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Abstract. Relating microscopic features (individual level) to macro-
scopic features (swarm level) of self-organizing collective systems is chal-
lenging. In this paper, we report the mathematical derivation of a
macroscopic model starting from a microscopic one for the example of
collective decision-making. The collective system is based on the appli-
cation of a majority rule over groups of variable size which is modeled by
chemical reactions (micro-model). From an approximated master equa-
tion we derive the drift term of a stochastic differential equation (macro-
model) which is applied to predict the expected swarm behavior. We give
a recursive definition of the polynomials defining this drift term. Our re-
sults are validated by Gillespie simulations and simulations of the locust
alignment.

1 Introduction

Distributed and decentralized systems that rely on self-organization to coordi-
nate a large number of agents are characterized by nonlinear dynamics. These
systems rely on positive feedback (amplification), negative feedback (damping),
and a multitude of interactions between their components [1]. As a consequence
of nonlinearity combined with a large quantity of microscopic details (i.e., fea-
tures of individual agents), they are generally difficult to analyze and design.
Designers may deepen the understanding of these systems by defining appropri-
ate models that reflect specific features of these systems but are “not flooded
with microscopic details” [2]. Deriving a macro-model (i.e., a model of swarm
features not representing individual agents) mathematically from a micro-model
or vice versa is commonly believed infeasible for the general case. In sociology
this micro-macro relation is known as the micro-macro link [3,4] that has ap-
plications to biology, physics, and engineering, too [5]. An approximation to an
actual micro-macro-model for swarm robotics [6] has been proposed [5,7,8] that
is capable to represent individual agent trajectories as well as swarm densities.
If the considered self-organizing system relies also on inhomogeneous spatial dis-
tributions of agents, the modeling task is even more difficult [5,8]. A promising
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approach is to use network models as an abstraction of the interaction patterns
that emerge from self-organized behaviors (i.e., which agent interacts with which
other agents) as done, for example, by Huepe et al. [9] for the example of locusts.

In this paper, we focus on self-organizing collective decision-making (CDM)
systems because they generally consist of few, simple control rules and therefore
provide a good subject to approach the micro-macro problem under inhomoge-
neous spatial distributions of agents. CDM systems are found both in natural
and artificial swarms. A prominent example in nature is given by CDM in ant
colonies [10,11]. CDM systems with tight requirements concerning scalability
and robustness are also investigated in swarm robotics [12,13].

In this paper, we build on a recent work by Biancalani et al. [14]. They define
a simplistic collective decision-making model of foraging in ants (meetings of two
agents followed by a spontaneous switch of one of them) and investigate noise-
induced bistability. Above a critical swarm size, their system fails to converge on
a valid collective decision (i.e., it converges on states with conflicting opinions);
that is, in contrast to swarm intelligence systems, it does not scale. Nonethe-
less, their derivation of a macro-model based on the microscopic description of
the system behavior, namely chemical reactions, is of particular relevance. We
investigate systems operating on local majority rules, that is, subgroups of the
swarm cooperate temporarily and have a consensus on the local majority deci-
sion. These systems scale [12,13], comply with principles of swarm intelligence,
and correspond well to both artificial and natural swarm systems. Following the
mathematical approach of Biancalani et al. [14], we derive a stochastic differen-
tial equation as a macro-model starting with the microscopic description given
by a reaction schema. We focus on the drift terms of these equations that allow
to predict the long-term system behavior. Hence, we succeed in establishing a
mathematically sound micro-macro link requiring only two minor approxima-
tions (Taylor expansion and empirical approach for coefficients in the master
equation).

2 Model and Derivation of a Micro-Macro Link

We consider a swarm of N agents undergoing a CDM process. Agents are char-
acterized by their current opinion, for example, their direction of motion or a
preference for a particular site in the environment. We restrict our investiga-
tions to the simplest case of a binary decision scenario. Each agent favors one
out of two possible opinions, henceforth referred to as opinion 1 and opinion 2.
Agents change their opinion during the CDM process as they apply a major-
ity rule based on their local neighborhood. That is, when taking a decision,
an agent perceives the opinions of its neighbors in a limited perception range,
it includes in this group its own opinion, and eventually adopts the opinion
favored by the majority of this group. The size G of the neighborhood may
vary between different applications of the majority rule. We consider only odd
neighborhood sizes to simplify the analysis (i.e., no tie-breakers necessary) and
therefore G ∈ G = {3, 5, . . .}. Agents take decisions at a rate r. In addition,
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an agent may spontaneously change its opinion at a rate ε. With these sponta-
neous switches we model noise.

We represent the above described microscopic model using a set of chemical
reactions that model all possible causes affecting the opinion of an agent—the
reaction schema. Generally, chemical reactions are used to model the dynamics of
well-mixed compounds; therefore, our model implicitly assumes a spatially well-
mixed system and is thus an approximation of the actual system dynamics. The
definition of the reaction schema depends on the particular scenario of interest.
We give general equations to define the reaction schema:

RM,m
i,j : mXi +MXj

r→ (m− 1)Xi + (M + 1)Xj, (1)

Ri,j : Xi
ε→ Xj . (2)

Given an agentXi with opinion i ∈ {1, 2}, eq. 1 models the result of the majority
rule applied (at a rate r) to a group of G = m+M agents of which a minority
mXi of m agents favor opinion i while a majority MXj of M agents favor
opinion j ∈ {1, 2} \ i (thus m < M , G odd, transition of one agent from opinion
i to j). Eq. 2 describes the spontaneous switch (at a rate ε) of an agent Xi from
opinion i ∈ {1, 2} to opinion j ∈ {1, 2} \ i and models noise. For clarity, we
provide an example of a reaction schema for group size G = 3:

R2,1
1,2 : X1 + 2X2

r→ 3X2, R1,2 : X1
ε→ X2, (3)

R2,1
2,1 : 2X1 +X2

r→ 3X1, R2,1 : X2
ε→ X1. (4)

Reaction R2,1
1,2 describes a situation in which an agent with opinion 1 has two

neighbors with opinion 2 and, after applying the majority rule, it switches to
opinion 2 (respectively, reaction R2,1

2,1 for an agent with opinion 2). Besides,
reaction R1,2 models the spontaneous switch in the opinion of an agent with
opinion 1 to opinion 2 (respectively, reaction R2,1 for an agent with opinion 2).

If we would know the probability density function f(x1, x2, t) that describes
the time evolution of the proportions of agents x1 and x2 (respectively, with
opinion 1 and opinion 2), then we would have a complete understanding of the
system dynamics. Following the approach of van Kampen [15], f(x1, x2, t) is
obtained by writing and solving the corresponding master equation

∂tf(x1, x2, t) =
∑

[T (x1, x2|x′
1, x

′
2)f(x

′
1, x

′
2, t)

−T (x′
1, x

′
2|x1, x2)f(x1, x2, t)] , (5)

where x′
1 = x1 ± 1/N , x′

2 = x2 ∓ 1/N , and T (a|b) represents the transition rate
from state b to state a. However, analytical solutions of master equations are
known only for a limited number of cases (cf. van Kampen [15]). Nonetheless,
Biancalani et al. [14] derive an approximation to the master equation 5 by means
of step operators, which represent the change in the opinion of a single agent,
and a Taylor expansion in 1/N , which yields
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∂tf(x1, x2, t) ≈ [
1

N
(∂x2 − ∂x1)T1 +

1

N
(∂x1 − ∂x2)T2

+
1

2N2
(∂x1 − ∂x2)

2(T1 + T2)]f(x1, x2, t). (6)

Biancalani et al. [14] reduce eq. 6 to a Fokker-Planck equation by inserting the
expressions of the transitions rates T1 and T2 followed by rescaling time: t/N → t.
The Fokker-Planck equation is characterized by a drift term, that describes the
change in the mean proportions of agents x1 and x2, and a diffusion term, which
accounts for the variability of the same quantities. Finally, Biancalani et al. show
the equivalence of the obtained Fokker-Planck equation to a system of stochastic
differential equations (SDE). We focus on the drift term defined in the system of
SDEs because it determines the dominant features of the investigated systems.

The transition rates T1 and T2 give the rates at which x1 and x2 increase
over time. The transition rates depend on the particular reaction schema used
to describe the original process. As above, we provide general functions for the
corresponding reaction rates of a given reaction schema

T1 ≡ T (x1 +
1

N
, x2 − 1

N
|x1, x2)

≈ εx2 +
∑

G∈G

�G/2�−1∑

n=1

r

(
G

n

)2

xG−n
1 xn

2 , (7)

T2 ≡ T (x1 − 1

N
, x2 +

1

N
|x1, x2)

≈ εx1 +
∑

G∈G

�G/2�−1∑

n=1

r

(
G

n

)2

xn
1x

G−n
2 . (8)

In eqs. 7 and 8, G is the set of all possible group sizes while n represents the
number of agents in the group favoring the opinion associated to the minority.
The binomial coefficients are included based on a heuristic consideration and
account for all possible combinations of agents in the group. For the example
reaction schema presented above, eqs. 7 and 8 yield the transition rates

T1 = εx2 + r

(
3

1

)2

x2
1x2 and T2 = εx1 + r

(
3

1

)2

x1x
2
2. (9)

In both reaction rates, the first term models the effect of noise due to spontaneous
switching, while the second term models applications of the majority rule.

The approximation of the master equation in eq. 6 together with the transition
rates in eqs. 7 and 8 provides a complete macroscopic model derived from the
microscopic process described through the reaction schema. As done by Bian-
calani et al., we reduce the model to a single variable z = x1 − x2. The change
of z over time is given by

ż = ẋ1 − ẋ2 = 2(T1 − T2) +D′(x1, x2) = 2Δz(T1, T2) +D(z). (10)
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In eq. 10, the drift 2Δz(T1, T2) and the diffusion D(z) summarize the contribu-
tions given by all possible combinations of group sizes and according majorities
defined by the reaction schema. Henceforth, we focus on averages 〈ż〉 and hence
omit the treatment of the diffusion term. The drift term defines the system’s
main features, such as fixed points and negative/positive feedback. The manual
derivation of the term 2Δz(T1, T2) as a function of z is a rather complex task
for nontrivial reaction schemas. Nevertheless, 2Δz(T1, T2) has a regular struc-
ture that consists of a fixed term −εz, which results from noise, plus a linear
combination of polynomials pG(z) spanning over all considered group sizes G
resulting from the majority rule. Linear combinations of such polynomials are
easily manageable when applied to the analysis of systems.

The explicit derivation of polynomials pG(z) for all considered group sizes re-
quires an extensive sequence of change, expansion, and collection of variables. It
is a strenuous task whose difficulty increases with the size of the group. We pro-
pose a set of recursive functions that automatically generate the corresponding
polynomial for a given group size G. The first function

pG(z) =

�G/2�−1∑

m=1

ΔtmG

(
r

(
G

m

)2
)

(11)

factorizes the polynomial pG(z) in a sum of simpler terms ΔtmG which provide
the contribution to the overall drift of a particular group size G and minority m.
Function ΔtmG , that is defined as

ΔtmG (ρ) = ρ

[
1

4

(
1− z2

)]m
h(G− 2m), (12)

together with function

h(w) = zw +

�w/2�−1∑

i=1

Δtiw

(
(−1)i+1

(
w

i

))
, (13)

implement a recursive series of mathematical operations based on the binomial
theorem (and related to Pascal’s triangle) that are aimed at finalizing the change
of variable z = x1−x2. The resulting polynomial is characterized by odd powers
of z with exponents within [1, G]. For the above example, where G = 3, the noise
term −εz plus the recursion of eqs. 11, 12 and 13 yields for the average change

〈ż〉 = −εz + p3(z) = −εz +Δt13

(
r

(
3

1

)2
)

= −εz + r

(
3

1

)2 [
1

4

(
1− z2

)]
h(1)

= −εz + r

(
3

1

)2 [
1

4

(
1− z2

)]
z

= −εz +
9

4
rz − 9

4
rz3. (14)
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3 Simulation of a Locust Alignment Behavior

The desert locust, Schistocerca gregaria, exhibits a collective motion behavior
(‘marching bands’) [16] in which a majority of locusts align and move in a same
direction. Individual locusts seem to change their direction of motion as a re-
sponse to neighbors. In locust experiments [16], the complexity of the natural
environment is reduced to a pseudo-1-d setting by using a ring-shaped arena.
We use the microscopic model of self-propelled particles proposed by Czirók et
al. [17] as our reference model (henceforth ‘Czirók model’).

We study a system ofN = 41 particles in 1-d space. A particle i has coordinate
yi ∈ [0, C) (circumference C = 70) and discrete, dimensionless velocity ui ∈
[−1, 1]. We refer to particles with velocity ui < 0 as ‘left-goers’ (respectively,
‘right-goers’ for ui > 0). The dynamics of a particle is defined by yi(t + 1) =
yi(t) + v0ui(t), where v0 = 0.1 is the nominal particle velocity and ui(t + 1) =
F (〈u(t)〉i) + ξi models the particle interaction with its neighbors (subject to
noise ξi uniformly distributed over [−η/2, η/2], η = 2.5). The local average
velocity 〈u(t)〉i for the ith particle is calculated over all neighbors located in
the interval [yi − Δ, yi + Δ] for perception range Δ = 1.0. F describes both
propulsion and friction forces

F (u) =

{
(u+ 1)/2, for u > 0

(u− 1)/2, for u < 0
. (15)

The initial condition is a random uniform distribution for both the particles’
coordinates yi ∈ [0, C) and their velocities ui ∈ [−1, 1].

4 Validation of the Model

We validate the results presented in Sec. 2 by fitting the drift term defined
by linear combinations of polynomials pG(z) to simulations of two microscopic
scenarios. First, for selected group sizes, we fit single polynomials pG(z) to the
average result of simulations of the Gillespie algorithm [18]. Then, we focus on
the locust system described in Sec. 3 and we validate our full methodology.

4.1 Gillespie Simulations

The Gillespie algorithm, also known as Stochastic Simulation Algorithm (SSA),
is a Markov chain Monte Carlo method that is proven to generate statisti-
cally correct trajectories of a given reaction schema [18]. One of the primary
advantages of the Gillespie algorithm is its capability to provide a numeri-
cal solution equivalent to that of the master equation by averaging over an
ensemble of independent realizations. Given a particular reaction schema, the
Gillespie algorithm consists of 3 steps: (i) update the reaction rates for each
reaction according to the current state; (ii) randomly determine which and
when the next reaction will occur; and (iii) update the system state and jump
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Fig. 1. Results for fitting the polynomials (eq. 11) to data from Gillespie simulations,
simulations of the Czirók model, and to data of swarm alignment in locusts [19]
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back to step (i). We run Gillespie simulations for reaction schemas that im-
plement the majority rule for one fixed group size G. In the simulation we
measure the probability P (x1 + 1

N |switch, x1) that once an agent’s switch in
opinion is observed it increases x1. To get an approximation to the drift term
we rescale ż ≈ P (x1 +

1
N |switch, x1) − (2x1 − 1) = P (z + 1

N |switch, z) − z. By
fitting polynomials pG(z) to the results of Gillespie simulations we can assess
the validity of the approximations introduced in Sec. 2. Fig. 1a shows the re-
sults for group sizes G ∈ {5, 7, 9} of the fits between polynomials pG(z) and the
average of 2.5×105 Gillespie simulations. We achieve good fits for a range of val-
ues −0.4 < z < 0.4 but observe systematic deviations for z < −0.4 and z > 0.4.

4.2 Locust Simulations

In the simulation of the Czirók model we measure the average change 〈L̇〉 of
the ratio of left-goers (averaged over 106 independent simulation runs) as a
function of the current ratio of left-goers L and the current average neighborhood
size G of agents (i.e., agents within perception rangeΔ) averaged over all agents.
These measurements are easily converted to variable z as introduced in Sec. 2
(z = L−R = 2L− 1), for the ratio of right-goers R. The measured values of 〈ż〉
are then fitted1 using a sum over the above polynomials pG(z)

〈ż〉 = −εz +
∑

G∈G
cGpG(z), (16)

with the additional constraints of cG ≥ 0 which allow us to interpret the coeffi-
cients cG as weights of each polynomial pG(z). The results for G ∈ {3, 17, 27} are
shown in Fig. 1b. We achieve good fits. In the simulation of the Czirók model
we also measure the distributions of neighborhood sizes for given averages of
neighborhood sizes (106 simulation runs) as shown in Fig. 1c. In Fig. 1d we plot
the coefficients, that were obtained in the fitting process for Fig. 1b, in increas-
ing order of G and normalized to

∑
G c′G = 1. By interpreting the coefficients as

weights for each neighborhood size G we can read this plot as an approximation
of the neighborhood size distribution. Although there is no quantitative agree-
ment, we notice a qualitative agreement. The neighborhood size distribution for
G = 3 is unimodal as reflected by the coefficients. For G ∈ {17, 27} we have
bimodal distributions as in the coefficients. Furthermore, the mean of the fitted
coefficients monotonically increases with increasing neighborhood sizes (data not
shown).

Finally, we show results for a different source of data. A publication of Yates
et al. [19] shows in Figs. 2B and 3B how the drift coefficient depends on the
current alignment of a swarm (average velocity). Because the data obtained
from experiments with locusts, Fig. 2B in [19], is too noisy, we use instead
data from their model, Fig. 3B in [19], to fit our polynomials. The result is a
good fit (see Fig. 1e). Fig. 1f shows the corresponding coefficients which peak for

1 Nonlinear least-squares Marquardt-Levenberg algorithm [20] using gnuplot 4.6
patchlevel 1 (2012-09-26), see http://www.gnuplot.info/

http://www.gnuplot.info/
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neighborhood size G = 7 and have a second high value for G = 5. Unfortunately,
Yates et al. do not report neighborhood sizes. Still, our result seems reasonable
given their parameters: locust density 1/3 and interaction radius 5. Assuming a
uniform distribution, we get neighborhood sizes of about 3.3. However, we know
that locusts align and concurrently tend to cluster. Hence, significantly higher
local densities should be expected which supports our finding of neighborhood
sizes G ∈ [3, 9].

5 Discussion and Conclusion

In this paper we extend the approach of Biancalani et al. [14] to reaction equa-
tions that include more than two reacting molecules. The obtained method al-
lows to model majority-rule decisions and is applied to CDM systems relevant
to swarm intelligence. We report a recursive equation to systematically obtain
a set of polynomials. With these polynomials we form linear combinations that
define functions of candidate drift terms (i.e., the average change 〈ż〉 of swarm
fractions that are in favor of one of the opinions). We have shown that, starting
from a sample of drift measurements of a particular system, it is possible to ob-
tain a qualitative prediction of the underlying group size distribution by fitting
these linear combinations. Our method relies only on measurements of the drift
term. Such measurements can be easily obtained as we have shown for the Czirók
model and as done for locusts by Yates et al. [19]. Our method applies to both
directions of micro-macro transitions: from a given average drift term 〈ż〉 (e.g.,
measured or desired) to an approximation of the underlying group sizes (macro
to micro); or vice versa, from a given group size distribution to the prediction of
the average drift 〈ż〉 (micro to macro). Hence, we establish a micro-macro link.

Motivated by these preliminary results, we plan several extensions. We will
investigate methods to apply the master equation instead of approximations
while keeping the constraint that the model should be concise and manageable.
Alternatively, we will investigate the use of different approximations with the
goal of decreasing, for larger group sizes, the difference between the predicted
drift term and the results obtained with Gillespie simulations (see Fig. 1a).
We will also investigate generalizations of this approach that allow for different
decision-making strategies (beyond pure majority decisions) and we will validate
the model against a wider set of simulations (e.g., varied perception ranges).
We plan to search for polynomials describing CDM systems that are orthogonal
functions which can be used as basis functions. This would allow for deterministic
calculations of coefficients in the form of a discrete transform (similar to a Fourier
transform) instead of the proposed fitting approach.
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