective ACO
algorithm variants has been one of the
most active research directions in ACO:
this article gives an overview of the most
important of these developments. For more
information about successful applications of
ACO, we refer to the article titled A Concise
Overview of Applications of Ant Colony
Optimization, in this encyclopedia.

ACO EXAMPLE APPLICATIONS

Perhaps the easiest way to understand how
ACO algorithms work is through examples.
Here, we present two examples where the
ACO algorithms use different solution repre-
sentations. The first example shows how ACO
is applied to solve the traveling salesman
problem (TSP), which was the first optimiza-
tion problem to which an ACO algorithm was
applied. The second example concerns the set
covering problem (SCP): it shows how ACO
algorithms can be used to solve problems
using a binary representation.

Example 1. Ant Colony Optimization for the
Traveling Salesman Problem

The TSP is one of the most widely stud-
ied combinatorial optimization problems. It
is also a problem to which the application
of ACO algorithms is rather intuitive and
straightforward. An instance of the TSP is
determined by a set of locations (cities) and
by the distances between them. The goal is
to find a closed tour of minimal length that
visits each city exactly once. A TSP instance
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2 ANT COLONY OPTIMIZATION

can be represented by a fully connected graph
G = (V, E, d), V being the set of n = |V| ver-
tices (representing the cities), E being the
set of edges that fully connects the vertices,
and d being a distance function that assigns
to each edge (i, j) a distance dij. Here, we
assume that the distance function is sym-
metric, that is, we have dij = dji, meaning
that the distance is the same whether one
goes from i to j or in the opposite direction.

To tackle a TSP instance with an ACO
algorithm, each edge (i, j) ∈ E needs a phero-
mone value τij associated with it. The
pheromone values are represented by real
numbers that are modified while running
the algorithm; they reflect the learned
desirability of choosing an edge: the higher
the pheromone value τij, the higher is
the desirability of choosing edge (i, j) as a
solution component. Additionally, each edge
has an associated heuristic value ηij = 1/dij.
For the TSP, the value ηij is a measure of the
heuristic desirability of having edge (i, j) as a
component of a tour: the shorter the distance,
the higher is the heuristic desirability.

An intuitive approach for constructing a
tour is to first choose a vertex randomly
and then, at each step, to go from the cur-
rent vertex to the closest one that has not
yet been visited. This solution construction
ends when all vertices have been visited and
the round trip is closed by returning to the
initial vertex. In all ACO algorithms that
have been implemented so far, the ants fol-
low a randomized version of this construction
rule. In fact, at each construction step, they
choose randomly a next vertex based on the
pheromone trail information and the heuris-
tic information. The probabilistic choice is
biased by pheromone and heuristic values:
the higher the pheromone and the heuristic
values associated with an edge, the higher
the probability that an ant will choose it.
Once all ants have completed their tours, the
pheromone on the edges is updated. First,
all pheromone values are decreased by a
constant factor, simulating the phenomenon
of pheromone evaporation. Then, each edge
receives an amount of pheromone propor-
tional to the quality of the solutions to which
it belongs (there is one solution per ant); that
is, the shorter the associated tour, the more

pheromone is deposited on the edges, making
them more attractive in future iterations.

Example 2. Ant Colony Optimization for the
Set Covering Problem

The SCP is a problem in which a candidate
solution is represented by a subset of ele-
ments from some other set subject to some
feasibility constraints. In the SCP, one is
given two sets A and B. Each element Bi of B
is a subset of A and it has associated a cost
ci. The goal of the SCP is to find a subset
of the set B of minimal cost such that A is
covered, that is, every element of the set A
occurs in at least one of the elements chosen
from set B. To guarantee that such a solution
exists, one necessary assumption to make is
that the elements of B cover the set A, that
is,

⋃n
i=1 Bi = A. A candidate solution for the

SCP can be represented by an n-dimensional
binary vector X = [xi], where n is the cardi-
nality of set B, xi = 1 if Bi is selected to be
part of the solution, otherwise xi = 0.

For solving an instance of the SCP with an
ACO algorithm, we define the solution com-
ponents as the elements of the set B. Each set
Bi has associated a pheromone trail τi. The
pheromone trails represent, analogous to the
TSP, the ants’ cumulated experience in solv-
ing the problem. For the SCP, the pheromone
τi gives the desirability for an ant to choose
element Bi, that is, to set the decision vari-
able xi = 1. The heuristic information ηi can
be defined in various ways. One possibility is
to use ηi = ki/ci, where ki = |Bi| is the total
number of elements covered by the subset
Bi. Hence, the heuristic function gives the
average cost for Bi of covering elements of A.
In this case, the heuristic information makes
use only of a priori available information. It
is therefore possible to compute the heuris-
tic information before running the algorithm
and therefore to compute the values of τi · ηi
before each algorithm iteration, saving in this
way computation time. However, it may be
advantageous to make the heuristic informa-
tion more accurate (but slower to compute)
by taking into account an ant’s partial solu-
tion. In the SCP case, ηi could then measure
the unit cost of covering one additional, still
uncovered element of set A. This can be done
by using ηi = ei/ci, where ei is the number of
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additional elements of set A covered when Bi
is added to an ant’s partial solution. Which
of the two options—using the faster but less
accurate precomputed heuristic information
or adapting the heuristic information based
on the ants’ partial solutions—is preferable
typically depends on the particular problem
to which ACO is applied.

Ants construct solutions taking into
account both the pheromone value and the
heuristic information associated with each
solution component. In the SCP case, an ant
starts with an empty solution and chooses,
at each construction step, one element of
B until all elements of A are covered. In
other words, an ant starts with all decision
variables set to zero and at each construction
step it sets one decision variable to one until
all elements of A occur in at least one of the
chosen elements of B. Note that in the SCP
application, the number of construction steps
to complete a solution may differ among
the ants. Once each ant has terminated the
construction of a candidate solution, it can
remove subsets Bi that may have become
redundant while constructing a solution
before the pheromone trails are updated.

ACO METAHEURISTIC

ACO can be applied to any combinatorial opti-
mization problem for which it is possible to
devise an incremental solution construction
procedure. Let us consider a general descrip-
tion of a combinatorial optimization problem
that is modeled by the tuple (S, f , �), where

• S is the set of candidate solutions
defined over a finite set of discrete
decision variables X. S is referred to as
the search space of the problem being
tackled;

• f : S → R is an objective function to be
minimized;

• � is a (possibly empty) set of constraints
among the decision variables.

A decision variable Xi ∈ X, with i = 1,
. . . , n, is said to be instantiated when
a value vj

i that belongs to its domain

procedure ACOMetaheuristic
 ScheduleActivities
 ConstructSolutions
 DaemonActions        //optional
 UpdatePheromones
 end-ScheduleActivities
end-procedure

Figure 1. ACO metaheuristic in pseudocode. It
works by intertwining three high-level proce-
dures: ConstructSolutions, DaemonActions, and
UpdatePheromones.

Di =
{
v1

i , . . . , v|Di|
i

}
is assigned to it. A solu-

tion s ∈ S is called feasible if each decision
variable has been instantiated satisfying all
constraints in the set �. Solving the opti-
mization problem requires finding a solution
s∗ such that f (s∗) ≤ f (s) ∀s ∈ S. Note that
maximizing the value of an objective function
f is the same as minimizing the value of
−f ; hence, every model of a combinatorial
optimization problem can be described as a
minimization problem.

ACO works by intertwining three high-
level procedures: ConstructSolutions, Dae-
monActions, and UpdatePheromones as
shown in Fig. 1. The ScheduleActivities
construct does not specify how the three
algorithmic components are scheduled and
synchronized. However, in most applications,
these procedures are executed in the depicted
order.

• ConstructSolutions. This procedure
implements the artificial ants’ incre-
mental construction of candidate solu-
tions. In ACO, an instantiated decision
variable Xi ← vj

i is called a solution
component cij ∈ C, where C denotes
the set of solution components. A
pheromone trail value τij is associated
with each component cij ∈ C. (More for-
mally, each solution component has an
associated pheromone variable that can
take a value, the pheromone trail value,
in a specific range.) A solution con-
struction starts from an initially empty
partial solution sp. At each construction
step, sp is extended by appending to it
a feasible solution component from the
set of its feasible neighbors N(sp) ⊆ C
that satisfies the constraints in �. The
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choice of a solution component is guided
by a stochastic decision policy, which is
biased by both the pheromone trail and
the heuristic values associated with
cij. The exact rules for the probabilistic
choice of solution components vary
across different variants of ACO. The
best known rule is the one used first in
the ant system algorithm [4]

pcij|sp =
[
τij

]α · [
ηij

]β

∑
cil∈N(sp)

[τil]α · [ηil]β
, (1)

where τij and ηij are, respectively, the
pheromone trail value and the heuristic
value associated with the component cij.
The parameters α > 0 and β > 0 deter-
mine the relative importance of pher-
omone versus heuristic information.

• DeamonActions. This procedure, altho-
ugh optional, is important when state-
of-the-art results are sought [7]. It
allows the execution of problem-specific
operations, such as the use of local
search procedures, or of centralized
actions that cannot be performed by
artificial ants. It is usually executed
before the update of pheromone values
in order to bias the ants’ search toward
high quality solutions.

• UpdatePheromones. This procedure
updates the pheromone trail values
associated with the solution compo-
nents in the set C. The modification of
the pheromone trail values is performed
in two stages: (i) pheromone evapora-
tion, which decreases the pheromone
values of all components by a constant
factor ρ (called evaporation rate) in
order to avoid premature convergence,
and (ii) pheromone deposit, which
increases the pheromone trail values
associated with components of a set of
promising solutions Supd. The general
form of the pheromone update rule is
as follows:

τij ← (1 − ρ) · τij + ρ ·
∑

s∈Supd|cij∈s

F(s),

(2)

where ρ ∈ (0, 1] is the evaporation rate,
and F : S → R

+ is a function such
that f (s) < f (s′) ⇒ F(s) ≥ F(s′), ∀s �= s′ ∈
S. F(·) is called the fitness func-
tion. Different definitions for the set
Supd exist. Two common choices are
Supd = sbsf , and Supd = sib, where sbsf is
the best-so-far solution, that is, the best
solution found since the start of the
algorithm, and sib is the best solution
of the current iteration. The specific
implementation of the pheromone
update mechanism differs across ACO
variants [1,4,13–15].

When applying the ACO metaheuristic to
a specific problem, the definition of solution
components and, hence, the definition of the
interpretation of the pheromone trails is deci-
sive for the final performance of the ACO
algorithm. In fact, even when restricting to
problems where candidate solutions can be
represented by a same representation (e.g.,
permutations), different interpretations for
solution components and pheromone trails
may be useful. For example, while in the TSP
case (see Example 1 in the previous section),
the successor relationship is important, that
is, τij should refer to the desirability of vis-
iting city j directly after city i, in scheduling
applications, it is often preferable to inter-
pret a pheromone trail τij as the desirability
of assigning a job j to position i. When facing
problems for which several alternative defini-
tions of pheromone are reasonable, which one
would be the best choice has to be determined
experimentally.

ACO ALGORITHMS

The ACO metaheuristic is a general algorith-
mic framework. Various specific ACO algo-
rithms, which all follow the high-level rules
of the ACO metaheuristic, have been pro-
posed in the literature. In fact, these variants
are obtained by various instantiations of the
three main procedures that build the ACO
metaheuristic. Some of the most noteworthy
variants are described below.

Ant System

Ant System (AS) was the first ACO algorithm
reported in the literature [2–4]. In AS, the
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pheromone values are updated at each itera-
tion by all m ants of the colony. All pheromone
trail values τij are updated as follows:

τij ← (1 − ρ) · τij +
m∑

k=1

�τ k
ij , (3)

where ρ is the evaporation rate, and �τ k
ij is

the quantity of pheromone laid on cij by ant
k. �τ k

ij is defined as follows:

�τ k
ij =

⎧⎨
⎩

F(sk) if component (i, j) is in the
solution constructed by ant k,

0 otherwise,

(4)

where the value of F(sk) is a function of the
quality of the solution constructed by ant k.
Normally, the better the solution, the higher
is the amount of pheromone deposited.

In the solution construction, ants select
solution components according to a stochastic
mechanism, following Equation (1).

AS is mainly of historical interest because
it was the first ACO algorithm proposed in
the literature. Initial computational results
have been interesting in the sense that
they showed that the underlying mechanism
works and allows to find good quality solu-
tions. However, the performance of AS was
still quite far from state-of-the-art methods.
The main importance of AS is that it has
seeded follow-up work by various researchers
on better performing algorithmic variants,
such as the two presented next.

MAX –MIN Ant System

MAX–MIN Ant System (MMAS) [15] is
an improvement over the original Ant Sys-
tem. Its main features are (i) only one of
the best ants deposits pheromone, and (ii)
the range of the allowed pheromone trail val-
ues is bounded. The pheromone update is
implemented as follows:

τij ←

⎧⎪⎨
⎪⎩

τmin if τij < τmin,

(1 − ρ) · τij + �τ best
ij if τmin ≤ τij ≤ τmax,

τmax if τij > τmax,

(5)

where τmax and τmin are, respectively, the
upper and lower bounds imposed on the
pheromone, and �τ best

ij is defined as

�τ best
ij =

⎧⎨
⎩

F(sbest) if solution component (i, j)
is part of sbest,

0 otherwise,

(6)

where the value of F(sbest) is a function of
the quality of the best solution found. This
solution can be sib, sbsf , a combination of
them, or possibly some other high-quality
solution.

Concerning the lower and upper bounds
on the pheromone values, a bound on the
maximum value may be calculated analyti-
cally as τ b

max = F(s∗)/ρ, if the optimal solution
s∗ is known [16]. If s∗ is not known, it can
be approximated by sbsf . Usually, setting
τmax = τ b

max (or to its approximation) results
in good behavior of MMAS. The initial value
of the trails is set to τmax to increase the
diversification of the search at the start of
the algorithm. Some heuristic considerations
for defining the setting of τmin have been pro-
posed [15,17]. Finally, MMAS was the first
ACO algorithm to use additional mechanisms
for increasing the diversification of the search
such as a reinitialization of the pheromone
trails or a smoothing of the pheromone trail
values when no improvement is observed for
a given number of iterations. For a detailed
description of these mechanisms, a general
overview of MMAS, and some variants of
MMAS, we refer the reader to [17].

Ant Colony System

Ant Colony System (ACS) [13] differs in some
key aspects from other ACO algorithms.
The first is that it uses a different decision
rule in the ants’ solution construction, which
is known as the pseudorandom propor-
tional rule. In this rule, with probability
q0 the next solution component j is the
one that maximizes the product of the
pheromone and heuristic values, that is,
j = arg maxcil∈N(sp){τilη

β

il}. With probability
1 − q0 the probabilistic choice is made using
Equation (1).
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Similar to MMAS, a pheromone update
is applied at the end of each iteration by only
one ant. The ACS pheromone update formula
is as follows:

τij ←
⎧⎨
⎩

(1 − ρ) · τij + ρ · �τ best
ij if solution

component (i, j) is part of sbest,
τij otherwise.

(7)

As in MMAS, �τ best
ij = F(sbest), where

sbest can be either sib or sbsf . It is noteworthy
that in ACS only the pheromone values of
solution components associated with the best
solution are updated.

To avoid search stagnation, in ACS a local
pheromone update is performed by each ant
after each construction step. This update
decreases the pheromone trail value of the
solution component that has been chosen in
the previous step. The goal is to diversify the
search performed by subsequent ants during
an iteration: by decreasing the pheromone
concentration for chosen components, these
get less desirable for subsequent ants, thus
increasing the chances of producing differ-
ent solutions. Each ant applies the local
pheromone update only to the pheromone
trail of the last solution component added

τij ← (1 − ϕ) · τij + ϕ · τ0, (8)

where ϕ ∈ (0, 1) is a parameter called
pheromone decay coefficient, and τ0 is a
parameter that determines the initial value
for the pheromone trails. A good value for τ0
was found to be F(sh)/n, where n is the size of
the instance and sh is a solution constructed
using a problem-specific heuristic [7].

Other Variants

In addition to the variants described above,
there are others that have been reported in
the literature. Table 1 summarizes the main
ACO variants, including those discussed in
the previous sections, which have been pro-
posed in the literature for the approximate
solution of NP-hard problems. For each of
these variants, we give the main references
and the year in which they were proposed.

The main characteristics of the ACO algo-
rithms that were not discussed so far are
the following. Elitist AS is a direct variant
of AS that gives a strong additional feedback
to the best solution constructed since the
start of the algorithm. Ant-Q is a predeces-
sor of ACS that is inspired by the well-known
Q-learning method from reinforcement learn-
ing. Rank-based AS extends Elitist AS by
allowing not only the best-so-far ant, but
also the r best ranked ants of the current
iteration to deposit pheromone; the weight
given to each ant in the pheromone update is
inversely proportional to its rank, the high-
est weight being given to the best-so-far ant.
ANTS is an ACO algorithm that exploits the
connection with tree-search procedures by
including elements from branch-and-bound
techniques, such as lower bound information,
into an ACO algorithm. Best-worst AS is an
AS variant where the worst ant of the cur-
rent iteration is used to subtract pheromone
from solution components that are part of
this worst ant but that do not occur in the
best-so-far solution. Population-based ACO
uses a set of elite solutions to define, at each
iteration, the pheromone trail matrix. The set
of elite solutions is managed by a population
management mechanism that is responsible
for updating the pheromone matrix each time
a solution is added or removed from the
elite set. Finally, Beam-ACO incorporates
a heuristic derived from branch-and-bound
algorithms called beam search.

Table 1. Overview of the main ACO
algorithms for NP-hard problems that have
been proposed in the literature

ACO Algorithm Main References Year

Ant System (AS) [2–4] 1991
Elitist AS [2–4] 1992
Ant-Q [18] 1995
Ant Colony System [13,14] 1996
MAX–MIN AS [15,19,20] 1996
Rank-based AS [21,22] 1997
ANTS [23,24] 1998
Best-worst AS [25,26] 2000
Population-based ACO [27] 2002
Beam-ACO [28,29] 2004

Given are the ACO algorithm names, the main
references where these algorithms are described, and the
year in which they were first published.
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Hybrid ACO Algorithms

Currently, it is a well-established fact that
ACO algorithms reach best performance for
most combinatorial optimization problems
when they are combined with either iterative
improvement algorithms or more complex
local search methods such as tabu search
or simulated annealing [7]. In these hybrid
algorithms, the local improvement methods
are used to improve the solutions constructed
by one or more ants after each iteration. The
usage of local search algorithms is also one
example of the daemon actions that have
been mentioned in the description of the ACO
metaheuristic (see Fig. 1).

Various alternative ways of hybridizing
ACO algorithms with other techniques have
been studied. The ANTS and Beam-ACO
algorithms, mentioned in the previous
section, were explicitly designed as hybrid
algorithms that integrate features from
branch-and-bound techniques into ACO algo-
rithms. Another active area is the integra-
tion of constraint programming techniques
into ACO algorithms [30,31], which is partic-
ularly attractive for problems where, due to
the problem constraints, it is difficult for the
ants to generate feasible candidate solutions.
Other hybrid techniques exploit the idea
of using partial candidate solutions to seed
an ant’s solution construction. Examples
of these hybrid methods are the use of
external memory in ACO algorithms [32] or
the extensions called iterated ants [33] and
cunning ants [34].

The investigation of hybrid ACO algo-
rithms is currently one of the most active
areas in the research on ACO.

ACO APPLICATIONS

ACO algorithms have been successfully
applied to a large variety of important
problems from both the academic and
industrial worlds (see the article A Concise
Overview of Applications of Ant Colony
Optimization for more information). The
main application areas are the following:

NP-Hard Problems. The best known
algorithms that are guaranteed to

find an optimal solution to this kind
of problems have exponential time
complexity in the worst case [35].
However, heuristic methods such as
ACO can be used to find high-quality
solutions in a reasonable amount of
time. Some examples of NP-hard prob-
lems for which ACO algorithms have
been successful are routing problems
[36–38], in which the goal is to find
the shortest route that visits a set of
locations; assignment problems [15],
where a set of items (objects, activities,
etc.) has to be assigned to a given
number of resources (locations, agents,
etc.) subject to some constraints; subset
problems [39], where a solution to a
problem is considered to be a selection
of a subset of available items; and
scheduling problems [29], in which the
main concern is to optimally allocate
scarce resources to tasks over time.

Rich Academic and Industrial Problems.
After initial encouraging results
on classic academic problems, ACO
started to be applied to real industrial
problems such as those arising in the
food or in manufacturing industry
[38,40]. As a result, richer versions of
the academic problems started to be
studied. Among the features of these
problems are time-varying data [41],
stochasticity [42,43], the presence of
multiple objectives [44,45], continu-
ous variables [46], mixed variables
[47], and so on. Practically relevant
dynamic problems are those found
in the domain of telecommunication
networks because some important
properties, such as the cost of using
links or the availability of nodes,
vary over time. Some ACO algorithms
have been shown to be very effective
at solving these types of problems
[48–50].

ACO THEORY

Most of the research results on metaheuris-
tics, in general, and on ACO, in particu-
lar, are of experimental nature. However,
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there is also a significant interest in more
fundamental properties of ACO algorithms.

A first question that is usually asked is
whether, given enough time, the algorithm
will eventually find an optimal solution. An
initial answer to this question was given by
Gutjahr, who proved for an ACO algorithm
called graph based ant system (GBAS) the
convergence with probability 1 − ε to the
optimal solution [51]. In a later paper [52],
convergence with probability 1 was proven
for two variants of GBAS. While GBAS has
not been studied in practical applications,
it is remarkable that convergence proofs
for two of the practically most successful
ACO algorithms, ACS and MMAS, have
also been obtained [53]. More recently, the
focus of research has shifted to studies of the
expected runtime to find optimal solutions
in ACO applications to specific problems.
An overview of proof techniques and some
results are given by Gutjahr [54]; recent
publications in this direction can be found in
[55–57].

Other contributions on theoretical aspects
of ACO have focused on establishing con-
nections to other methods. Zlochin et al. [58]
have defined the framework of model-based
search algorithms, of which ACO is one rep-
resentative. Connections of ACO to stochas-
tic gradient descent, an algorithm used, for
example, for learning weights in neural net-
works, have been studied in [59]. Of more
practical interest are studies on the behav-
ior of ACO algorithms. Merkle and Midden-
dorf were the first to analyze the dynamic
behavior of the pheromone model in ACO
algorithms [60]. Search bias in ACO algo-
rithms is studied in [61], where the authors
show that ACO algorithms may suffer from
the same type of deception as evolutionary
algorithms do. In addition, they show that
ACO algorithms may suffer from what they
call a second order deceptive behavior, where,
due to an interaction between the pheromone
update and the pheromone model chosen, the
quality of the solutions generated by an ACO
algorithm can decrease over time.

A more detailed discussion of theoretical
results about ACO algorithms is given in
[7,62].

CONCLUSIONS

ACO is now one of the main metaheuris-
tics and an active area of research. Early
research on ACO focused mainly on the devel-
opment of effective ACO algorithm variants
and a common framework for these algo-
rithmic developments is given by the ACO
metaheuristic. Currently, the main active
research directions in ACO concern appli-
cations to computationally challenging prob-
lems, the hybridization of ACO algorithms
with other search techniques, and the theo-
retical study of the behavior of specific ACO
algorithms.

Evidence of the success of ACO algorithms
is the number of specialized meetings, where
researchers can discuss their research
results on ACO algorithms and their appli-
cations. ACO is one of the main subjects
of the biannual conference ANTS (Interna-
tional Conference on Swarm Intelligence;
http://iridia.ulb.ac.be/ants/) and of the IEEE
Swarm Intelligence Symposium series. In
addition, ACO is a central topic at various
conferences on metaheuristics and evolu-
tionary algorithms. Finally, research on
ACO has frequently been featured in journal
special issues [63–66] and is a fundamental
subject of the journal Swarm Intelligence.
Information on ACO and related topics can
be obtained through the moderated mailing
list aco-list, and the ACO web page
(www.aco-metaheuristic.org).
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33. Wiesemann W, Stützle T. Iterated ants: an
experimental study for the quadratic assign-
ment problem. In: Dorigo M, et al., editors.
Volume 4150, Ant Colony Optimization and
Swarm Intelligence: 5th International Work-
shop, ANTS 2006, LNCS. Berlin: Springer;
2006. pp. 179–190.

34. Tsutsui S. cAS: ant colony optimization with
cunning ants. In: Runarsson TP, et al., edi-
tors. Volume 4193, Parallel Problem Solving
from Nature-PPSN IX, 9th International Con-
ference, LNCS. Berlin: Springer; 2006. pp.
162–171.

35. Garey MR, Johnson DS. Computers and
Intractability: a Guide to the Theory of NP-
Completeness. New York: W.H. Freeman &
Co.; 1979.

36. Gambardella LM, Dorigo M. Ant Colony Sys-
tem hybridized with a new local search for
the sequential ordering problem. INFORMS J
Comput 2000;12(3):237–255.

37. Reimann M, Doerner K, Hartl RF. D-Ants:
savings based ants divide and conquer the

vehicle routing problem. Comput Oper Res
2004;31(4):563–591.

38. Rizzoli AE, Montemanni R, Lucibello E, Gam-
bardella LM. Ant colony optimization for
real-world vehicle routing problems: from
theory to applications. Swarm Intell 2007;
1(2):135–151.

39. Blum C, Blesa MJ. New metaheuristic
approaches for the edge-weighted k-card-
inality tree problem. Comput Oper Res 2005;
32(6):1355–1377.

40. Dorigo M, Birattari M, Stützle T. Ant colony
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