
Chapter 74
Self-organized Flocking with Conflicting Goal
Directions

E. Ferrante, W. Sun, A.E. Turgut, M. Dorigo, M. Birattari, and T. Wenseleers

In flocking, a large number of individuals move cohesively in a common direction.
Many examples can be found in nature: from simple organisms such as crickets and
locusts to more complex ones such as birds, fish and quadrupeds.

Reynolds was the first to propose a computational model of flocking [1]. The be-
havior of each individual is made of three parts: separation, cohesion, alignment.
Separation means that the individual moves away from its neighbors. Cohesion
means that the individual stays close to its neighbors. Alignment means that the
individual matches the velocity of its neighbors.

This paper studies flocking in the robotics setting. One of the earliest attempt
to realize flocking in robotics was done by Matariç [2]. She created a set of “basic
behaviors”: safe-wandering, aggregation, dispersion and homing. Turgut et al. [3]
implemented flocking on real robots using two behaviors: proximal control and
alignment control. Proximal control combines the separation and cohesion compo-
nents and was realized using the framework of artificial physics as done by Spears
et al. [4]. Alignment control is realized through a novel sensing system which they
called virtual heading sensor.

More recent research in biology showed that only a small group of informed
individuals who have information about a desired goal direction is sufficient lead
the whole group in that direction [5]. These leaders are implicit, in the sense that
the rest of the swarm is not aware of their presence. Inspired by [5], Çelikkanat [6]
extended [3] by providing the goal direction to only a proportion of the robots,
which they referred to as informed robots. They found that, similarly to [5], only a
minority of informed robots is enough to guide the whole group.

In this paper, we study flocking of a swarm of robots when information about
two distinct goal directions is present in the swarm. This case can be instantiated
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in many practical examples: a swarm that has to go in one direction while avoiding
an obstacle; a swarm that has to avoid a dangerous locations while going to a tar-
get location; or a swarm that has to execute, in parallel, two tasks in two different
locations. In general, we can identify three different macroscopic objectives that we
might want to attain: (a) a swarm that moves to the average direction among the two
(for example to avoid the obstacle) without splitting; (b) a swarm that selects the
most important of the two directions (for example the direction to avoid danger) and
follows it without splitting; (c) a swarm that splits in a controlled fashion in the two
directions (for example, in the parallel task execution case).

This paper proposes a solution for the first objective: a method for moving the
swarm in the average between the two conflicting goal directions. We show that this
objective can be attained using a similar methodology as the one proposed in [3]
and [6]. We execute systematic experiments using a realistic robotics simulator. In
the experiments, a small proportion of robots is informed about one goal direction,
another small proportion about the other goal direction, and the rest of the swarm
is non-informed. We study the effect of what we believe are the critical parameters:
the overall proportion of informed robots, the difference between the size of the two
groups of informed robots and the difference between the two goal direction.

74.1 Method

We use a similar method as the one used in [3]. At each time step, a flocking control
vector is calculated as f = αp + βh + γ gi, where p denotes the proximal control
vector, h denotes the alignment control vector, gi with i = {1,2} denotes the vector
that indicates the two goal directions denoted with θ1 and θ2. For informed robots
γ = 1, whereas γ = 0 for uninformed robots. The values of the other parameters are
fixed to α = 1, β = 4 for all the robots.

Using proximal control, each robot keeps a desired distance (ddes) with its neigh-
bors to avoid collisions and to achieve cohesion. To do this, the robot only needs
to know the relative distance di and bearing φi of each neighbor i. The formula

pi(di) = 12ε[ ddes
12

d13
i

− ddes
6

d7
i

], based on the Lennard-Jones potential [7], encodes at-

traction and repulsion rules. If the actual distance di is smaller than ddes = 0.6 m,
pi(di) is negative and the rule is repulsive, otherwise it is attractive. The parameter
ε = 0.5 controls the strength of the attraction/repulsion rule. After computing pi(di)

for each neighbor, the proximal control vector is computed as p = ∑k
i=1 pi(di)e

jφi ,
where k is the number of neighbors.

Using alignment control, each robot aligns to the average orientation of its neigh-
bors. Each robot detects its own orientation θ0 and sends it to its neighbors. The
robot receives an angle θi from its ith neighbor that represent the neighbor’s ori-
entation. In this way, it is as if the robot can sense the orientation of its neighbors.

The robot then calculates the alignment control vector as: h =
∑k

i=0 ejθi

‖∑k
i=0 ejθi ‖ , where

‖ · ‖ denotes the norm of a vector and k denotes the number of neighbors. Given the
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flocking control vector f, the robot’s forward and angular speed are computed as the
projection of f on x-axis and y-axis of the robot as in [8]. The forward speed u is
directly proportional to x component of force, and the angular speed ω is directly
proportional to y component of force: u = K1fx , ω = K2fy . K1 = 2 and K2 = 2 are
the forward and angular gains, respectively. We also limit forward speed and angular
speed to u ∈ [0,Umax] and w ∈ [−Ωmax,Ωmax], with U = 20 cm/s and Ωmax = π

2
rad/s.

We use the simulated version of the foot-bot robot developed in [9]. We use the
following sensors and actuators: (i) A light sensor able to detect the bearing of a
distant light source, that is used by the robot to measure its orientation; (ii) A range
and bearing sensing and communication device (RAB), that is used by the robot to
obtain range and bearing of the neighbors in proximal control and to communicate
its orientation in alignment control; (iii) Two wheels actuators that is used by the
robot to move. For motion, we use the differential drive model as in [3] to convert
the forward speed u and the angular speed ω into the linear speed of left and right
wheels: NL = u + ω

2 l,NR = u − ω
2 l, where l = 5 cm is the distance of two wheels.

74.2 Experiments

We use the ARGoS simulator developed in [10]. It is a modular, multi-engine, open-
source simulator for heterogeneous swarm robotics.

74.2.1 Experimental Setup

A swarm of N = 100 foot-bots is placed, with random orientations, in an arena of
12 × 12 m. A remote light source is positioned far from the robots to provide com-
mon reference frame. A proportion of ρ1, ρ2 robots are informed about the goal
direction θ1, θ2, respectively. Thus, NA = Nρ1 is the number of robots informed of
goal direction θ1 and NB = Nρ2 is the number of robots informed of goal direc-
tion θ2.

We study the capability of the swarm to follow the theoretical average direction
in different parameter conditions. In particular, we are interested in determining
(i) the impact of the total proportion of informed robots, (ii) the impact of the dif-
ference between NA and NB and (iii) the impact of the difference between two goal
directions θ2 − θ1. For the second case, we classify the experiments in three sets: no
difference between NA and NB (NA = NB ), small difference (NA − NB = 2) and
high difference (NA −NB > 2). To study the impact of θ2 − θ1 and to reduce the pa-
rameter space, we fix the θ1 = 0, and we only vary θ2 ∈ {10,20, . . . ,170,179,180}.
We consider the following values of ρ1 and ρ2 (proportion of informed robots):
{(0.01,0.01), (0.01,0.05), (0.02,0.04), (0.1,0.1), (0.09,0.11), (0.01,0.19)}. Each
experiment is repeated R = 100 times and lasts T = 500 simulated seconds.
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74.2.2 Metrics

In this paper we are interested in having a swarm that is cohesive and moves along
the theoretical average direction between the two given goal directions. We use two
metrics to evaluate the degree of attainment of these two objective: split probability
and average group direction.

Split Probability To measure split probability, we first compute the number of
groups g at the end of each experiment as suggested in [5]. gi denotes the number
of groups at the end of the ith run. After executing R independent runs, the split

probability is calculated as: p =
∑R

i=1(min{2,gi }−1)

R
.

Average Direction The average group direction is simply the vectorial average
of all robots orientations: θ̄ = ∠

∑N
i=1 ejθi . We plot the average group direction

against the theoretical average direction, that takes into account the number of robots
informed about each goal direction: θ̂ = ∠(NAejθ1 + NBejθ2).

74.3 Results

According to the results (not shown), no matter the value of NA, NB and |θ2 − θ1|,
the swarm does not split.

We now report and discuss the average group direction in the three cases:
NA = NB (no difference), NB −NA = 2 (small difference) and NB −NA > 2 (large
difference).

No Difference (NA = NB ) Figure 74.1(left column) shows that, in most of the
cases, the average direction strictly follows the theoretical average direction θ̂ . The
most noticeable exception is the ρ1 = ρ2 = 0.01 case (Fig. 74.1(a)). In this case, the
robots are not able to follow the theoretical average direction when θ2 − θ1 is too
high, and the distribution of the average group direction has high standard deviation.
This can be explained by the fact that the total proportion of informed robots is not
high enough to drive the swarm in the desired direction, as argued in [6]. In fact,
Fig. 74.1(d) shows that, with higher total proportion of informed robots, the swarm
follows the theoretical average direction more precisely for most configurations of
θ2 − θ1.

Small Difference (NB − NA = 2) Figure 74.1(central column) shows that, no
matter θ2 − θ1, the group follows the theoretical average direction. When θ2 − θ1 is
high, larger total proportion of informed robots (Fig. 74.1(e)) correspond to lower
spread in the distribution. θ2 − θ1 = 180 degrees is a special case as it presents
many outliers. Otherwise, the swarm is able to follow the theoretical average even
for θ2 − θ1 = 179 degrees.
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Fig. 74.1 Distribution of average for NA = NB (left column), NB − NA = 2 (central column) and
NB − NA > 2 (right column). Solid black line represents the theoretical average direction in total
informed robots. The above and nether edges of the box indicate first and third quartiles. The black
center line indicates the median for each dataset
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Large Difference (NB −NA > 2) Figure 74.1(right column) shows that the theo-
retical average direction represents the goal direction that is known by the majority.
Here, a precise following of the theoretical average direction always takes place,
even when θ2 − θ1 = 180. Additionally, when the total proportion is small, there are
a few outliers (Fig. 74.1(c)). These outliers are otherwise not present for higher total
proportion of informed (Fig. 74.1(f)).

74.4 Conclusion and Future Work

We studied flocking of swarm of mobile robots where information about two con-
flicting goal directions is present in the swarm. In this setting, we believe three
possible macroscopic objectives can be identified: (a) making the swarm follow the
average direction between the two without splitting; (b) making the swarm follow
one (the most important) direction between the two without splitting; (c) making the
swarm split in a controlled fashion and allocate to the two goal directions. In this
paper, we propose a method based on [3, 6] and we show that it is capable to attain
the first objective. This result presents some difference with the results in [5], where
they also studied the conflicting goal direction case but showed that the resulting av-
erage direction strongly depends on the difference between the two goal directions.
This lack of agreement might be due either to the different methodology or to the
different level of detail in the simulations.

This work open many doors for possible future extension. In fact, in a parallel
on-going work [11], we are studying how to attain the second objective. This ob-
jective was attained by using a special communication strategy called self-adaptive
communication strategy (SCS). However, in that work we assumed that the priority
of the goal directions are known by the informed robots.

We believe that information transfer and communication are the key to attain
the desired macroscopic objectives in self-organized flocking, even in presence of
conflicting goal direction. Future work will deal with how to design direct or indirect
communication strategies to make the swarm split in a controlled fashion or to deal
with the second objective under the case where the priority of the goal directions are
not known in the swarm.
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