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Abstract There have been several proposals on how to apply the ant colony optimization
(ACO) metaheuristic to multi-objective combinatorial optimization problems (MOCOPs).
This paper proposes a new formulation of these multi-objective ant colony optimization
(MOACO) algorithms. This formulation is based on adding specific algorithm components
for tackling multiple objectives to the basic ACO metaheuristic. Examples of these compo-
nents are how to represent multiple objectives using pheromone and heuristic information,
how to select the best solutions for updating the pheromone information, and how to de-
fine and use weights to aggregate the different objectives. This formulation reveals more
similarities than previously thought in the design choices made in existing MOACO algo-
rithms. The main contribution of this paper is an experimental analysis of how particular
design choices affect the quality and the shape of the Pareto front approximations gener-
ated by each MOACO algorithm. This study provides general guidelines to understand how
MOACO algorithms work, and how to improve their design.

Keywords Ant colony optimization · Multi-objective optimization · Multi-objective
traveling salesman problem · Experimental analysis

1 Introduction

Ant colony optimization (ACO) (Dorigo et al. 1991b, 1996; Dorigo and Stützle 2004) is a
swarm intelligence technique that was initially conceived for tackling single-objective com-
binatorial optimization problems. Given its success on these problems, ACO algorithms
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were soon extended to tackle multi-objective combinatorial optimization problems (MO-
COPs), resulting in the introduction of multi-objective ant colony optimization (MOACO)
algorithms. We focus on MOACO algorithms that do not make any assumption about the
preferences of the decision maker. In other words, these MOACO algorithms tackle multi-
objective problems in terms of Pareto optimality.

Several tens of papers have been written on MOACO algorithms and their applications.
Few of them examine alternative design choices for the algorithm components of the pro-
posed MOACO algorithms (Iredi et al. 2001; López-Ibáñez et al. 2004; Alaya et al. 2007). In
addition, two articles that review MOACO algorithms from different angles have been pub-
lished. García-Martínez et al. (2007) reviewed the existing MOACO algorithms available
until 2007 and experimentally compared their performance using the bi-objective travel-
ing salesman problem (bTSP) as a benchmark problem. The goal of this comparison was
to identify the best algorithm and it did not attempt to give deeper insights into how the
components of MOACO algorithms influence performance. A later review by Angus and
Woodward (2009) provides a more fine-grained taxonomy of MOACO algorithms, but lacks
an empirical analysis of their behavior.

In this article, we first define the algorithm components that constitute a MOACO algo-
rithm, making a strong distinction between those components specific to multi-objective op-
timization (MO-specific), and those components related to the underlying ACO algorithm.
Then, we identify the design choices proposed in each MOACO algorithm for implement-
ing these MO-specific algorithm components, and we provide a taxonomy that classifies
MOACO algorithms with respect to these algorithm components. This taxonomy allows us
to identify commonalities between MOACO algorithms that have previously remained un-
detected. Moreover, we empirically analyze the behavior of these design choices, and we
directly relate the performance of different MOACO algorithms and the shape of the Pareto
front approximations generated by them to their design choices.

We choose the bTSP as an example application due to its prominent role as a standard
benchmark for multi-objective algorithms (García-Martínez et al. 2007; Lust and Teghem
2010; Paquete and Stützle 2009). In fact, most MOACO algorithms are designed to solve
bi-objective optimization problems. Hence, we consider the bi-objective variant of the trav-
eling salesman problem (TSP). The bTSP is also a problem where heuristic information is
useful and, thus, it allows to study the impact of different strategies for exploiting heuristic
information in MOACO algorithms.

The experimental analysis in this paper significantly extends our earlier analysis (López-
Ibáñez and Stützle 2010a, 2010b). Firstly, in this analysis, we take into account the parameter
settings of the underlying ACO algorithm, in our case MAX –MI N Ant System (MMAS)
(Stützle and Hoos 2000). In fact, the best parameter settings of the underlying ACO algo-
rithm depend on the particular MOACO algorithm. Secondly, we consider the improvement
of the ants’ solutions by means of local search, which is known to be an essential compo-
nent of many high-performing ACO algorithms. Thirdly, we also include in the analysis new
design alternatives that have not been proposed in any previous MOACO algorithm. As a
result we improve the understanding of MOACO algorithms and their design.

This article is structured as follows. In Sect. 2, we first introduce the TSP, the ant colony
optimization (ACO) metaheuristic, and MAX –MI N Ant System (MMAS). Section 3
introduces some basic notions of multi-objective optimization, discusses the MOACO al-
gorithms we study, and gives our taxonomy of MOACO algorithms. Section 4 provides a
systematic experimental analysis of MOACO algorithms and their design choices. We con-
clude in Sect. 5.
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Fig. 1 A high-level view of the
ACO metaheuristic for NP-hard
problems

procedure ACOMetaheuristic
ScheduleActivities

ConstructSolutions
LocalSearch //optional
UpdatePheromones

end-ScheduleActivities
end-procedure

2 Ant colony optimization and MAX –MIN ant system

MOACO algorithms add a number of algorithm components to the ACO metaheuristic to
make it amenable to tackle multi-objective problems. To make the paper self-contained,
we first give a concise presentation of the ACO metaheuristic and MMAS, the (single-
objective) ACO algorithm that we use as the one underlying the MOACO algorithms we
study. The TSP was the first problem to which ACO algorithms were applied, and the fol-
lowing presentation will adopt it as an example application.

2.1 The traveling salesman problem

In the TSP, one is given an edge-weighted complete graph G = (V ,E, c), where V is the
set of n = |V | vertices, E is the set of edges that fully connects the graph, and c is a cost
function c : E → R that assigns to each edge (i, j) a cost c(i, j). Here we assume that the
cost function is symmetric, that is, c(i, j) = c(j, i). The goal in the TSP is to find in G

a minimum cost Hamiltonian circuit p = (p1, . . . , pn), where the cost of the Hamiltonian
circuit is

f (p) = c(pn,p1) +
n−1∑

i=1

c(pi,pi+1). (1)

2.2 The ant colony optimization metaheuristic

In ACO algorithms, artificial ants are probabilistic solution construction procedures.
The probabilistic decisions taken at each construction step are a function of (artificial)
pheromone trails τij and heuristic information ηij , which are numerical values associated
to each solution component (i, j) of a problem instance to be tackled—for example, an
edge in the case of the TSP. In the solution construction, ants probabilistically favor solu-
tion components with high pheromone trail values and high heuristic desirability values.
The pheromone trail values τij represent the desirability of selecting solution component
(i, j) learned during the execution of the algorithm; the heuristic information ηij represents
the desirability of a solution component as derived from the instance data. Once the solu-
tion construction is completed and the solutions are possibly improved by the application
of a local search procedure, the pheromone trail values are modified by evaporation and
pheromone deposit on some solution components. An algorithmic outline of the ACO meta-
heuristic is given in Fig. 1. The main features of the three procedures ConstructSolutions,
LocalSearch, and UpdatePheromones are the following.

– ConstructSolutions. This procedure implements the solution construction by the ants. In
this process each of the Na ants generates a candidate solution exploiting the pheromone
and heuristic information. Two parameters, α > 0 and β ≥ 0, determine the relative influ-
ence of pheromone vs. heuristic information in the solution construction.
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– LocalSearch. The performance of ACO algorithms is often strongly enhanced by improv-
ing the ants’ solutions using a local search procedure. In fact, local search is probably
the most common example of additional techniques that can improve the performance
of ACO algorithms. For an overview of other examples, we refer to Dorigo and Stützle
(2004).

– UpdatePheromones. The update of the pheromones consists of two processes. The first
implements pheromone evaporation, which is a mechanism to lower pheromone values.
The amount of pheromone evaporation depends on a parameter ρ ∈ [0,1], which is called
evaporation rate. The second process deposits pheromone on solution components that
are contained in good solutions among those previously generated. Which solutions are
chosen for the pheromone deposit and how much pheromone they deposit depends on the
specific ACO algorithm.

2.3 MAX –MI N ant system

The first ACO algorithm proposed in the literature was Ant System (Dorigo et al. 1991a,
1996). Soon after it, a number of improved variants were proposed, one of which is MMAS
(Stützle and Hoos 2000). MMAS borrows several algorithm components from Ant System
such as the solution construction mechanism. As in Ant System, in MMAS solutions are
constructed using the random proportional rule. For an ant k positioned in city i, the proba-
bility to choose city j as the next one is given by

pij = [τij ]α · [ηij ]β∑
h∈N k [τih]α · [ηih]β if j ∈ N k; otherwise pij = 0; (2)

where N k is the feasible neighborhood of ant k. In the simplest case, N k comprises all those
cities that the ant has not yet visited. However, most ACO implementations for the TSP make
use of candidate lists. The candidate list of a city i typically comprises a fixed length list of
its nearest neighbors. An ant chooses among these candidates as long as feasible neighbors
are available from this list. Only if all nearest neighbors have already been visited, a different
city may be selected.

The main difference between MMAS and Ant System is in the update of the pheromone
trails. In MMAS only one solution deposits pheromone after each iteration. This is typi-
cally the iteration-best solution, which is the best solution generated by an ant in the current
algorithm iteration, or the best-so-far solution, which is the best solution found since the
start of the algorithm. MMAS may also use a restart-best solution, which is the best solu-
tion after a re-initialization of the pheromone trails. Another difference between MMAS
and Ant System is that the range of pheromone levels in MMAS is limited to an inter-
val [τmin, τmax], which ensures a minimum degree of search diversification. The pheromone
update is implemented by the equation

τij ← max
{
τmin,min

{
τmax, (1 − ρ) · τij + �τ best

ij

}}
(3)

where �τ best
ij is set to

�τ best
ij =

{
F(sbest) if edge (i, j) is part of the best solution sbest,

0 otherwise.
(4)

F(sbest) is usually taken to be the reciprocal of the tour cost of the solution that is chosen
for the pheromone deposit. The initial pheromone trail level τ0 in MMAS is set to τmax.
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For a more detailed description of MMAS we refer to the original paper (Stützle and Hoos
2000); for more details on ACO we refer to Dorigo and Stützle (2004).

3 Multi-objective ant colony optimization

3.1 Bi-objective traveling salesman problem

We analyze the performance and the behavior of MOACO algorithms using their example
application to the bTSP, which directly extends the single-objective TSP. In the bTSP, the
cost function is now a vector-valued function c : E → R

2 that assigns to each edge (i, j)

a cost vector with components c1(i, j) and c2(i, j). The first and the second component
correspond to the costs for the first and second objective, respectively. We assume here that
the bTSP is symmetric, that is, we have cq(i, j) = cq(j, i), i �= j, q = 1,2. The objective in
the bTSP is to find a set of Hamiltonian circuits that “minimizes” the tour cost f = (f1, f2);
for each objective vector component fq , the cost of the Hamiltonian circuit is computed
according to (1).

If nothing is known about the preferences of the decision maker, the goal becomes to
determine a set of Hamiltonian circuits that “minimizes” the objective vector f in terms of
Pareto optimality. We say that a vector u dominates v (u ≺ v) iff u �= v and ui ≤ vi, i =
1, . . . , q , with q being the number of objectives. u and v are nondominated iff u ⊀ v and
v ⊀ u. We use the same terminology for solutions, that is, we say that a solution s domi-
nates another solution s ′ iff f(s) ≺ f(s ′). A solution is Pareto optimal iff there is no feasible
solution s ′ for which we have f(s ′) ≺ f(s). Since finding the set of all Pareto-optimal solu-
tions is typically intractable, the goal becomes to determine a set of mutually nondominated
solutions that approximates the Pareto-optimal set.

3.2 Multi-objective ant colony optimization

Soon after the first successful applications of ACO algorithms, these have been extended
to tackle multi-objective combinatorial optimization problems. Most of these approaches
tackle the problems in the Pareto sense. Since the number of MOACO proposals goes into
the tens, efforts have been made to review these and to identify their commonalities and
differences (Angus and Woodward 2009; García-Martínez et al. 2007).

The first of these efforts was an article by García-Martínez et al. (2007), which classifies
the existing algorithms according to the usage of one or several pheromone matrices and
the usage of one or several heuristic information matrices. It also provides an experimental
study of these algorithms using their example application to the bTSP. The comparison tries
to replicate precisely the original algorithms, for example, respecting the original choice
of the underlying ACO algorithm. Moreover, the analysis only assesses which algorithm is
performing best, without giving insights into the reasons for the performance differences.
In particular, no insight is obtained as to whether the observed differences are due to multi-
objective (MO-specific) algorithm components of the MOACO algorithms, e.g., using a
single versus multiple heuristic matrices, or whether the differences are due to different
choices of the underlying ACO algorithm, e.g., whether Ant System or MMAS was used
in each MOACO algorithm.

The review by Angus and Woodward (2009) provides a more detailed classification of
MOACO algorithms according to algorithm components, such as the pheromone deposit and
decay, the type of solution construction, or how candidate solutions are evaluated. Unfor-
tunately, this review does not consider any experimental analysis for identifying the impact
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that specific MOACO design decisions have on performance. Therefore, the practical rele-
vance of particular design decisions in MOACO algorithms remains unclear.

In this article, we adopt a different view from these two review articles. In a nutshell, our
point of view can be summarized by the equation

MOACO = ACO + MO-specific components. (5)

In other words, we see MOACO algorithms as being composed of an underlying ACO
algorithm whose rules are used to construct solutions or update the pheromones. These
algorithms are extended by specific algorithm components that make them amenable to
tackling multi-objective optimization problems. In fact, the existing MOACO algorithms
can be cast in such terms.

3.3 MOACO algorithms

In the following, we examine several MOACO algorithms with the goal of identifying their
MO-specific components. We focus on MOACO algorithms that have been designed with
Pareto optimization in mind. Hence, we exclude from our analysis a number of algorithms
that were designed for lexicographic optimization (Mariano and Morales 1999; Gambardella
et al. 1999; Gravel et al. 2002), or algorithms that diverge from the basic structure of the
ACO metaheuristic, such as population-based ACO (Guntsch and Middendorf 2003; Angus
2007). We also exclude from our review the adaptation of MOAQ to the bTSP (García-
Martínez et al. 2007), since we have already shown that its results are extremely poor in
comparison with the other algorithms (López-Ibáñez and Stützle 2010b), and it does not
contribute to our discussion.

3.3.1 BicriterionAnt

BicriterionAnt (Iredi et al. 2001) is a MOACO algorithm that uses different pheromone and
heuristic matrices for each objective, which are combined by a weighted product aggrega-
tion. In other words, the computation of the values of τij and ηij that are used in (2) is done
as

τij = (
τ 1
ij

)(1−λk) · (τ 2
ij

)λk and ηij = (
η1

ij

)(1−λk) · (η2
ij

)λk
, (6)

where τ 1
ij and τ 2

ij are the pheromone trails associated to solution component (i, j) for each
of the two pheromone matrices, and η1

ij and η2
ij are the heuristic information specific for

each objective. A weight λk ∈ Λ, with 0 ≤ λk ≤ 1, is associated to each ant k, and, hence,
there are as many weights as ants (|Λ| = Na).

In the original proposal, Iredi et al. (2001) suggest to update the pheromone matrices
by using the set of nondominated solutions found in the current iteration P ib by an amount
equal to �τ = 1/|P ib|. However, this approach only works for heterogeneous pheromone
matrices, that is, when each matrix is mapped to different solution components. In the bTSP
(and other problems), this is not the case, and such an update will result in multiple identical
pheromone matrices. Hence, we follow García-Martínez et al. (2007), and we use �τq =
1/fq(sa) to update each matrix, where fq is the objective function value of objective q =
1,2.

In the same paper, Iredi et al. (2001) discuss the use of multiple colonies. We will examine
this possibility in Sect. 3.5.
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3.3.2 Multiple ant colony system

Multiple Ant Colony System (MACS) (Barán and Schaerer 2003) differs from Bicriterion-
Ant in the use of a single pheromone matrix instead of several. As BicriterionAnt, MACS
uses multiple heuristic matrices, which are aggregated by weighted product using a different
weight λk for each ant k, as shown above.

In MACS, as in BicriterionAnt, pheromone information is updated with nondominated
solutions. However, we use �τ = 1 for the pheromone deposit, since all solutions update
the same pheromone matrix.

3.3.3 COMPETants

The original proposal of COMPETants (Doerner et al. 2003) formulates it as a multi-
colony approach with one colony for each objective. Each “colony” has one pheromone
and heuristic matrix and constructs solutions independently, except for a number of ants
(called “spies”), which aggregate the two pheromone matrices by weighted sum (with equal
weight given to each matrix) using either the first or the second heuristic matrix (thus cre-
ating two solutions). Finally, a number of ants from each “colony” are used to update the
pheromone matrix of their own “colony”.

It is possible to formulate COMPETants as a single-colony algorithm that uses multiple
pheromone and heuristic matrices, which are aggregated by weighted sum. First, we define
weights as λ ∈ {0,0.5,1}. Ants using λ = 0 only consider the pheromone and heuristic
matrices corresponding to the first objective, whereas ants using λ = 1 only consider the
ones corresponding to the second objective. These two weights correspond to the “colonies”
in the original formulation of COMPETants, whereas λ = 0.5 corresponds to the “spies”.
The aggregation of the pheromone matrices in COMPETants is equivalent to

τij = (1 − λ)τ 1
ij + λτ 2

ij . (7)

To match exactly the original formulation of COMPETants, we consider only λ ∈ {0,1}
when aggregating the heuristic matrices, that is, half the ants use only one heuristic matrix
η1 and the other half use the other heuristic matrix η2. This effectively means that heuristic
matrices are not aggregated.

The pheromone update method of COMPETants differs from the one of BicriterionAnt
and MACS. In our single-colony formulation, we update each pheromone matrix with the
best solutions with respect to the corresponding objective. We call this method best-of-
objective update.

For the sake of simplicity, we disregard the fact that in the original COMPETants al-
gorithm the number of ants for each weight was chosen adaptively based on the algorithm
progress; here each weight is used by one third of the total number of ants. We also follow
MMAS so that each pheromone matrix is updated with only one solution, the best one
with respect to the corresponding objective. We use �τ = 1 as pheromone deposit, because
the solutions used to update each matrix are different, and they may have quite different
objective values.

3.3.4 Pareto ant colony optimization

Pareto Ant Colony Optimization (P-ACO) (Doerner et al. 2004) is characterized by the use
of multiple pheromone matrices, one for each objective, which are aggregated by means
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of a weighted sum, instead of a weighted product as in BricriterionAnt. Each ant k uses
a different weight λk for aggregating the pheromone matrices. Each pheromone matrix is
updated with the best and the second-best solution for the corresponding objective. This is
equivalent to the pheromone update in COMPETants, which we call best-of-objective, but
using two solutions per pheromone matrix. We use a constant pheromone deposit of �τ = 1
as in COMPETants.

In the original proposal, Doerner et al. (2004) consider just a single heuristic matrix, since
it was difficult to define appropriate heuristic information for each objective in their bench-
mark problem. In later publications, however, Schilde et al. (2009) use multiple heuristic
matrices, one for each objective. The heuristic matrices are aggregated in the same way as
the pheromone matrices, that is, by means of a weighted sum. The design choice between
using only one or multiple heuristic matrices is crucial for the performance of the algo-
rithm. Here, we will assume that the default configuration of P-ACO uses multiple heuristic
matrices, since, as we will show later, this is the most advantageous configuration.

3.3.5 m-ACO variant 1 (m-ACO1)

Alaya et al. (2007) proposed four alternatives for the design of a MOACO algorithm. The
formulation presented for the first variant, m-ACO1, has one “colony” per objective, and
an “extra colony” that builds solutions by aggregating the pheromone matrices of the other
two colonies in a stochastic manner. In particular, at each construction step, ants from the
extra colony select randomly one objective and use the pheromone information associated
to that objective. Each colony uses the heuristic information of the corresponding objective,
whereas the extra colony aggregates these multiple heuristic values into a single one.

As in the case of COMPETants, m-ACO1 can be formulated as a single-colony approach
that resembles more closely the other algorithms reviewed above. This formulation of m-
ACO1 uses multiple pheromone matrices and multiple heuristic matrices, one for each ob-
jective, which are aggregated using three weights λ ∈ {0,0.5,1}. The pheromone matrices
are “aggregated” by choosing at each construction step, with a probability (1 − λ), the first
matrix and with probability λ the second matrix. We call this approach weighted random ag-
gregation. The multiple heuristic matrices are aggregated by means of weighted sum. With
λ = 0 or λ = 1, only one of the pheromone and heuristic matrices is used, which mimics the
original formulation of m-ACO1.

In the original formulation of m-ACO1, the pheromone information of each colony is
updated by solutions of the same colony. Only one solution is used to update each colony’s
pheromone matrix. The update of the extra colony is slightly different: each pheromone ma-
trix is updated with the best solution for each objective generated by the extra colony. That
is, two solutions are selected for the update, but only one solution updates each pheromone
matrix. Different colonies in the original formulation correspond to a different λ in our for-
mulation. Let us consider first the case of the extra colony, which corresponds to λ = 0.5.
We keep two lists of best solutions generated using this weight, each list ordered with re-
spect to a different objective. Then, each pheromone matrix is updated with the best solution
of the list corresponding to the same objective. In the case of λ = 0, we keep only the list
for the first objective, and, hence, only the first pheromone matrix is updated. For λ = 1,
we keep only the list for the second objective, and the best of this list is used to update the
second pheromone matrix. This update method, which we call best-of-objective-per-weight,
replicates the pheromone update of m-ACO1. As in COMPETants and P-ACO, we use a
pheromone deposit of �τ = 1.
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3.3.6 m-ACO variant 2 (m-ACO2)

The second variant by Alaya et al. (2007) only differs from m-ACO1 in the pheromone
aggregation, which in m-ACO2 is done by summing the pheromone matrices of each objec-
tive. In fact, this corresponds to a weighted sum aggregation using a weight vector (1,1).
When using MMAS as the underlying ACO algorithm, or any other scale invariant ACO
algorithm (Birattari et al. 2007), this is equivalent to using λ = 0.5. Hence, m-ACO2 is very
similar to P-ACO (Sect. 3.3.4) but using only three weights (λ ∈ {0,0.5,1}), and several
ants per weight.

3.3.7 m-ACO variant 3 (m-ACO3)

The third variant proposed by Alaya et al. (2007) uses a single pheromone matrix. This
pheromone matrix is updated by using nondominated solutions. In particular,

�τij =
{

1 if edge (i, j) appears in a solution in P ,

0 otherwise;

where P is a set of nondominated solutions. In general, it could be the set of nondominated
solutions found in the current iteration (iteration-best set), or since the start of the run (best-
so-far set). Alaya et al. (2007) emphasize that every pheromone value is updated only once,
independent of the number of solutions that contain it. This is different from other algorithms
that use a “nondominated update” such as MACS and BicriterionAnt. However, the general
principle is the same, and only the quantity of pheromone deposit differs. The heuristic
information is also a single matrix, which is built by aggregating the heuristic information
corresponding to each objective into a single matrix: ηij = η1

ij + η2
ij . Finally, since there is

a single pheromone matrix and a single heuristic matrix, the random proportional rule of
m-ACO3 is the same as for the single-objective ACO algorithms (2).

3.3.8 m-ACO variant 4 (m-ACO4)

In the fourth variant proposed by Alaya et al. (2007), there is one pheromone matrix per
objective. These matrices are aggregated by means of weighted random aggregation as in
m-ACO1. There is only one single heuristic matrix, which is built as in the m-ACO3 variant.
Finally, each pheromone matrix is updated with the best solution for each objective, which
exactly matches the best-of-objective update method used by COMPETants and P-ACO.

3.4 Taxonomy of single-colony MOACO algorithms

Table 1 categorizes the algorithms reviewed above according to several algorithm compo-
nents: the use of a single or multiple pheromone matrices, a single or multiple heuristic ma-
trices, the aggregation method, the number of weights, and the pheromone update method.
When there is only a single pheromone matrix and a single heuristic matrix, as in m-ACO3,
aggregation is not necessary.

We consider that all algorithms in Table 1 are single-colony MOACO algorithms. In the
next section, we discuss the use of multiple colonies in MOACO.
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Table 1 Taxonomy of single-colony MOACO algorithms. [τ ] refers to the use of a single or multiple
pheromone matrices, [η] refers to the use of a single or multiple heuristic matrices, Num. weights denotes
the number of values used for λ, and the pheromone update method (Ph. update) can be either nondomi-
nated solutions (ND), best-of-objective (BO) or best-of-objective-per-weight (BOW). Also, q is the number
of objectives, and Na is the number of ants

Algorithm [τ ] [η] Aggregation Num. weights Ph. update

BicriterionAnt q q Weighted product Na ND

MACS 1 q Weighted product Na ND

COMPETants q q Weighted sum q + 1 (Λ = {0,0.5,1}) BO

P-ACO q q Weighted sum Na BO

m-ACO1 q q

{
Random (τ )

Weighted sum (η)
q + 1 (Λ = {0,0.5,1}) BOW

m-ACO2 q q Weighted sum q + 1 (Λ = {0,0.5,1}) BOW

m-ACO3 1 1 – – ND

m-ACO4 q 1 Random (τ ) 1 (Λ = {0.5}) BO

3.5 Multi-colony BicriterionAnt

The idea of using multiple “colonies” of ants can be found in many MOACO algorithms.
However, the definition of “colony” is far from consistent across these proposals. For ex-
ample, in the original description of COMPETants (Doerner et al. 2003), a group of ants
that uses the same pheromone and heuristic information to construct solutions is said to be
a multi-colony approach because the ants may use different weights in aggregating diverse
information corresponding to different objectives. The same can be said of the m-ACO1

and m-ACO2 algorithms. By contrast, Iredi et al. (2001) describe a “multi-colony” algo-
rithm as a multi-start version of a single-colony algorithm, where each of the colonies may
have different settings. According to this definition, each colony uses its own pheromone
information and has an associated number of ants that use exclusively that information to
construct solutions. Cooperation among the colonies is then enabled through the exchange
of solutions. This definition of multi-colony MOACO is more consistent with the idea of
independent colonies and we adopt it here. It has the advantage of being easily applicable to
all the algorithms reviewed above, as we have shown elsewhere (López-Ibáñez and Stützle
2012a). For the sake of simplicity, we only consider in this paper the multi-colony variant
of BicriterionAnt (MC-BicriterionAnt).

In MC-BicriterionAnt, different colonies may be forced to specialize in different regions
of the Pareto front by various means (Iredi et al. 2001). First, colonies may be assigned
different weights for aggregation, either completely disjoint sets or sets that share com-
mon weights. We call this component multi-colony weights. More formally, a set of equally
distributed weights in the interval [0,1] is generated. Then, in the case of disjoint multi-
colony weights, this set is partitioned into equal disjoint sub-intervals per colony, that is,
λc,i = ((c − 1) · Nweights + (i − 1))/(Nweights · Ncol), i = 1, . . . ,Nweights, c = 1, . . . ,Ncol. In
the case of overlapping multi-colony weights, the sub-intervals overlap by a given percent-
age, which is fixed to 50 % here.

Iredi et al. (2001) propose that colonies cooperate to identify the best solutions by storing
the solutions constructed by all colonies in a single archive. Nondominated solutions from
this archive are assigned back to the various colonies to update their pheromone matrices.
We call multi-colony update the procedure that assigns solutions to each colony for updating



Swarm Intell (2012) 6:207–232 217

its pheromone information. In the simplest case, update by origin, each solution is assigned
to the same colony that constructed it. An alternative, called update by region, is to assign
a region of the Pareto front to each colony, and solutions located in a particular region
update the pheromone information of the corresponding colony. In the bi-objective case, a
trivial approximation of update by region is to sort the nondominated front according to one
objective, divide it into as many equal-sized parts as colonies, and use each part to update
each colony.

In the experimental part, we will analyze the actual impact of these alternative choices
on the behavior of MC-BicriterionAnt.

4 Empirical analysis of MOACO algorithms

4.1 Experimental setup and methodology

The goal of our experimental analysis is not to identify the best MOACO algorithm, but
rather to understand the relationship between algorithmic design choices and the results
produced by each algorithm. As said before, we use the bTSP as a benchmark problem in
our study. In particular, we consider six benchmark instances. The first four, kroAB100,
kroAB150, kroAB200, and euclidAB500 have been taken from Luis Paquete’s web-
page at http://eden.dei.uc.pt/~paquete/tsp. In these instances, the two cost matrices are gen-
erated independently of each other; each cost matrix gives the Euclidean distance between
points that are distributed uniformly at random in a square of a specific side length. The
number in the instance identifier corresponds to the number of nodes. In addition, we gen-
erated in the same way two larger instances, euclidAB700, and euclidAB1000. The
three smaller instances are used for MOACO algorithms without local search, while the
three larger ones for MOACO algorithms that incorporate local search.

For experiments on the three largest instances, we hybridize the MOACO algorithms with
local search. Each solution constructed by an ant is the starting point of a first-improvement
local search based on the 2-exchange neighborhood (2-opt). This is a single-objective lo-
cal search that works on a weighted sum aggregation of the two distance matrices. This
weighted sum aggregation in the local search uses the same weight as the ant used to con-
struct the solution. In the few MOACO algorithms where ants do not use weights, we assign
a different weight to each ant that is used only by the local search. The local search uses the
standard speed-up techniques for the TSP, such as “don’t-look” bits and fixed-radius nearest-
neighbor search. The latter is supported by a list per node of the 20 nearest neighbors. This
list is sorted in non-increasing order of the edge costs in the weighted sum aggregation of
the two distance matrices, and, hence, we keep different lists for different weights.

As usually done in the single-objective case, when tackling the three largest instances,
the ants’ solution construction is made more efficient by using a candidate list of size 20,
which is obtained by sorting edges according to dominance ranking (Lust and Jaszkiewicz
2010).

We perform 10 repetitions of each experiment. Each repetition uses a different seed for
the random number generator. Each run is stopped after 300 · (n/100)2 CPU-seconds in
the case without local search, and 4 · (n/100)2 CPU-seconds in the case with local search.
The MOACO algorithms are implemented in C based on an existing MOACO framework
(López-Ibáñez and Stützle 2012a), and compiled with gcc, version 4.4. Each experiment is
run on a single core of an AMD Opteron 6128 CPU (2 GHz, 512 KB L2 cache size) running
under Rocks Cluster GNU/Linux version 4.2.1/CentOS 4.

http://eden.dei.uc.pt/~paquete/tsp
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Fig. 2 EAFs of two algorithms A and B. The level of gray indicates the value of the EAF at each point in the
objective space, that is, the estimated probability of attaining each point in a single run of the corresponding
algorithm

As said above, all MOACO algorithms use MMAS as the underlying ACO algorithm.
By choosing one fixed ACO algorithm, we remove one factor that influences the perfor-
mance of the MOACO algorithms and, in this way, we are able to attribute possible perfor-
mance differences to specific design choices made in the multi-objective components. We
follow the design of MMAS for single-objective optimization (Sect. 2) as much as possible,
except for a few details. In particular, the number of solutions that update the pheromone ma-
trices is specified by the original MOACO algorithms. Moreover, we use a constant amount
of pheromone deposit (4), except when multiple pheromone matrices are updated with non-
dominated solutions, in which case we use the reciprocal of the tour cost with respect to the
objective associated to each pheromone matrix, thus, the pheromone deposit is different on
each matrix.

Since in many cases the outcomes of different algorithms are incomparable in the Pareto
sense, we consider the hypervolume (Zitzler and Thiele 1998; Fonseca et al. 2006) as a unary
quality measure that allows us to completely rank Pareto fronts. Neither the hypervolume,
nor any other quality measure, give precise information about the differences between the
Pareto fronts produced by two algorithms (Zitzler et al. 2003). We therefore visualize these
differences by means of a graphical technique (López-Ibáñez et al. 2006, 2010) based on the
empirical attainment function (EAF) (Grunert da Fonseca et al. 2001).

The attainment function gives for each point in the objective space the probability that a
single run of an algorithm attains it, that is, an objective vector generated by the algorithm
dominates the point or is equal to it. The attainment function is generally unknown, but it
can be estimated by collecting data from several independent runs and by computing the
corresponding EAF. Figure 2 is a side-by-side plot of the EAFs of two different algorithms
applied to the same bTSP instance. The level of gray at each point gives the (estimated)
probability of attaining that point (objective vector) in a single run of the algorithm. A black
point indicates that the algorithm attained that point vector in more than 80 % of the runs.

In order to examine differences in the results obtained by two algorithms, we compute
the differences between their EAFs at each point in the objective space, as shown in Fig. 3.
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Fig. 3 EAF differences between the two algorithms whose EAFs are shown in Fig. 2. For each point in the
objective space, the level of gray gives the difference in the estimated probability of attaining that point in a
single run of algorithm A versus a single run of algorithm B. The left side shows the EAF differences in favor
of algorithm A, while the right side shows the differences in favor of algorithm B

The sign of the differences indicates which algorithm has a higher probability of attaining
each point in a single run. We plot separately the differences of the same sign, such that at
each side the differences are in favor of the algorithm labeled at the bottom. The shade of
gray now encodes the magnitude of the differences. For example, a black point indicates that
one algorithm attained that objective vector in at least 80 % more runs than the other algo-
rithm. If the same point is white on both sides, it indicates that either both algorithms have
roughly the same probability of attaining that point, or neither algorithm has a probability
larger than 20 %. In the example shown in Fig. 3, algorithm A attains solutions with extreme
objective values that are never attained by algorithm B (as shown on the left plot), whereas
algorithm B is always better in a large region of the center of the Pareto front approximation
(as shown on the right plot).

An attainment surface is the minimum set of objective vectors that are attained with
a given probability. For example, the 50 % (median) attainment surface is the nondomi-
nated set of objective vectors that are attained by at least 50 % of the runs. In Fig. 3, the
median attainment surface of each algorithm is represented with a dashed line. We also
plot with continuous lines the grand-best attainment surface and the grand-worst attain-
ment surface, that is, respectively, the nondominated points attained by at least one run
of any of the two algorithms, and the nondominated points always attained by both algo-
rithms in all runs. All plots in this paper are generated using the eaf R package available at
http://cran.r-project.org/package=eaf.

4.2 Analysis of the underlying ACO parameters

The default MMAS settings for the single-objective TSP are not necessarily well suited
when applying MOACO algorithms to the bTSP (López-Ibáñez and Stützle 2012a). There-
fore, as a first step, we study the impact of the parameter settings of MMAS on each
MOACO algorithm by a full factorial analysis. We choose the best settings identified in this

http://cran.r-project.org/package=eaf
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Table 2 Parameters and
parameter values that were
considered for the analysis of
M MAS’s impact on the
performance of MOACO
algorithms. N ′

a is a surrogate
parameter that is used to
determine the number of ants, Na

Parameter Values

ρ 0.02, 0.10, 0.50, 0.90, 0.98

β 1, 3, 5

Na 6 · N ′
a · 
n/100� without LS

6 · N ′
a with LS

N ′
a 4, 8, 16

analysis to carry out later a fairer comparison of the MOACO algorithms, so that differ-
ences in performance can be attributed to the multi-objective algorithmic components rather
than to poor parameter settings of the underlying ACO algorithm. The parameters and their
values considered in this analysis are shown in Table 2. Instead of specifying directly the
number of ants (Na), we specify a surrogate parameter (N ′

a), which is multiplied by six in
order to ensure that Na is divisible by three, as required by COMPETants, m-ACO1 and m-
ACO2. When no local search is used, Na depends on the instance size as usual in MMAS
for single-objective problems. Our experimental design results in 5 · 3 · 3 = 45 candidate
parameter settings.

We ran the default setting of all eight MOACO algorithms with respect to their MO-
specific components with the above settings for the underlying MMAS. Each of the 45
candidate parameter settings was run 10 times with different random seeds on each of the
six instances. As a way to analyze the interactions among the parameters, we considered a
multi-way ANOVA. We found that there are important interactions, especially between ρ,
N ′

a and the particular MOACO algorithm. However, the results do not satisfy the normality
and homoscedasticity requirements for carrying out ANOVA. Thus, this approach does not
allow us to generalize or summarize the experimental results, apart from some general ob-
servations as, for example, a setting of β = 5 is significantly better than other choices when
not using local search. As an alternative, we use the non-parametric Friedman-test by blocks
(Conover 1999), where each block is one repetition on one instance. Within each block, the
different configurations of each MOACO algorithm are ranked according to their hypervol-
ume. For conciseness, we report the full results as supplementary material (López-Ibáñez
and Stützle 2012b). Here, we simply choose for further analysis the configuration of each
algorithm that obtains the lowest sum of ranks over all blocks. The configurations chosen
are summarized in Table 3. Although most algorithms perform better when using a high
value of N ′

a and β , there are major differences between several algorithms, which confirms
our previous assumption that there are no ACO settings that are good for all MOACO algo-
rithms. In the next section, we use the best configuration of each algorithm to carry out a
more in-depth analysis of their MO-specific components.

4.3 Analysis of the MO-specific components

We now analyze the effect of various design choices in MOACO algorithms. As a first
step, we examine the outcomes of the MOACO algorithms when using the ACO settings
described in Table 3. We plot the 50 %-attainment surfaces of these algorithms for the
kroAB200 instance in Fig. 4. We use two plots for clarity, and plot the 50 %-attainment
surface of BricriterionAnt in both plots as a reference for comparison. The first observation
is that BicriterionAnt and MACS obtain the best Pareto front approximations in terms of
shape and quality. COMPETants, m-ACO1 and m-ACO2 show obvious gaps in their Pareto
front approximation. Finally, m-ACO3 and m-ACO4 produce very narrow approximations,
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Table 3 Best settings of
M MAS underlying each of the
MOACO algorithms

Algorithm Without LS With LS

N ′
a β ρ N ′

a β ρ

BicriterionAnt 16 5 0.98 16 5 0.02

MACS 4 5 0.9 16 5 0.02

COMPETants 4 1 0.5 16 3 0.02

P-ACO 16 5 0.02 16 5 0.9

m-ACO1 4 3 0.02 16 5 0.1

m-ACO2 16 3 0.9 8 5 0.98

m-ACO3 16 3 0.5 16 5 0.02

m-ACO4 16 5 0.5 16 1 0.98

Fig. 4 50 % attainment surfaces of the various MOACO algorithms studied in the experiments. Objectives 1
and 2 are given in the x- and y-axis, respectively, in these plots and in the plots shown in Figs. 5 to 9 and 11

which are closer to the Pareto front in the center, but that fail to approximate the extremes
of the Pareto front.

In order to explain these remarkably different behaviors, we examine in this section one
algorithmic component at a time. We focus our analysis on only four algorithms: Bicrite-
rionAnt, P-ACO, m-ACO2 and MACS. However, as we will show, the analysis generalizes
to all MOACO algorithms, since our analysis explains the behavior of all algorithms in
terms of their particular algorithmic design. We illustrate our discussion with plots of the
EAF differences, limited to the 200 nodes (without local search) and 1000 nodes (with lo-
cal search) instances. The full set of plots for all instances is available as supplementary
material (López-Ibáñez and Stützle 2012b).

Weighted sum vs. weighted product In our earlier experiments (López-Ibáñez and Stützle
2010b), we observed that the aggregation of multiple pheromone and/or heuristic matrices
by means of weighted product gives better results than using weighted sum aggregation.
Sucha result is surprising at first. Given a computation time limit, MOACO algorithms us-
ing weighted product perform substantially less iterations than the same algorithms using
weighted sum and, thus, they evaluate fewer candidate solutions. For example, Bicriteri-
onAnt is able to perform four times more iterations when using weighted sum instead of
weighted product aggregation. The new experiments carried out here confirm these results
when not using local search and on a wider range of MOACO algorithms and instances.
Figure 5 shows the EAF differences between these two alternatives for four MOACO algo-
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Fig. 5 Comparison of MOACO algorithms using either weighted product (w. product) or weighted sum
(w. sum) aggregation by plots of EAF differences. The results are given for various MOACO algorithms
without local search on instance kroAB200

rithms in the kroAB200 instance. In all cases, a weighted product aggregation improves
the quality of the approximation in the center of the Pareto front.

The explanation of this behavior is that, in the random Euclidean bi-objective TSP, the
heuristic matrices are not correlated, and hence, a weighted sum tends to average out the
value of all components of the matrices. A weighted product aggregation better differentiates
between components that have a high heuristic value in both matrices and the rest.

However, when the same MOACO algorithms incorporate local search, the benefit of
using a weighted product aggregation mostly disappears, because the influence of heuristic
information is smaller, and its positive bias is not compensated by the computation cost of
the weighted product aggregation.

Single vs. multiple heuristic matrices A few MOACO algorithms, such as m-ACO3 and
m-ACO4 and some variants of P-ACO, aggregate the heuristic information corresponding
to each objective in a manner that is independent of any dynamic weight setting. This is
equivalent to aggregating multiple heuristic matrices into a single one at the start of the
algorithm. The main benefit is speed, since a single heuristic matrix is computed once at
the start of the algorithm. This approach also avoids defining a set of weights and a weight
setting strategy. However, a single heuristic matrix strongly biases the solution construction
towards the center of the Pareto front, where both objectives are balanced. If the heuristic
information plays a strong role in generating high-quality solutions, then this bias may be
stronger than other components that favor diversity, such as the use of multiple pheromone
matrices.

This is the effect shown in Fig. 6. The plots corresponding to BicriterionAnt, which
uses multiple pheromone matrices, and MACS, which uses a single pheromone matrix, are
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Fig. 6 Comparison of MOACO algorithms using a single (single heu) or multiple (multiple heu) heuristic
matrices by plots of EAF differences. The results are given for various MOACO algorithms without local
search on instance kroAB200

extremely similar. This indicates that obtaining a wider Pareto front is mostly independent
of the number of pheromone matrices, but it requires using multiple heuristic matrices. This
conclusion is further confirmed by the plot corresponding to P-ACO (top-right plot in Fig. 6).
P-ACO also uses multiple pheromone matrices but, in contrast to BicriterionAnt, it uses best-
of-objective pheromone update, which means that each pheromone matrix is updated using
the best solution for each objective. Hence, the pheromone update of P-ACO is strongly
biased towards the extremes of the Pareto front. However, the plot shows that this bias is not
enough to produce a wide Pareto front approximation when using a single heuristic matrix.
On the contrary, since the single heuristic matrix gives equal importance to both objectives,
the search is biased towards high-quality solutions with approximately the same value of the
two objectives (i.e., the center of the Pareto front approximation), and it fails to approximate
the extremes of the Pareto front.

When using local search, as shown in Fig. 7, EAF differences are not easily visible be-
cause of the wide range of the Pareto front compared to the small distance between the
grand-best and grand-worst attainment surfaces. Therefore, we do not examine the EAF dif-
ferences for the algorithms using local search in the rest of the paper, but later we compare
these algorithms in terms of the hypervolume measure. Nonetheless, the attainment surfaces
shown in Fig. 7 illustrate that the shape of the Pareto front is determined by the number of
weights used by the local search. In particular, m-ACO2 uses only three weights, whereas
the other three algorithms use Na weights. On the other hand, the shape is not affected by the
number of heuristic matrices used by each algorithm. This indicates that the bias of the local
search is much stronger than the bias of the heuristic information. When comparing the al-
gorithms according to the hypervolume, algorithms using a single heuristic matrix produce
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Fig. 7 Comparison of MOACO algorithms using a single (single heu) or multiple (multiple heu) heuristic
matrices by plots of EAF differences. The results are given for various MOACO algorithms with local search
on instance euclidAB1000

better results since they are able to perform more iterations. For example, MACS performs
around two times more iterations when using a single heuristic matrix rather than two, and,
hence, it obtains better solutions.

Pheromone update: nondominated vs. best-of-objective Figure 8 compares the different
choices available for pheromone update in the MOACO literature, that is, nondominated
update and best-of-objective update (best-of-objective-per-weight in the case of m-ACO2).
Interestingly, the nondominated update approach obtains better results in all cases, indepen-
dently of the number of pheromone matrices (MACS uses only one, the others use two), the
type of aggregation (P-ACO and m-ACO2 use weighted sum, the others use weighted prod-
uct) and the number of weights (m-ACO2 uses only three, the others use as many as Na).
The best-of-objective update method is only better on the very extremes of the Pareto front.

When local search is used, the clear advantage of nondominated update disappears.

One weight per iteration (1wpi) vs. all weights per iteration (awpi) All algorithms pro-
posed in the MOACO literature use the whole set of weights at every iteration (awpi ap-
proach). In a previous work (López-Ibáñez and Stützle 2010a), we proposed to use only one
weight at each iteration and change the weight at every iteration (1wpi approach). The ben-
efits of the 1wpi approach are evident in Fig. 9. The 1wpi approach does not significantly
change the shape of the Pareto front approximation, however, it leads to an overall improve-
ment with respect to the Pareto front approximation obtained with awpi. The main reason is
that by using the same weight at each iteration, the aggregation of multiple matrices can be
computed once per iteration, instead of recomputing it for each ant. This leads to a large in-
crease of the number of iterations (roughly by a factor of ten) that can be performed within
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Fig. 8 Comparison of MOACO algorithms using nondominated (ND) vs. best-of-objective (BO) pheromone
update by plots of EAF differences. The results are given for various MOACO algorithms without local search
on instance kroAB200

Table 4 Experimental setup of
Multi-Colony BicriterionAnt Parameter Values

Ncol 2, 5, 10

Multi-colony weights Disjoint, overlapping

Multi-colony update Origin, region

the same computation time limit allowing the algorithm to reach better solutions. These
results are consistent for all the instances tested, with and without local search.

4.4 Multi-colony BicriterionAnt

In this section, we analyze the multi-colony (MC) BicriterionAnt. In our previous work
(López-Ibáñez and Stützle 2010b), we already noticed that using more than one colony was
always beneficial. However, there are several additional design choices that only make sense
when using multiple colonies (Table 4). We examine here the effect of these parameters.

As a first step, we run all possible combinations of the parameters shown in Table 4 with
all possible combinations of the underlying ACO parameters described in Table 2. As above
in the single-colony algorithms, the goal of this first step is to understand the impact of the
ACO settings, and determine a good set of settings to perform further analysis.

For analyzing the influence of all ACO settings, we tried to perform ANOVA on each
instance, yet, the ANOVA requirements are not fully satisfied. The only overall observations
we are able to reach is that without local search a strong heuristic information is needed.
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Fig. 9 Comparison of MOACO algorithms using one weight per iteration (1wpi) vs. all weights per iteration
(awpi) by plots of EAF differences. The results are given for various MOACO algorithms without local search
on instance kroAB200

Table 5 Best underlying ACO
settings per algorithm Algorithm Without LS With LS

N ′
a β ρ N ′

a β ρ

MC BicriterionAnt 16 5 0.98 8 3 0.98

Results obtained with β = 5 are significantly better than with other settings. By contrast,
when using local search this is not the case.

Instead of ANOVA, we again use ranking by blocks to identify the best overall ACO
settings, which are shown in Table 5. The overall conclusion is that a strong evaporation
seems to be necessary. The explanation for this setting is that high evaporation leads to
a faster convergence of the algorithm. A faster convergence is required, since the use of
multiple colonies reduces the number of iterations the algorithm is able to perform by a
factor close to the number of colonies.

In a second step, we examine the algorithmic components specific to multi-colony Bicri-
terionAnt (Table 4). Once the ACO settings are fixed as above, the requirements of ANOVA
are mostly satisfied. For the sake of conciseness, we only give an overview of the most
interesting observations. First, the use of ten colonies was always the best setting in our
experiments, with a strong difference over the single-colony approach (see Fig. 11). This is
somewhat surprising, since a large number of colonies in BicriterionAnt incurs a consider-
able overhead caused by the extra pheromone matrices. Given a computation time limit, the
number of iterations that the algorithm is able to perform decreases by a factor of the num-
ber of colonies. These results are, nonetheless, consistent with all our previous experiments



Swarm Intell (2012) 6:207–232 227

Fig. 10 Interaction between MC weights and MC update parameters (left: kroAB200 without LS; right:
euclidAB1000, with LS)

Fig. 11 Comparison of various settings for multi-colony BicriterionAnt by plots of EAF differences. The
results are given for BicriterionAnt without local search on instance kroAB200

(López-Ibáñez and Stützle 2010b, 2012a). These results suggest that the specialization in-
troduced by the multiple colonies is key to obtain a diverse Pareto front approximation.

We also observed a strong interaction between the parameter multi-colony weights (dis-
joint or overlapping) and the parameter multi-colony update (origin or region). Figure 10
shows the interaction plots for one instance tackled without local search (left) and one in-
stance tackled with local search (right). We also compare the EAFs of various settings in
Fig. 11. From these plots, we extract the following observations.

In the case without local search, we observed that it is better to combine update by re-
gion with overlapping rather than disjoint weight intervals. It is less clear which choice of
weight intervals works better when combined with update by origin. A possible explana-
tion is that when colonies share weights, they are more likely to find similar solutions, and,
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hence, exchanging them (update by region) helps the colonies to specialize. Despite what
the interaction plot may suggest, the EAF plots (Fig. 11, top right) show that, when using
10 colonies, the difference between disjoint and overlapping intervals is not very strong. In
fact, when using 10 colonies, the main difference is that exchanging solutions (update by
region) leads to a better performance in the center of the Pareto front, as shown in Fig. 11
(top left).

In the case with local search, disjoint weight intervals are strongly better, presumably
because the local search uses a more varied set of weights, generating a more diverse set
of solutions. Also, the weights of the local search itself impose a stronger division between
the colonies, which makes exchanging solutions between colonies (update by region) not
beneficial anymore. However, it is still beneficial if weights overlap, since one colony may
generate very good solutions in the region of other colonies. This would explain why update
by origin becomes worse than update by region when combined with overlapping weight in-
tervals, while the opposite is true when update by origin and update by region are combined
with disjoint weight intervals (Fig. 10, right).

The main conclusions are as follows. First, the use of multiple colonies in the sense of
Iredi et al. (2001) (i.e., with independent pheromone matrices) is very beneficial despite its
high cost in computation time. We predict it will be even more beneficial in other problems
where the overhead of the MOACO algorithm is lower with respect to the evaluation cost of
solutions. Second, if the solution construction is strong enough to force a specialization of
each colony to a different region, for example, when using a strong weighted local search,
then it is better that colonies use disjoint intervals, i.e., do not share weights, and do not
exchange solutions (i.e., update by origin). Otherwise, it is better that the colonies share
weights (i.e., overlapping intervals) and exchange solutions among them (i.e., update by
region).

4.5 Comparison of the best MOACO algorithms

As a final step in our analysis, we examine the quality obtained by the best MOACO al-
gorithms. We choose MACS, P-ACO and BicriterionAnt (with Ncol = 1 and Ncol = 10),
since they give the best results overall with and without local search. For each algorithm,
we use the best ACO settings that were identified above. For BicriterionAnt (Ncol = 10), we
use overlapping multi-colony weights and update by region when not using local search,
and disjoint multi-colony weights and update by origin when using local search, following
the analysis done in the previous section. All algorithms use the one-weight-per-iteration
strategy, since it was always better than the alternative.

Figure 12 gives the hypervolume of the selected MOACO algorithms without local search
on three bTSP instances. The results confirm our previous analysis, that is, MACS and Bi-
criterionAnt (Ncol = 1) produce better results than P-ACO, and the results of BicriterionAnt
are further enhanced by using multiple colonies.

Figure 13 is the corresponding plot when the algorithms use local search. In this case,
P-ACO is much better than MACS and BicriterionAnt (Ncol = 1), because when using
local search, weighted sum aggregation and best-of-objective update are better than the
alternatives. However, the use of multiple colonies in BicriterionAnt is still the best ap-
proach.
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Fig. 12 Boxplot of the
hypervolume obtained in 10 runs
by four MOACO algorithms
without local search

Fig. 13 Boxplot of the
hypervolume obtained in 10 runs
by four MOACO algorithms with
local search

5 Conclusions

This paper has presented a thorough empirical analysis of the various design choices made in
MOACO algorithms. Our analysis shows that some design choices have a profound impact
on the quality and shape of the Pareto front approximation obtained.

– The use of very few weights for aggregating multiple pheromone or heuristic matrices
(as done, for example, in COMPETants, m-ACO1 and m-ACO2) generates Pareto front
approximations that are very good in the direction of those weights, but extremely poor
in the areas not covered by them. This effect is strongest when applying a weighted local
search to the solutions constructed by the ants. The conclusion is that the more effective
the generation of solutions, the more disconnected the resulting Pareto front approxima-
tion. Using a higher number of weights alleviates this problem.

– The weighted sum aggregation of pheromone or heuristic matrices has difficulty approx-
imating the convex part of the Pareto front. By contrast, a weighted product aggregation
produces a much better approximation of the center of the Pareto front. However, if an
effective local search is able to generate high-quality solutions in the center of the Pareto
front, then the high computation cost of a weighted product aggregation cancels its bene-
fits.

– In problems where heuristic information is essential to reach high-quality solutions, a sin-
gle heuristic matrix, as used by m-ACO3 and m-ACO4, biases the algorithm towards the
center of the Pareto front, leading to a very narrow Pareto front and a poor approximation
of the extremes of the Pareto front.

– The strategy that uses one weight per iteration (1wpi) is computationally more efficient
than using all weights at each iteration (awpi), without any noticeable downsides in terms
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of quality. Hence, 1wpi is clearly the best choice for the bTSP, and we believe that this
strategy may be useful for other problems where the aggregation of the pheromone and
heuristic matrices can be precomputed once per iteration.

– The multi-colony approach used by BicriterionAnt is always better than the single-colony
BicriterionAnt. This is even true on large instances, where the overhead of additional
colonies is larger. Therefore, we recommend to consider the use of multiple colonies
when applying MOACO to a new problem. Moreover, most MOACO algorithms can be
extended to use multiple colonies, as we have shown in a previous work (López-Ibáñez
and Stützle 2012a).

The above conclusions answer many questions on what causes the striking performance
difference between various MOACO algorithms. These conclusions also explain why such
performance differences are more evident on the bTSP. The reasons include the particular
shape of the Pareto front in the bTSP, the need for a very strong heuristic information, and
the fact that previous analyses did not take local search into account. As we show here,
choosing the best algorithm, or more concretely, making the best design choices when de-
signing a MOACO algorithm for a specific problem requires that these factors are taken into
consideration.

An interesting extension of this work would be to repeat this analysis on problems with
different characteristics than the bTSP. For example, ACO algorithms for the bQAP do not
use heuristic information. An analysis of MOACO algorithms on problems for which an
effective local search is not available would also be of interest.

Most of the MOACO algorithms examined here were proposed specifically for bi-
objective optimization problems, and how to best extend them to tackle more than two ob-
jectives is unclear. Undoubtedly, the conclusions reached here may differ in the case of more
than two objectives. However, we hope that such research will follow the component-wise
experimental analysis presented in this paper.

The taxonomy and analysis of MOACO algorithms described here was a crucial step in
the development of a configurable MOACO framework, which we automatically configured
in order to find the best design of a MOACO algorithm for the bTSP (López-Ibáñez and Stüt-
zle 2012a). The analysis presented here complements those results by providing insights into
the working principles of MOACO algorithms, which will be instrumental towards defining
new design choices for inclusion into the MOACO framework. An open challenge is how
to best combine these two complementary approaches: a systematic analysis of the alter-
native design choices for algorithmic components, and an automatic configuration of these
components to find the best overall design. The ultimate goal would be to automatically find
the best design of a metaheuristic such as MOACO for a specific problem, and, at the same
time, provide insights on why such design is the best.
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