
The Automatic Design of Multi-Objective

Ant Colony Optimization Algorithms

Manuel López-Ibáñez and Thomas Stützle

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2011-003

February 2011
Last revision: March 2012

IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2011-003

Revision history:

TR/IRIDIA/2011-003.001 February 2011
TR/IRIDIA/2011-003.002 March 2012

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA –
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

The Automatic Design of Multi-Objective Ant
Colony Optimization Algorithms

Manuel López-Ibáñez and Thomas Stützle

Abstract—Multi-objective optimization problems are problems
with several, typically conflicting criteria for evaluating solutions.
Without any a priori preference information, the Pareto optimal-
ity principle establishes a partial order among solutions, and the
output of the algorithm becomes a set of nondominated solutions
rather than a single one. Various ant colony optimization (ACO)
algorithms have been proposed in recent years for solving
such problems. These multi-objective ACO (MOACO) algorithms
exhibit different design choices for dealing with the particularities
of the multi-objective context.

This paper proposes a formulation of algorithmic components
that suffices to describe most MOACO algorithms proposed so
far. This formulation also shows that existing MOACO algorithms
often share equivalent design choices but they are described in
different terms. Moreover, this formulation is synthesized into
a flexible algorithmic framework, from which not only existing
MOACO algorithms may be instantiated, but also combinations
of components that were never studied in the literature. In this
sense, this paper goes beyond proposing a new MOACO algo-
rithm, but it rather introduces a family of MOACO algorithms.

The flexibility of the proposed MOACO framework facilitates
the application of automatic algorithm configuration techniques.
The experimental results presented in this paper show that the
automatically configured MOACO framework outperforms the
MOACO algorithms that inspired the framework itself. This
paper is also among the first to apply automatic algorithm
configuration techniques to multi-objective algorithms.

Index Terms—Multiobjective Optimization, Ant Colony Op-
timization, Travelling Salesman Problem, Automatic Algorithm
Configuration

I. INTRODUCTION

ANT colony optimization (ACO) [1] is a metaheuristic
inspired by the pheromone trail laying and following

behavior of some real ant species. ACO was originally de-
signed for solving single-objective combinatorial optimization
problems. Due to notable results on these problems, ACO
algorithms were soon extended to tackle problems with more
complex features [2] and, in particular, multiple objective
functions [3, 4]. The majority of these multi-objective ACO
(MOACO) algorithms focus on problems in terms of Pareto
optimality, that is, they do not make a priori assumptions
about the decision maker’s preferences. Moreover, most of
these MOACO algorithms were proposed for bi-objective
optimization problems, and, hence, these will be the focus
of this paper.

M. López-Ibáñez and T. Stützle are with the IRIDIA laboratory, CoDE,
Université libre de Bruxelles, 1050 Brussels, Belgium.
email: manuel.lopez-ibanez@ulb.ac.be, stuetzle@ulb.ac.be
This is the final draft version accepted by IEEE Transactions on Evolutionary
Computation on December 13, 2011.
DOI: 10.1109/TEVC.2011.2182651

Compared to the substantial amount of research on evolu-
tionary computation and local search algorithms for tackling
multi-objective optimization problems, there are relatively few
works on MOACO algorithms. Most articles propose only one
specific MOACO algorithm [5, 6]; rare are studies that com-
pare a few MOACO design alternatives [7–9]. A first review
of existing MOACO algorithms included about ten MOACO
algorithms [4]. It identified, among the ones proposed in the
literature, the best MOACO algorithm adapted to a particular
problem in a traditional “horse-race” experimental analysis.
The algorithms tested in that review differ substantially with
respect to the underlying ACO algorithm, e.g., some of them
are based on the classical Ant System [10], whereas others
build upon the typically better performingMAX -MIN Ant
System (MMAS) [11] and Ant Colony System (ACS) [12].
Therefore, it is difficult to conclude anything about the specific
design of each MOACO algorithm. A more recent review [3]
categorizes existing MOACO algorithms into several classes
without any empirical comparison.

This paper integrates and extends our recent work on
MOACO algorithms [13–15], which has advanced in several
directions. As a first step, we present an algorithmic framework
that synthesizes many of the design choices proposed in
the literature and that offers new possibilities never consid-
ered before. This framework allows us to instantiate existing
MOACO algorithms by properly configuring the MOACO
framework. More importantly, it allows us to combine ideas
from different MOACO algorithms to produce new ones. A
first insight from the use of this framework is that existing
MOACO algorithms share more algorithmic components than
the respective publications may suggest. A second contri-
bution is that we can devise more powerful combinations
of algorithmic components and, at the same time, we can
assess the influence of each design choice on performance.
In addition, the flexibility of this framework facilitates the
application of automatic techniques for configuring multi-
objective algorithms. Most previous works that aim to produce
high performing algorithms by combining a flexible software
framework and an automatic configuration tool have dealt so
far only with single-objective optimization problems [16]. We
proposed integrating the hypervolume indicator into the iter-
ated F-race tool (I/F-Race) [17, 18] in order to automatically
configure our MOACO framework for tackling the bi-objective
traveling salesman problem (bTSP) [15]. The integration of
unary quality indicators such as hypervolume and epsilon mea-
sure into I/F-Race allows us to automatically configure multi-
objective algorithms with many continuous, categorical and
conditional parameters for an optimization problem, given a

2 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

set of representative instances of this problem. Independently,
Wessing et al. [19] have presented results for configuring a
multi-objective evolutionary algorithm using the hypervolume
indicator. However, they considered only a single parameter,
the variation operator, and configured the algorithm on a single
instance; thus, their approach is prone to overtuning [20].
In this paper, we show that, by automatically configuring
a flexible framework that synthesizes design concepts from
different MOACO algorithms, we are able to find new designs
of MOACO algorithms for the bTSP that outperform the
MOACO algorithms found in the literature. Our results demon-
strate the effectiveness of the usage of automatic algorithm
configuration techniques for the design of stochastic local
search (SLS) algorithms [21] for multi-objective optimization
problems in terms of Pareto-optimality.

The paper is structured as follows. Section II introduces
basic concepts that will be used throughout the paper. We
present a general MOACO framework for bi-objective combi-
natorial optimization problems in Section III. The components
of this framework correspond to different alternative choices
in the design of a MOACO algorithm. Next, we describe in
Section IV how the existing framework is able to replicate
the design of most MOACO algorithms proposed in the
literature. In Section V, we propose a method to automatically
configure the MOACO framework for a particular bi-objective
problem. The problem chosen is the bTSP, and we compare
the results to the best MOACO configurations proposed in
the literature. In particular, we perform a more comprehensive
automatic configuration and comparison than the preliminary
one described in our previous work [15]. Finally, in addition to
the proposed configuration of the framework for the bTSP, we
extract some general conclusions from this work and describe
steps to exploit our proposals in Section VII.

II. PRELIMINARIES

A. Bi-objective Combinatorial Optimization

We propose here a framework based on ACO for tackling
bi-objective combinatorial optimization problems (bCOPs) in
terms of Pareto optimality. In such bCOPs, candidate solu-
tions are evaluated according to an objective function vector
~f = (f1, f2). Without a priori assumptions on the preferences
of the decision maker, the goal is to determine a set of feasible
solutions that “minimizes” the objective function vector ~f .
Let ~u and ~v be vectors in R2. We say that ~u dominates ~v
(~u ≺ ~v) iff ~u 6= ~v and ui ≤ vi, i = 1, 2. Furthermore, ~u
and ~v are nondominated iff ~u ⊀ ~v and ~v ⊀ ~u. To simplify
the notation, we also say that a feasible solution s dominates
another solution s′ iff ~f(s) ≺ ~f(s′). A solution s is a Pareto
optimum iff no other feasible solution s′ exists such that
~f(s′) ≺ ~f(s). The goal in bCOPs then typically is to determine
the set of all Pareto-optimal solutions. However, this task is
usually computationally intractable, and, hence, it is preferable
to approximate the Pareto set as well as possible in a given
amount of time. Such an approximation is always a set of
solutions that are mutually nondominated.

B. The Bi-objective Traveling Salesman Problem (bTSP)

The single-objective TSP is one of the most important
combinatorial optimization problems and it is used as a case
study in the development of many ACO algorithms. In the
TSP, we are given a complete graph G = (V,E) with n = |V |
nodes {v1, . . . , vn}, a set of edges E that fully connects the
nodes, and a cost c(vi, vj) associated with each edge. The goal
is to find a Hamiltonian tour p = (p1, . . . , pn) that minimizes
the total cost:

minimize f(p) = c (vpn , vp1) +
n−1∑
i=1

c
(
vpi , vpi+1

)
. (1)

The bi-objective TSP (bTSP) is the direct extension of the
above formulation. For each edge, a vector of costs is given
with two components c1(vi, vj) and c2(vi, vj), i 6= j, which
correspond to the cost of the first and the second objective,
respectively. We consider here the symmetric bTSP, where it
additionally holds that cq(vi, vj) = cq(vj , vi), i 6= j, q = 1, 2.
We assume not to have a priori knowledge of the preferences
of the decision maker. Therefore, the goal is to find the set
of Hamiltonian tours that minimizes, in the sense of Pareto
optimality, the vector of objective functions ~f = (f1, f2). The
bTSP is often used as a benchmark problem for testing multi-
objective combinatorial optimization algorithms [4, 13, 22–
24].

C. Ant Colony Optimization (ACO)

The ACO metaheuristic [1] describes a number of algo-
rithms inspired by the swarm behavior of real ants species.
In ACO algorithms, a number of artificial ants construct
candidate solutions to a problem. The construction decisions of
the ants are biased by a common numerical information called
(artificial) pheromone. This pheromone is updated according
to the quality of the solutions constructed by the ants in
order to bias the construction of new solutions in subsequent
iterations. In particular, an ant constructs a candidate solution
to a problem by iteratively adding solution components to its
partial solution in a stochastic fashion. In the case of the TSP,
the probability that an ant k chooses to visit node j after node
i is given by:

pkij =
[τij]

α · [ηij]β∑
l∈Nk

i
[τil]

α · [ηil]β
if j ∈ N k

i , (2)

where τij is the pheromone associated with adding the edge
(i, j) to the current partial tour, ηij is a static greedy measure
of the “goodness” of edge (i, j) called heuristic information,
and N k

i denotes the set of feasible choices available for ant k
located in node i given its current partial solution.

After a number of ants have constructed a solution each, one
or more of these solutions are used to update the pheromone
information in such a way as to bias future choices towards
high quality solutions. It is common in ACO algorithms to
perform other actions, such as local search, to further improve
solutions before updating the pheromone information. The
pseudo-code of the ACO metaheuristic is shown in Algo-
rithm 1.

LÓPEZ-IBÁÑEZ AND STÜTZLE: THE AUTOMATIC DESIGN OF MULTIOBJECTIVE ANT COLONY OPTIMIZATION ALGORITHMS 3

Procedure ACO Metaheuristic
repeat

ConstructSolutions()
OptionalActions() // e.g. local search
UpdatePheromones()

until stopping criteria met
Output: best solution found

Figure 1. The ACO metaheuristic for single-objective combinatorial prob-
lems.

III. A CONFIGURABLE MOACO FRAMEWORK

There are a number of design questions when extending
ACO algorithms to bCOPs. First, in single-objective ACO, the
pheromone information is related to the objective function, that
is, the components of higher quality solutions receive more
pheromone. In a multi-objective context, the objective function
is multi-dimensional and not scalar, and there is only a partial
order among solutions. Moreover, in some problems, it could
make sense to have different solution components for each
objective, and, hence, associate different pheromone matrices
to them [7]. For example, in applications of ACO to multi-
objective scheduling problems, one pheromone matrix may
represent jobs×jobs relationships, and the other position×jobs
relationships. In this case, both matrices could be updated
with the same pheromone amount because their meaning is
different. In other problems, such as the bTSP, both pheromone
matrices represent the same solution components (an edge),
and, hence, they would need to be updated either using dif-
ferent solutions or using different pheromone amounts [5, 9].
Alternatively, it could also make sense to use a single phero-
mone matrix [6]. If multiple pheromone or heuristic matrices
are used, they are typically aggregated during the solution
construction by means of weights [5, 7]. However, there are
strong differences among MOACO algorithms in the way this
aggregation is done and how many weights are used. A further
design question is which ants are selected for depositing
pheromone. Existing MOACO algorithms select some (or all)
nondominated solutions [7], or they select the best solutions
with respect to the objective associated with the pheromone
matrix that is updated [5, 9]. Finally, several MOACO algo-
rithms make use of multiple colonies of ants [7, 9].

We take a component-wise view of the design of MOACO
algorithms, which allows us to abstract from the particular
design choices taken in earlier works. We have identified
several algorithmic components that correspond to the design
alternatives described above. We divide these components
in three main groups: (i) those related to the definition of
pheromones and the construction of solutions; (ii) those related
to the update of the pheromones; and (iii) those related to
the use of multiple colonies. We examine these components
in more detail in the following section. We will discuss the
connection between these components and existing MOACO
algorithms in Section IV.

Our proposed MOACO framework does not specify many
details, such as how pheromone values are initialized, updated
or evaporated. It neither specifies whether the pheromone
information is updated using the best solutions found since

the start of the algorithm (best-so-far) or found in the current
iteration (iteration-best). These details are relegated to the
underlying ACO algorithm, which we assume is an efficient
implementation for the problem at hand of any modern ACO
algorithm such as MAX -MIN Ant System (MMAS) [11]
or Ant Colony System (ACS) [12]. This approach allows us to
focus, in our framework, on the multi-objective components
of MOACO algorithms.

A. MOACO algorithm components for solution construction

One of the most crucial design decisions when applying an
ACO algorithm to a problem is the definition of pheromone
(and heuristic) information. In the multi-objective context, this
problem is exacerbated by the fact that there are several ways
to evaluate a single solution, and by the fact that multiple
solutions may be (Pareto-)optimal. This design question is
answered by the following algorithmic components.

Single/Multiple Pheromone/Heuristic Information. We
may have one (single) or several (multiple) matrices for either
the pheromone information τ or, if applicable, the heuristic
information η. In the case of multiple heuristic matrices,
each matrix is associated with a different objective, such that
η1 and η2 correspond to the heuristic information of each
objective, respectively. For some problems, it may not be
possible to define the heuristic information for each objective
independently, so we will be forced to use a single heuristic
matrix. Similarly, in the case of multiple pheromone matrices,
τ1 and τ2 would be associated with each objective; the
procedure that selects the solutions used for updating each
matrix (see next subsection) should enforce this distinction
somehow.

During solution construction, whenever we have multiple
matrices, we will need to aggregate them into a single matrix.
The aggregation method is defined by the component Aggre-
gation, which is described below. It is conceivable to use
a different aggregation method for pheromone and heuristic
information; however, we do not explore this possibility here.

Aggregation. The values from multiple pheromone (or
heuristic) matrices need to be aggregated into a single phero-
mone (or heuristic) value. We have identified three alternatives
in the literature:
• Weighted sum, e.g.,

τij = (1− λ)τ1
ij + λτ2

ij and ηij = (1− λ)η1
ij + λη2

ij .

• Weighted product, e.g.,

τij = (τ1
ij)

(1−λ) · (τ2
ij)

λ and ηij = (η1
ij)

(1−λ) · (η2
ij)

λ.

• Random. At each construction step, given a uniform
random number U(0, 1), an ant selects the first of the
two matrices if U(0, 1) < 1− λ; otherwise it selects the
other matrix.

In the three aggregation methods described above, there is a
weight λ that biases the aggregation towards one objective or
the other. The set of weights Λ is defined by the components
Nweights and NextWeight.

4 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Nweights and NextWeight. The set of weights is defined
within the interval [0, 1] as

Λ =
{
λi = 1− (i− 1)/(Nweights − 1), i = 1, . . . , Nweights} ,

where Nweights = |Λ| is a parameter of the framework.
Component NextWeight determines which particular weight
is used by an ant at a certain iteration. The options tested for
NextWeight are either that all ants use the same weight at a
certain iteration (one-weight-per-iteration), or that all weights
are used at each iteration (all-weights-per-iteration). In the
case of one-weight-per-iteration, the weight used in successive
iterations follows an ordered sequence of the elements of Λ,
and the order is reversed when the last weight in the sequence
is reached. In the case of all-weights-per-iteration, when the
number of ants N a is larger than Nweights, several ants will
use the same weight. An obvious speed-up is to compute the
aggregation of the pheromone matrices only once per weight
per iteration. This describes the behavior for a single colony;
the multi-colony case will be discussed in Section III-C.

B. MOACO algorithm components for pheromone update

Given a set Aupd of candidate solutions for updating the
pheromone information, the PheromoneUpdate component
decides which solutions update the pheromone information
and how. The N upd parameter determines how many solutions
are used to update each pheromone matrix. We consider the
following alternatives for the PheromoneUpdate component:

• Nondominated solutions. The solutions used for updat-
ing the pheromone information are the nondominated
solutions in Aupd. When there are more nondominated
solutions than N upd, we apply the truncation mechanism
of SPEA2 [25] to select only N upd solutions. In principle,
it is possible to combine this nondominated pheromone
update method and multiple pheromone matrices by using
the same solutions to update both matrices [7] as long as
the update is different in each pheromone matrix.

• Best-of-objective. This mechanism first selects from Aupd

the N upd best solutions with respect to each objective. In
the case of multiple pheromone matrices, each pheromone
matrix is updated using the N upd solutions associated
with the corresponding objective. Otherwise, the 2 ·N upd

solutions update the single pheromone matrix.
• Best-of-objective-per-weight. For each weight λ and

each objective, there is a list of the N upd best solutions
for that objective generated using λ. In the particular case
of λ = 0, we keep only the list for the first objective,
and we do the same for λ = 1 and the second objective.
When using multiple pheromone matrices, each matrix is
updated using only solutions from lists associated with
the same objective. In the single pheromone matrix case,
both lists are used for the update. Therefore, in the
particular case of two weights, this method is equiva-
lent to best-of-objective. The best-of-objective-per-weight
method is used by the existing mACO-1 and mACO-
2 algorithms [9], and we include it for completeness.
However, it is not clear how this approach should be

extended to multiple colonies, since solutions may be
exchanged among colonies with different weights.

The above methods do not describe whether Aupd is com-
posed of the best-so-far or iteration-best solutions, since this
is determined by the particular underlying ACO algorithm.

C. MOACO algorithm components for multiple colonies

Many MOACO algorithms propose the use of multiple ant
colonies, using various definitions of what a colony is. One
popular approach is to define two colonies, each of them
having its own pheromone information. These colonies may
exchange solutions that are used to update the pheromone
information. Some ants, which sometimes are said to belong to
“extra” colonies, aggregate the pheromone information of the
two other colonies [9, 26]. This approach is actually equivalent
to using one colony with multiple pheromone matrices, which
are aggregated by means of different weights using the all-
weights-per-iteration option, and it does not seem appropriate
to say that ants belong to different colonies simply because
they use different weights. Differently, the multi-colony ar-
chitecture of Iredi et al. [7] defines a colony as a group
of ants associated with a particular pheromone information,
such that ants from each colony construct solutions only
according to the pheromone information of their colony. In
the case of multiple pheromone information, each colony has
two pheromone matrices, one for each objective. When a set
of weights is used, each colony has its own set of weights Λc.
This multi-colony architecture allows us to generalize all pre-
vious components and, hence, we adopt it for our framework.
Moreover, colonies cooperate by using a common archive of
nondominated solutions for detecting dominated ones. Further
cooperation is enforced by exchanging solutions for updating
the pheromone information. This setting is controlled by the
MultiColonyUpdate component described below. The number
of colonies is given by component N col, and the components
described below only have an effect when N col is larger than
one.

MultiColonyWeights. In the case of multiple colonies,
we create a set of weights Λc of size Nweights for each colony
c. These sets are constructed by following the two alternatives
proposed by Iredi et al. [7]: disjoint and overlapping intervals.
In both cases, we first generate the necessary number of
equally distributed weights in the interval [0, 1]. Then, for
disjoint intervals, this set is partitioned into equal disjoint sub-
intervals per colony, that is λc,i = ((c − 1) · Nweights + (i −
1))/(Nweights · N col), i = 1, . . . , Nweights, c = 1, . . . , N col. In
the case of overlapping intervals, the sub-intervals overlap by
50% and hence, Λc and Λc+1 share 50% of their weights.

MultiColonyUpdate. In the case of multiple colonies,
the solutions generated by all colonies in the current iteration
are stored in a common archive Aiter, so that all colonies
contribute to detect and remove dominated solutions. The set
Aupd is then built from the remaining nondominated solutions
in Aiter or from the archive of all nondominated solutions ever
found, depending on the underlying ACO algorithm. After this
step, the solutions in Aupd are assigned back to each colony

LÓPEZ-IBÁÑEZ AND STÜTZLE: THE AUTOMATIC DESIGN OF MULTIOBJECTIVE ANT COLONY OPTIMIZATION ALGORITHMS 5

for updating the pheromone information. The basic method,
called update by origin, assigns each solution from Aupd to its
original colony. To enforce more cooperation, colonies may
exchange solutions. One method of exchange, called update by
region, divides Aupd in equal parts among the colonies in such
a way that each colony roughly corresponds to one region of
the objective space. Both settings, update by origin and update
by region, were originally proposed by Iredi et al. [7].

D. The MOACO framework

Table I summarizes the algorithmic components defined
above and their domains. Some settings are only significant for
certain values of other settings. For example, an aggregation
method is only necessary if there are multiple pheromone
or heuristic matrices. We propose Algorithm 2 as a way to
integrate these components into a flexible MOACO framework
for bi-objective optimization. It follows the basic outline of
the ACO metaheuristic. First, the algorithm initializes the
pheromone information (function InitializePheromoneInfor-
mation, line 2) and the set of weights of each colony (function
MultiColonyWeights, line 3), whereas heuristic information
is initialized only once, since it is shared by the different
colonies. The archive of all nondominated solutions ever
found (best-so-far archive, Abf) and the iteration counter are
initialized in lines 6 and 7, respectively. At each iteration,
each colony constructs N a solutions according to its own
pheromone information, which may be possibly aggregated
by a weight λ from its own set of weights (lines 13–15).
Depending on the setting of NextWeight, λ may be the same
weight or a different one for each ant in the colony. In single-
objective ACO algorithms, solutions are often improved by
means of local search. Therefore, we have included an optional
WeightedLocalSearch procedure (line 16) that improves a
solution by applying local search to a weighted sum aggrega-
tion of the objective functions, using the same weight as it was
used for constructing the solution. The new solution is added to
the archive of the current iteration shared by all colonies Aiter

(line 17). Once all ants from all colonies have finished con-
structing solutions, the best-so-far archive Abf is updated with
the nondominated solutions found in the current iteration Aiter

(in function RemoveDominated, line 20). The update of the
pheromones consists of two phases. First, MultiColonyUpdate
distributes the archive of solutions for update (Aupd) among
the colonies. Second, procedure PheromoneUpdate (line 23)
decides how the solutions assigned to each colony update the
pheromone information of the colony. The MOACO algorithm
continues until a certain number of iterations or a time limit
is reached. Figure 3 graphically illustrates the relationships
between various components of the MOACO framework.

IV. THE DESIGN OF MOACO ALGORITHMS

Our previous work [14] has examined the design of sev-
eral MOACO algorithms from the literature. This study has
informed the design of the MOACO framework described
in the previous section. In this section, we explain how
certain configurations of the framework replicate the design
of existing MOACO algorithms. The aim here is not to

1: for each colony c ∈ {1, . . . , N col} do
2: InitializePheromoneInformation()
3: Λc := MultiColonyWeights()
4: end for
5: InitializeHeuristicInformation()
6: Abf := ∅
7: iter := 0
8: while not stopping criteria met do
9: Aiter := ∅

10: for each colony c ∈ {1, . . . , N col} do
11: for each ant k ∈ {1, . . . , N a} do
12: λ := NextWeight(Λc, k, iter)

13: τ :=

{
Aggregation(λ, {τ1

c , τ
2
c }) if multiple [τ]

τc if single [τ]

14: η :=

{
Aggregation(λ, {η1, η2}) if multiple [η]
η if single [η]

15: s := ConstructSolution(τ, η)
16: s := WeightedLocalSearch(s, λ) // Optional

17: Aiter := RemoveDominated(Aiter ∪ {s})
18: end for
19: end for
20: Abf := RemoveDominated(Abf ∪Aiter)
21: for each colony c ∈ {1, . . . , N col} do
22: Aupd

c := MultiColonyUpdate(Aupd)
23: PheromoneUpdate(Aupd

c , N upd)
24: end for
25: iter := iter + 1
26: end while
27: Output: Abf

Figure 2. MOACO framework.

faithfully reproduce the original algorithms, but to identify
which particular configuration of algorithmic components in
the framework corresponds to the algorithmic design choices
made in each case. In particular, we do not pay attention here
to the underlying ACO algorithm, pheromone initialization or
update amounts, heuristic information, or problem-dependent
speed-ups. We are aware that the present review does not
include all MOACO algorithms in the literature. We do not
attempt to adapt algorithms not specifically designed for Pareto
optimization, such as MACS-VRPTW [27], or algorithms that
diverge from the basic structure of the ACO metaheuristic,
such as Population-based ACO [28, 29].

Table II summarizes the configuration of the MOACO
framework that instantiates the MOACO algorithms reviewed
in this section.

A. MOAQ

Although Multiple Objective Ant-Q (MOAQ) [30] was
originally designed for problems with a given preference
order of the objectives (lexicographical optimization), Garcı́a-
Martı́nez et al. [4] generalized MOAQ to bi-objective prob-
lems in terms of Pareto optimality. Their proposal uses a
single pheromone matrix and multiple heuristic matrices, one

6 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Table I
ALGORITHMIC COMPONENTS OF THE PROPOSED MOACO FRAMEWORK.

Component Domain Description

[τ] { single, multiple } Definition of pheromone matrices

[η] { single, multiple } Definition of heuristic matrices

Aggregation

weighted sum,
weighted product,
random

How weights are used to aggregate different matrices

Nweights N+ Number of weights (per colony)

NextWeight

{
one weight per iteration (1wpi),
all weights per iteration (awpi)

How weights are used at each iteration

PheromoneUpdate

nondominated solutions (ND),
best-of-objective (BO),
best-of-objective-per-weight (BOW)

Which solutions are selected for updating the pheromone
matrices

Nupd N+ Number of solutions that update each [τ] matrix

N col N+ Number of colonies

MultiColonyWeights { disjoint, overlapping } How weights are partitioned among colonies

MultiColonyUpdate { origin, region } How solutions are assigned to colonies for update

Table II
TAXONOMY OF MOACO ALGORITHMS AS INSTANTIATIONS OF THE PROPOSED FRAMEWORK (NA IS THE NUMBER OF ANTS).

Algorithm N col [τ] [η] Aggregation Nweights PheromoneUpdate Nupd

MOAQ [4, 30] 1 1 2 – 2 (Λ = {0, 1}) nondominated solutions ∞
BicriterionAnt [7] any 2 2 weighted product N a nondominated solutions ∞
MACS [6] 1 1 2 weighted product N a nondominated solutions ∞
COMPETants [26] 1 2 2 weighted sum 3 (Λ = {0, 0.5, 1}) best-of-objective any
P-ACO [5] 1 2 1, 2 weighted sum N a best-of-objective 2

mACO-1 [9] 1 2 2

{
random (τ)
weighted sum (η)

3 (Λ = {0, 0.5, 1}) best-of-objective-per-weight 1

mACO-2 [9] 1 2 2 weighted sum 3 (Λ = {0, 0.5, 1}) best-of-objective-per-weight 1
mACO-3 [9] 1 1 1 – – nondominated solutions ∞
mACO-4 [9] 1 2 1 random (τ) 1 (Λ = {0.5}) best-of-objective 1

for each objective. For the pheromone update, they use all
nondominated solutions. Garcı́a-Martı́nez et al. [4] divide the
ants into two groups, and each group only uses the heuristic
information corresponding to one objective. The equivalent
in our framework is to use the weights Λ = {0, 1} for
aggregating the two heuristic matrices, such that half of the
ants use each weight. Such a set of weights effectively means
that no actual aggregation takes place, but instead half of the
ants use one heuristic matrix and the other half use the other
one.

B. BicriterionAnt

Iredi et al. [7] proposed a MOACO algorithm, henceforth
called BicriterionAnt, with multiple pheromone and heuristic
matrices, aggregated by weighted product. Each ant k uses a
different weight λk for aggregating the pheromone matrices;
thus, there are as many weights as ants (Nweights = N a). The
authors of BicriterionAnt suggest to update the pheromone
matrices using the nondominated solutions found in the current
iteration. Moreover, they update both pheromone matrices
with the same amount. Such an update does not result in
identical pheromone matrices because, in the problem tackled

by them, the pheromone matrices represent different solution
components as explained on page 3 of this article. When
applying BicriterionAnt to the bTSP, Garcı́a-Martı́nez et al. [4]
used the objective function value of each objective to update
the corresponding matrix ∆τk = 1/fk(sa). We do the same
in our framework for the combination of multiple pheromone
matrices and nondominated pheromone update.

In addition to the above algorithm, Iredi et al. [7] pro-
posed the use of multiple colonies, and define a colony as
a group of ants that construct solutions according to their
own pheromone information. In this sense, a multi-colony
BicriterionAnt algorithm is similar to a multi-start approach
with some particularities. First, different colonies specialize in
different regions of the Pareto frontier by using different sets of
weights to aggregate pheromone information. Second, colonies
cooperate to detect dominated solutions by keeping solutions
in a common archive. Third, colonies may also cooperate
by exchanging solutions. As explained in Section III-C, this
matches the multi-colony approach adopted in our MOACO
framework.

LÓPEZ-IBÁÑEZ AND STÜTZLE: THE AUTOMATIC DESIGN OF MULTIOBJECTIVE ANT COLONY OPTIMIZATION ALGORITHMS 7

MultiColonyUpdate

Aupd
1 Aupd

Ncol

PheromoneUpdate PheromoneUpdate

Colony 1

• Λ1

• [τ]1
• [η]

Colony Ncol

• ΛNcol

• [τ]Ncol

• [η]

. . .

Aiter

Abf

Aupd

(a) Main algorithm

MultiColonyWeights

N col Nweights

Λ1 ΛNcol

(b) Division of weights among colonies

Λc

NextWeight

λ

Aggregate

ConstructSolution

multiple? multiple?

[τ]c [η]

yes

yes

no no

(c) Solution construction within colony c

Figure 3. Diagram showing the relationships between various components of the MOACO framework. Rounded rectangles represent data objects, and ellipses
represent procedures. Figure (a) gives a high-level overview of the main algorithm. Figure (b) shows the algorithm components influencing the distribution of
the weights among colonies. Figure (c) gives a detailed view of the components involved in the solution construction within a single colony.

C. Multiple Ant Colony System

Multiple Ant Colony System (MACS) [6] uses one heuristic
matrix for each objective and a single pheromone matrix. The
heuristic matrices are aggregated by weighted product, and
each ant uses a different weight. In addition, the pheromone
information is updated with nondominated solutions. MACS
can be seen as a variant of MOAQ, as defined by Garcı́a-
Martı́nez et al. [4], that uses more than two weights to ag-
gregate the heuristic information. On the other hand, the only
difference between MACS and single-colony BicriterionAnt
is the number of pheromone matrices. As a result, it is
straightforward to define a multi-colony MACS, as we do in
our MOACO framework.

D. COMPETants

COMPETants [26] is presented as a multi-colony approach,
with one colony for each objective. Each colony has one pher-
omone and heuristic matrix. Each colony constructs solutions
independently, except for a number of ants (called “spies”),
which aggregate the two pheromone matrices by weighted sum
(with λ = 0.5) using either the first or the second heuristic
matrix, thus creating two solutions. Finally, a number of ants
from each colony are used to update the pheromone matrix of
each colony.

We can formulate COMPETants in the MOACO frame-
work by using two pheromone and heuristic matrices, which
are aggregated by weighted sum and three weights Λ =

8 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

{0, 0.5, 1}. Thus, COMPETants is a single-colony approach
in our framework, and it is straightforward to define variants
of this formulation with an arbitrary number of colonies. For
the sake of simplicity, in our MOACO framework, the total
number of ants is equally divided by the number of weights,
and the number of ants per weight does not change during
the run, as in the original proposal; nevertheless, this feature
could be added to the framework as an additional component.
Moreover, our previous work [14] showed that, at least in the
bi-objective TSP, never aggregating the heuristic information,
as in the original COMPETants, leads to poor quality in the
middle of the Pareto front. Hence, we do not handle specially
the heuristic information for ants using λ = 0.5 but the heuris-
tic matrices are aggregated in the same way as pheromone
matrices. Finally, each pheromone matrix is updated with the
N upd best solutions for the corresponding objective, which
is the best-of-objective setting for PheromoneUpdate in the
MOACO framework.

E. Pareto Ant Colony Optimization

Pareto Ant Colony Optimization (P-ACO) [5] uses multiple
pheromone matrices, one for each objective, aggregated by
means of a weighted sum. Like in BicriterionAnt and MACS,
a different weight is associated with each ant. Moreover,
pheromone matrices are updated with the best and second-
best solution for each objective, which is basically the same
update method used by COMPETants, and in our framework it
corresponds to the best-of-objective setting for Pheromone-
Update and N upd = 2. In the problem being solved in the
original paper [5], there was no clear definition of heuristic
information for each objective, and, hence, the authors used a
single heuristic matrix. However, in later publications [31], P-
ACO uses multiple heuristic matrices, one for each objective,
which are aggregated in the same way as the pheromone
matrices. In our earlier work [14], we show that there are
important differences between using one or two heuristic
matrices in P-ACO for the bi-objective TSP. In particular, we
observe that a single heuristic matrix leads to a very narrow
Pareto front and, hence, our MOACO framework uses multiple
heuristic matrices when instantiating P-ACO. Nonetheless, our
MOACO framework can replicate both variants.

F. mACO Variant 1 (mACO-1)

Alaya et al. [9] proposed four alternatives for the design of a
MOACO algorithm. The first variant, mACO-1, is described as
using multiple colonies: one colony per objective, and an extra
colony that builds solutions by aggregating the pheromone
matrices of the other two colonies following a random aggre-
gation. Each colony uses the heuristic information of its cor-
responding objective, whereas the extra colony aggregates the
heuristic matrices. In our framework, this proposal is formu-
lated as a single colony with multiple pheromone and heuristic
matrices aggregated using three weights Λ = {0, 0.5, 1}. In the
original mACO-1, the pheromone information of each colony
is updated with the best solution generated by the colony for
the corresponding objective of the same colony. Moreover, the
algorithm keeps a best solution generated by the extra colony

for each objective, and uses them to update the corresponding
pheromone matrix of the other two colonies. Since each colony
in the original corresponds to a different weight λ in our
formulation, this update method corresponds in our framework
to best-of-objective-per-weight with N upd = 1.

G. mACO Variant 2 (mACO-2)

The second variant (mACO-2) by Alaya et al. [9] only
differs from mACO-1 in the pheromone aggregation. In
mACO-2, pheromone matrices are aggregated by summing the
pheromone matrices of each objective. When the underlying
ACO algorithm is scale invariant [32], like AS, MMAS and
ACS, this is equivalent to a weight λ = 0.5. Our previous work
on the bi-objective TSP suggests that there is not a significant
difference in quality between mACO-1 and mACO-2 [14].

H. mACO Variant 3 (mACO-3)

The third variant proposed by Alaya et al. [9] uses a
single pheromone matrix, which is updated by using all
nondominated solutions (either from the iteration-best archive
or the best-so-far archive). Alaya et al. [9] emphasize that
every pheromone value associated with a solution component
is updated at most once, despite how many solutions contain
it. This is in contrast with other algorithms such as MOAQ,
MACS, and BicriterionAnt, that use such a nondominated
pheromone update. However, we did not find any advantage
in this special requirement, therefore our framework does not
include it for the sake of simplicity. The heuristic information
is also a single matrix. In problems where there is heuristic
information available for each objective, these are aggregated
prior to the run into a single heuristic matrix.

I. mACO Variant 4 (mACO-4)

In the last variant proposed by Alaya et al. [9], there is
one pheromone matrix per objective, and these are always
aggregated in the same random manner as for mACO-1,
which in practice corresponds to a random aggregation with a
single weight λ = 0.5. However, there is a single heuristic
matrix, as in mACO-3. Finally, each pheromone matrix is
updated with the best solution for each objective, which is
the definition of the best-of-objective pheromone update used
in our framework.

J. New Design Alternatives

From the review in this section, we can say that, despite
the number of different MOACO algorithms proposed in
the literature, there is a much larger number of unexplored
combinations of their algorithmic components. In particular,
multi-colony variants in the sense of Iredi et al. [7] can be
defined for all the algorithms reviewed in this section. The
random aggregation introduced by Alaya et al. [9] has only
been tested with λ = 0.5 so far. Moreover, all the algorithms
reviewed above use all weights available in each iteration (all-
weights-per-iteration). In our earlier work for the bi-objective
QAP [8], we proposed that all ants use the same weight in
one iteration, and the next weight in the sequence in the next

LÓPEZ-IBÁÑEZ AND STÜTZLE: THE AUTOMATIC DESIGN OF MULTIOBJECTIVE ANT COLONY OPTIMIZATION ALGORITHMS 9

iteration (one-weight-per-iteration). Therefore, we can easily
construct new variants of most algorithms in Table II. Such
novel variants can be considered new MOACO algorithms.
However, we expect that many of them would not lead to
any significant breakthrough. On the other hand, the particular
problem being solved may influence the choice of the best
design. In any case, it would be a major effort to test them one
by one in order to find the best design. Instead, we propose to
automatically find the best design for a particular problem by
automatic (offline) configuration of the MOACO framework.

There are several automatic methods for offline configura-
tion of single-objective optimization algorithms. In an earlier
work, we have extended Iterated F-Race (I/F-Race) [33] to
the multi-objective case by using unary quality measures [15].
In the next section, we apply this approach to the framework
described in this paper and carry out a detailed analysis of the
results.

V. AUTOMATIC CONFIGURATION OF THE MOACO
FRAMEWORK

Instead of the classical “horse-race” between fully instan-
tiated MOACO algorithms that would entail a great deal of
human effort, we exploit automated algorithm configuration
tools to obtain very high-performing MOACO variants. The
goal of automated (offline) configuration is to find the best
parameter settings of an algorithm to solve unseen instances
of a problem, given a set of training instances representa-
tive of the same problem. We are inspired by the work of
KhudaBukhsh et al. [16], who combined ideas from many
different algorithms for SAT into a highly configurable SAT
solver, and then used automatic configuration tools to find
the best configuration for specific classes of SAT instances.
Instead of configuring a problem-specific solver for particular
instance classes, we aim to configure a problem-independent
metaheuristic for a specific problem. In other words, our goal
is to find a good instantiation of a metaheuristic from a
large space of potential designs. Moreover, we extend this
idea for the first time to the multi-objective context. We
show in this section that the automatic configuration of our
flexible MOACO framework allows us to find better MOACO
algorithms for the bTSP than those available in the literature.
We also study different configuration strategies, and examine
the results of several independent automatic configuration
runs.

The automatic configuration method used here is
I/F-Race [33], which is a state-of-the-art automatic
configuration method able to deal with continuous, categorical
and conditional parameters. We use the implementation of
I/F-Race provided by the irace package [18]. I/F-Race
alternates between generating new candidate configurations
and performing races to discard the worst-performing ones.
Within a race, candidate configurations are run on one
instance at a time. I/F-Race uses the Friedman test followed
by a post-test analysis to discard configurations whenever
there is sufficient statistical evidence that they perform worse
than the rest. When only a small number of configurations
remain in the race, the race stops. A new race starts with the

best configurations previously found and with new candidate
configurations generated from the best configurations using
a simple probabilistic model. The automatic configuration
process stops after reaching a given maximum budget (number
of runs or time limit).

The current version of I/F-Race was designed for single-
objective optimization problems, and, hence, it requires an
evaluation criterion that assigns a single value to each run
of a configuration. We apply I/F-Race to the multi-objective
context by means of unary quality measures, which assign
a single quality value to a nondominated set. In particular,
we test two unary measures as the evaluation criterion of
I/F-Race, namely, the hypervolume1 and the (additive) epsilon
measure [35]. The hypervolume is the volume of the objective
space weakly dominated by a nondominated set and bounded
by a reference point that is strictly dominated by all Pareto-
optimal objective vectors. The larger the hypervolume, the
better is the corresponding nondominated set. The additive
epsilon measure provides the minimum value that must be
subtracted from all objectives of a nondominated set so that it
weakly dominates a reference set. This reference set is usually
the nondominated set of all known solutions. A smaller epsilon
measure value is preferable.

As training instances, we generated 36 bTSP random uni-
form Euclidean instances for each of n = {100, 200, 300}
nodes (108 instances in total). We use a different set of
12 (test) instances when comparing algorithms. These test
instances are taken from Luis Paquete’s webpage at http:
//eden.dei.uc.pt/∼paquete/tsp.2 Each experiment, that is, each
run of the MOACO framework on each instance, is stopped
after 300 · (n/100)2 CPU-seconds.

As the underlying ACO algorithm, we use MMAS as
defined for the TSP [11]. In particular, we use the default
settings described in Table III, we set ∆τ = 1 for the
amount of pheromone deposited by an ant, and we do not
use candidate lists for the solution construction. Following
previous work [36], we also incorporate the pseudo-random
action choice rule of ACS [12], which allows for a greedier
solution construction. Parameter q0 controls the greediness of
the pseudo-random action choice rule. A value of q0 = 0
disables it and reverts back to the original MMAS. The
MOACO framework is implemented in C, and the underlying
ACO algorithm is derived from ACOTSP [37]. The code is
compiled with gcc, version 4.4. All experiments reported
in the following are carried out on a single core of Intel
Xeon E5410 CPUs, running at 2.33 Ghz with 6MB of cache
size under Cluster Rocks Linux version 4.2.1/CentOS 4. The
implementation is sequential and experiments run on a single
core.

We divide the configuration effort in three stages:
• First, we study whether it is possible to automatically find

a novel MOACO design. Hence, we configure only the
multi-objective components of the MOACO framework,

1The hypervolume is calculated using the algorithm proposed by Fon-
seca et al. [34].

2We use instances euclidAB100, euclidAB300, euclidAB500,
euclidCD100, euclidCD300, euclidCD500, euclidEF100,
euclidEF300, kroAB100, kroAB200, kroAD100, and kroBC100

10 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Table III
DEFAULT PARAMETER SETTINGS OF THE UNDERLYING ACO ALGORITHM

(MMAS).

Parameter Value

N a 24 · bn/100c
ρ 0.02 (n < 300), 0.05 (n ≥ 300)
q0 0
α 1
β 2

and we compare the results with the algorithms described
in the literature.

• Second, we assess how much improvement may be
achieved by configuring the parameter settings of the
underlying ACO algorithm. We do so by automatically
configuring the ACO algorithm settings of one of the
configurations found in the previous stage.

• Finally, we ask whether this two-stage configuration
approach is better than configuring all components and
parameters at once using a configuration effort equivalent
to the two previous stages.

A. Configuration of multi-objective components

In the first experiment, our goal is to find a new, hopefully
better design of a MOACO algorithm for the bTSP. We
search for this design in an automatic fashion by configuring
the multi-objective components of the MOACO framework,
while keeping fixed the underlying ACO algorithm parame-
ter settings. The fixed ACO algorithm settings are given in
Table III and the configuration domain of the multi-objective
components is described in Table IV. The configuration budget
is set to 1000 runs of the MOACO framework. We perform
five independent repetitions of the configuration process using
the hypervolume as the evaluation criterion, and another five
repetitions using the unary epsilon measure.

The particular configurations found are given in Tables V
and VI for the hypervolume and the epsilon measure, re-
spectively. All ten configurations found use multiple heuristic
matrices, a large number of colonies, update by region and
aggregation by weighted product. Most configurations use
multiple pheromone matrices updated by the best-of-objective
(BO), and one-weight-per-iteration (1wpi).

We apply these 10 configurations to the test instances,
and perform 15 independent runs of each configuration with
different random seeds. For comparison, we also evaluate
the MOACO algorithms from the literature described in Sec-
tion IV. We evaluate the quality of the nondominated sets
found in these test runs by means of both the hypervolume
and the epsilon measure. The full analysis is available as
supplementary material [38]. The results lead to the same
conclusions independently of the quality measure used in
the analysis. Moreover, there were no significant differences,
according to the sign test, between configurations found when
using the hypervolume as the evaluation criterion in I/F-Race
and those found when using the epsilon measure. Hence, we
discuss here only the results with respect to the hypervolume
measure.

Table IV
DOMAIN OF ALGORITHMIC COMPONENTS OF THE PROPOSED MOACO

FRAMEWORK USED FOR THE AUTOMATIC CONFIGURATION.

Component Domain Constraint

[τ] { single, multiple }
[η] { single, multiple }

Aggregation

weighted sum,
weighted product,
random

only if multiple τ or η

Nweights {2, 3, N a/3, N a/2, N a} (per colony)

NextWeight

{
one weight per iteration,
all weights per iteration

PheromoneUpdate

ND,
BO,
BOW∗

∗ only with N col = 1

Nupd {1, 2, 5, 10}
N col {1, 2, 3, 5, 10}

MultiColonyWeights { disjoint, overlapping } only if N col > 1

MultiColonyUpdate { origin, region } only if N col > 1

Figure 4 displays, for each instance, one boxplot per con-
figuration (y-axis) summarizing the hypervolume value (x-
axis) obtained by the 15 independent runs. The boxplots
are often reduced to a single point because the variance is
extremely small across runs. The results obtained by the
MOACO algorithms from the literature are consistent with
previous works [4, 14], with the multi-colony variant of
BicriterionAnt being the best. The improvement of the con-
figurations obtained automatically, MOACO (1,2,3,4,5), over
the MOACO algorithms from the literature is significantly
large and consistent. In other words, our method is able to
find a new design that surpasses the current state-of-the-art
in the MOACO literature. Not surprisingly, this new design
is similar to the multi-colony variant of BicriterionAnt. Yet,
it includes significant differences, such as the use of best-of-
objective update, a small value of N upd, more than one ant per
weight, and one-weight-per-iteration (1wpi).

B. Configuration of the underlying ACO algorithm

In the next experiment, we arbitrarily choose one of the
configurations found when configuring the multi-objective
components of the MOACO framework,3 and we carry out
an automatic configuration of the settings of the underlying
ACO algorithm. The domains of the ACO algorithm settings
are described in Table VII. Instead of configuring directly
the number of ants per colony N a, we configure a surrogate
parameter af that defines the number of ants in dependence of
the instance size n, that is, N a = 6 ·af ·bn/100c. We multiply
this factor by six in order to be able to define Nweights as either
N a/3 or N a/2 in later experiments.

We perform five independent repetitions of the configuration
process using the hypervolume as the evaluation criterion, and

3Specifically, run 5 of Table V.

LÓPEZ-IBÁÑEZ AND STÜTZLE: THE AUTOMATIC DESIGN OF MULTIOBJECTIVE ANT COLONY OPTIMIZATION ALGORITHMS 11

Hypervolume

MOACO (5)
MOACO (4)
MOACO (3)
MOACO (2)
MOACO (1)

mACO−4
mACO−3
mACO−2
mACO−1

PACO
COMPETants

MACS
BicriterionAnt (3 col)
BicriterionAnt (1 col)

MOAQ

0.5 0.6 0.7 0.8 0.9 1.0 1.1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

euclidAB100.tsp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

euclidCD100.tsp

0.5 0.6 0.7 0.8 0.9 1.0 1.1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

euclidEF100.tsp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●●

euclidAB300.tsp
MOACO (5)
MOACO (4)
MOACO (3)
MOACO (2)
MOACO (1)

mACO−4
mACO−3
mACO−2
mACO−1

PACO
COMPETants

MACS
BicriterionAnt (3 col)
BicriterionAnt (1 col)

MOAQ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

euclidCD300.tsp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●●

euclidEF300.tsp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

euclidAB500.tsp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

euclidCD500.tsp
MOACO (5)
MOACO (4)
MOACO (3)
MOACO (2)
MOACO (1)

mACO−4
mACO−3
mACO−2
mACO−1

PACO
COMPETants

MACS
BicriterionAnt (3 col)
BicriterionAnt (1 col)

MOAQ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

kroAB100.tsp

0.5 0.6 0.7 0.8 0.9 1.0 1.1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

kroAD100.tsp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

kroBC100.tsp

0.5 0.6 0.7 0.8 0.9 1.0 1.1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●●

kroAB200.tsp

Figure 4. Boxplot of the hypervolume (larger is better) of 15 repetitions of each configuration of the MOACO framework on the test instances. The
configurations from the literature are MOAQ, BicriterionAnt with 1 and 3 colonies, COMPETants, PACO, MACS, and the four variants of mACO (Section IV).
MOACO (1,2,3,4,5) denote configurations found by five independent automatic configuration runs.

12 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Table V
CONFIGURATIONS OBTAINED BY FIVE INDEPENDENT TUNER RUNS, WHEN CONFIGURING THE MULTI-OBJECTIVE COMPONENTS OF THE PROPOSED

MOACO FRAMEWORK ACCORDING TO THE HYPERVOLUME.

Component Run 1 Run 2 Run 3 Run 4 Run 5

[τ] single multiple multiple multiple multiple
[η] multiple multiple multiple multiple multiple

Aggregation w. product w. product w. product w. product w. product
Nweights N a/3 3 N a/2 N a/3 2

NextWeight 1wpi 1wpi 1wpi 1wpi 1wpi
PheromoneUpdate ND BO BO BO BO

Nupd 1 2 2 2 1
N col 10 5 10 10 10

MultiColonyWeights disjoint overlap disjoint overlap overlap
MultiColonyUpdate region region region region region

Table VI
CONFIGURATIONS OBTAINED BY FIVE INDEPENDENT TUNER RUNS, WHEN CONFIGURING THE MULTI-OBJECTIVE COMPONENTS OF THE PROPOSED

MOACO FRAMEWORK ACCORDING TO THE EPSILON MEASURE.

Component Run 1 Run 2 Run 3 Run 4 Run 5

[τ] multiple single multiple multiple multiple
[η] multiple multiple multiple multiple multiple

Aggregation w. product w. product w. product w. product w. product
Nweights 2 N a/3 N a/2 N a N a

NextWeight awpi 1wpi 1wpi 1wpi 1wpi
PheromoneUpdate BO ND BO BO BO

Nupd 1 1 2 2 2
N col 10 10 5 10 10

MultiColonyWeights overlap overlap overlap overlap overlap
MultiColonyUpdate region region region region region

Table VII
DOMAIN OF THE PARAMETER SETTINGS OF THE UNDERLYING ACO

ALGORITHM (MMAS) USED FOR AUTOMATIC CONFIGURATION.

Component Domain

af {1, 2, . . . , 25} where N a = 6 · af · bn/100c
ρ [0.01, 0.99]

q0 [0.25, 0.99] or q0 = 0

α [0, 5]

β [0, 5]

each repetition is stopped after 1000 runs of the MOACO
framework. For comparison, we also configure in this way
the ACO algorithm settings of the multi-colony version of
BicriterionAnt, which was found to be the best MOACO
algorithm from the literature in the previous section. The
resulting parameter settings are again given as supplementary
material [38].

One may ask whether it would not be better to configure
both the multi-objective components and the ACO parameter
settings of the MOACO framework at once, instead of consec-
utively as done above. To answer this question, we carry out
the automatic configuration of all parameters of the MOACO
framework at once, with the domains described in Tables IV
and VII, and with a budget of 2000 experiments, that is, equiv-
alent to the combined effort spent in the previous two-stage
automatic configuration process. The resulting configurations
are given as supplementary material [38]. The results presented
below show that there is a significant difference in favor of

automatically configure all parameters at once.
For the comparison of the configurations found in the

various automatic configuration procedures, we perform 15
independent runs of each configuration on the test instances.
We evaluate the results using the hypervolume measure,
and the corresponding boxplots are shown in Fig. 5.4 The
plots show that automatically configuring the ACO algorithm
settings of BicriterionAnt greatly improves its performance,
and for instances with 500 cities, it surpasses the quality
of the MOACO configuration with default ACO algorithm
settings. Nonetheless, by automatically configuring the settings
of the ACO algorithm underlying the MOACO framework, the
improvement in hypervolume is even more remarkable, clearly
outperforming the best configurations of BicriterionAnt. The
plot does not show a clear difference between automatically
configuring the MOACO framework using the two-stage ap-
proach or by configuring all parameters at once. However,
configurations obtained by a two-stage approach obtain a lower
hypervolume, i.e., they are worse, than those fully configured
in 80% of the runs. The sign-test confirms that this difference
is statistically significant.

VI. MOACO FRAMEWORK + LOCAL SEARCH
(MOACO+LS)

The results presented above conclusively show that au-
tomatic configuration leads to better designs of MOACO
algorithms than those presented in the literature. Although a
large amount of work on MOACO algorithms do not consider

4Similar figures that include results with respect to the epsilon measure are
available as supplementary material [38].

LÓPEZ-IBÁÑEZ AND STÜTZLE: THE AUTOMATIC DESIGN OF MULTIOBJECTIVE ANT COLONY OPTIMIZATION ALGORITHMS 13

Hypervolume

MOACO−full (5)
MOACO−full (4)
MOACO−full (3)
MOACO−full (2)
MOACO−full (1)

MOACO−aco (5)
MOACO−aco (4)
MOACO−aco (3)
MOACO−aco (2)
MOACO−aco (1)

MOACO (5)
BicriterionAnt−aco (5)
BicriterionAnt−aco (4)
BicriterionAnt−aco (3)
BicriterionAnt−aco (2)
BicriterionAnt−aco (1)

BicriterionAnt (3 col)

0.85 0.95 1.05

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

euclidAB100.tsp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

euclidCD100.tsp

0.85 0.95 1.05

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●

euclidEF100.tsp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

euclidAB300.tsp
MOACO−full (5)
MOACO−full (4)
MOACO−full (3)
MOACO−full (2)
MOACO−full (1)

MOACO−aco (5)
MOACO−aco (4)
MOACO−aco (3)
MOACO−aco (2)
MOACO−aco (1)

MOACO (5)
BicriterionAnt−aco (5)
BicriterionAnt−aco (4)
BicriterionAnt−aco (3)
BicriterionAnt−aco (2)
BicriterionAnt−aco (1)

BicriterionAnt (3 col)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

euclidCD300.tsp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

euclidEF300.tsp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

euclidAB500.tsp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●●●

euclidCD500.tsp
MOACO−full (5)
MOACO−full (4)
MOACO−full (3)
MOACO−full (2)
MOACO−full (1)

MOACO−aco (5)
MOACO−aco (4)
MOACO−aco (3)
MOACO−aco (2)
MOACO−aco (1)

MOACO (5)
BicriterionAnt−aco (5)
BicriterionAnt−aco (4)
BicriterionAnt−aco (3)
BicriterionAnt−aco (2)
BicriterionAnt−aco (1)

BicriterionAnt (3 col)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

kroAB100.tsp

0.85 0.95 1.05

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

kroAD100.tsp

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

kroBC100.tsp

0.85 0.95 1.05

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

kroAB200.tsp

Figure 5. Boxplot of the hypervolume (larger is better) of 15 repetitions of each configuration of the MOACO framework on the test instances. BicriterionAnt
(3 col) denotes BicriterionAnt with 3 colonies and default ACO algorithm settings; BicriterionAnt-aco (1,2,3,4,5) denote the same configuration but with
automatically configured ACO settings (five independent configuration runs); MOACO (5) denotes the configuration obtained when configuring the multi-
objective components with default ACO settings; MOACO-aco (1,2,3,4,5) denote the same configuration but with automatically configured ACO settings
(five independent configuration runs); and MOACO-full (1,2,3,4,5) denote five configurations obtained by automatically configuring all parameter settings.

14 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

the usage of local search [4, 9], it is known that, on the bTSP,
MOACO algorithms with local search by far outperform those
without local search [13]. Therefore, we repeat the automatic
configuration hybridizing the MOACO framework and local
search.

A. Experimental Setup

The local search used here is an iterative improvement
algorithm based on the 2-exchange neighborhood (2-opt).
Local search is applied to each solution constructed by an ant.
The bTSP is converted to a single-objective TSP by means of
a weighted sum aggregation of the two distance matrices. If an
ant uses a weight vector to construct a solution, the subsequent
local search will use the same weight vector. Otherwise, if
ants do not use weights for solution construction, a weight is
still assigned to each ant following the settings described in
Section III but they are only used by the local search. The local
search also exploits standard speed-up techniques for the TSP,
e.g. an ordered list of candidate edges of size 20 is computed
for each weight vector. The ants use a different candidate list
of size 20 for construction, which is obtained by sorting edges
according to dominance ranking [39].

The remaining parameters of the MOACO framework are
equal to the previous settings without local search (Tables III,
IV, and VII) except that: (i) the default value of ρ is 0.2; (ii)
the number of ants does not depend on the instance size and
it is now calculated as N a = 6 · af ; and (iii) the time limit of
each run is now 4 · (n/100)2.

As training instances, we generated 10 bTSP random uni-
form Euclidean instances for each of n = {500, 600, 700,
800, 1000} nodes (60 instances in total). The comparison and
evaluation of the configurations obtained use a different set of
15 test instances, 3 instances of each size n.

B. Automatic configuration of MOACO+ls

We carry out four separate automatic configuration setups
of the MOACO+ls framework for the bTSP.

1) We configure the multi-objective components of the
MOACO framework and use default settings for the
underlying ACO algorithm.

2) We configure the settings of the underlying ACO algo-
rithm and use one of the MOACO designs found in the
previous step.

3) We configure all settings of the MOACO framework
at once using two times the budget of experiments as
for the previous two steps. The aim of this setup is to
investigate whether a two-stage configuration approach
is more or less effective than configuring all parameters
at once.

4) We configure the ACO algorithm settings of
BicriterionAnt+ls for comparison with the other
results.

We perform five repetitions of each automatic configu-
ration setup, and the budget of each repetition is set to
1000 experiments (2000 for configuring all settings at once).
The configuration tool uses the hypervolume measure as the

evaluation criterion. For the sake of conciseness, the particular
configurations found are reported in the supplementary pages
[38]. It is enough to say here that the configurations show
a larger variability of settings, explained by the fact that the
local search reduces the effect of other parameters.

The configurations found automatically are evaluated on
the test instances by performing 15 independent runs of each
configuration, and computing the hypervolume measure of
the resulting nondominated sets. Figure 6 summarizes with
boxplots the hypervolume values of each configuration on each
instance. The results follow the conclusions outlined in the
previous section. First, the performance of BicriterionAnt is
greatly improved by configuring its ACO algorithm settings.
Second, despite this improvement, the automatically config-
ured BicriterionAnt does not outperform an automatically-
found design of the MOACO framework with default ACO
algorithm settings. Moreover, automatically configuring the
ACO algorithm settings of such a good design leads to further
improved quality, clearly outperforming the best results of
BicriterionAnt. Finally, although the boxplots do not visually
show clear differences between the two-stage configuration
process versus fully configuring the MOACO+ls framework
at once, a sign-test indicates that there is a significantly larger
probability, about 0.84, of obtaining a larger hypervolume
with a configuration obtained by the latter method. This is
consistent with the conclusions reached when automatically
configuring the MOACO framework without local search.

These results clearly indicate that we have found new
designs of MOACO algorithms that outperform the previous
state of the art in the MOACO literature for the bTSP. More
importantly, we have found these designs in a semi-automatic
fashion, where most of the effort has been spent on the
definition of the alternative design choices, leaving the task of
finding the correct design to automatic and, hence, unbiased
tools. The fact that some design choices never appear in
some configurations gives a clear indication that they are not
contributing to the performance of the algorithm. On the other
hand, the variability of designs indicates that there are several
alternative designs that produce similar quality of results.

VII. CONCLUSION

Instead of proposing a new MOACO algorithm that is
slightly different from those found in the literature, we have
proposed a novel approach to automatically design MOACO
algorithms for multi-objective optimization problems. We have
synthesized the existing knowledge from the MOACO al-
gorithms found in the literature into a flexible, configurable
framework, and we have explored the vast space of potential
algorithmic designs in an automatic fashion by using offline
configuration tools.

In this paper, we have shown that such an approach has
both scientific and practical advantages. From a scientific
standpoint, the process of synthesis involved in constructing
the framework has led to the identification of many more
commonalities in existing MOACO algorithms than previously
thought. In some cases, some algorithms were found to be
specializations of other algorithms, despite the fact that both

LÓPEZ-IBÁÑEZ AND STÜTZLE: THE AUTOMATIC DESIGN OF MULTIOBJECTIVE ANT COLONY OPTIMIZATION ALGORITHMS 15

Hypervolume

MOACO−full (5)
MOACO−full (4)
MOACO−full (3)
MOACO−full (2)
MOACO−full (1)

MOACO−aco (5)
MOACO−aco (4)
MOACO−aco (3)
MOACO−aco (2)
MOACO−aco (1)

MOACO (5)
MOACO (4)
MOACO (3)
MOACO (2)
MOACO (1)

BicriterionAnt−aco (5)
BicriterionAnt−aco (4)
BicriterionAnt−aco (3)
BicriterionAnt−aco (2)
BicriterionAnt−aco (1)

BicriterionAnt (3 col)

1.125 1.135

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●

●●

●●

●

600−67

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●

●

●●●

●

●

●

●

●

●●●

700−67

1.125 1.135

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●

●

●

●

800−67

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●

●

●

900−67

1.125 1.135

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●

●●

●

●●

1000−67
MOACO−full (5)
MOACO−full (4)
MOACO−full (3)
MOACO−full (2)
MOACO−full (1)

MOACO−aco (5)
MOACO−aco (4)
MOACO−aco (3)
MOACO−aco (2)
MOACO−aco (1)

MOACO (5)
MOACO (4)
MOACO (3)
MOACO (2)
MOACO (1)

BicriterionAnt−aco (5)
BicriterionAnt−aco (4)
BicriterionAnt−aco (3)
BicriterionAnt−aco (2)
BicriterionAnt−aco (1)

BicriterionAnt (3 col)

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

600−78

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●

●

●

●

●

●

●

●●

700−78

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●

●

●

●

●●●

800−78

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

900−78

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●

●

●●●●

●

●●

1000−78
MOACO−full (5)
MOACO−full (4)
MOACO−full (3)
MOACO−full (2)
MOACO−full (1)

MOACO−aco (5)
MOACO−aco (4)
MOACO−aco (3)
MOACO−aco (2)
MOACO−aco (1)

MOACO (5)
MOACO (4)
MOACO (3)
MOACO (2)
MOACO (1)

BicriterionAnt−aco (5)
BicriterionAnt−aco (4)
BicriterionAnt−aco (3)
BicriterionAnt−aco (2)
BicriterionAnt−aco (1)

BicriterionAnt (3 col)

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●

●●

●

●

●

●

●●

●

●

●

600−89

1.125 1.135

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●

●●

●●

●

●

●

●

700−89

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●

●●

● ●

●●

●

●

●

●●

800−89

1.125 1.135

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●

●

●

●●

●

900−89

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●

●

●●

●●

●

1000−89

Figure 6. Boxplot of the hypervolume (larger is better) of 15 repetitions of each configuration of the MOACO+ls framework on the test instances.
BicriterionAnt (3 col) denotes BicriterionAnt with 3 colonies and default ACO algorithm settings; BicriterionAnt-aco (1,2,3,4,5) denote the same configuration
but with automatically configured ACO settings (five independent configuration runs); MOACO (1,2,3,4,5) denote five configurations obtained by automatically
configuring the multi-objective components with default ACO settings; MOACO-aco (1,2,3,4,5) denote the configuration MOACO (5) but with automatically
configured ACO settings (five independent configuration runs); and MOACO-full (1,2,3,4,5) denote five configurations obtained by automatically configuring
all parameter settings.

16 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

were independently proposed in the literature. In addition, the
integration of design choices from diverse algorithms within
the same framework leads to a large number of potential new
designs, and each of them can be considered a new MOACO
algorithm by itself.

From a practical point of view, testing all possible designs
on different problems would be a major effort. The use of
automatic configuration tools greatly simplifies this task by
identifying which design choices produce the best results for
a particular problem. Our experimental results have shown
that such an automatically configured design outperforms the
MOACO algorithms found in the literature, even after the
settings of the latter have been properly configured (which
is almost never the case in the MOACO literature). In this
sense, we conclude that we have designed a new state-of-the-
art MOACO algorithm for the bTSP.

There are several research questions that we have left open
in this paper. First, further analysis of the best configurations
obtained should shed some light on the causes behind the good
performance of some design choices. Second, there are open
questions about the best way to automatically configure multi-
objective optimization algorithms. Our experiments have not
found any significant difference between using the hypervol-
ume or the epsilon measure as the measure of the quality of
configurations; further research is needed to confirm whether
this generalizes to other problems or algorithms. Third, we
have found that there is a small advantage in configuring all
settings at once rather than configuring first the “design” of a
MOACO algorithm and then its ACO settings. This may be
due to interactions between the different components. More
research is needed to confirm whether this result generalizes
to other configuration scenarios.

In the future, we will apply the same technique to other
bi-objective problems already tackled by MOACO algorithms.
We make available our implementation of the MOACO frame-
work for the bTSP,5 and we welcome extensions of the
proposed framework, either by applying it to new problems
or by extending its components to include recent advances in
MOACO algorithms. We expect that, properly configured, the
MOACO framework will outperform any other MOACO al-
gorithm, or at worst, match their results. The current MOACO
framework, as most MOACO algorithms in the literature,
is limited to bi-objective problems. More work is needed
to apply ACO algorithms to problems with three and more
objectives. However, the main ideas behind automatic design
of multi-objective algorithms presented here can be extended
to other metaheuristics, such as multi-objective evolutionary
algorithms, where various design choices exist without a clear
configuration of choices regarded as the best.

ACKNOWLEDGMENT

This work was supported by the European Research Coun-
cil through the ERC Advanced Grant E-SWARM (contract
246939), and by the Meta-X project, funded by the Sci-
entific Research Directorate of the French Community of
Belgium. Thomas Stützle acknowledges support from the

5Source code is available at http://iridia.ulb.ac.be/∼manuel/moaco

Belgian F.R.S.-FNRS, of which he is a Research Asso-
ciate. The authors also acknowledge support from the FRFC
project “Méthodes de recherche hybrides pour la résolution
de problèmes complexes”.

REFERENCES

[1] M. Dorigo and T. Stützle, Ant Colony Optimization.
Cambridge, MA: MIT Press, 2004.

[2] T. Stützle, M. López-Ibáñez, and M. Dorigo, “A concise
overview of applications of ant colony optimization,” in
Wiley Encyclopedia of Operations Research and Man-
agement Science, J. J. Cochran, Ed. John Wiley & Sons,
2011, vol. 2, pp. 896–911.

[3] D. Angus and C. Woodward, “Multiple objective ant
colony optimization,” Swarm Intelligence, vol. 3, no. 1,
pp. 69–85, 2009.

[4] C. Garcı́a-Martı́nez, O. Cordón, and F. Herrera, “A taxon-
omy and an empirical analysis of multiple objective ant
colony optimization algorithms for the bi-criteria TSP,”
European Journal of Operational Research, vol. 180,
no. 1, pp. 116–148, 2007.

[5] K. F. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and
C. Stummer, “Pareto ant colony optimization: A meta-
heuristic approach to multiobjective portfolio selection,”
Annals of Operations Research, vol. 131, pp. 79–99,
2004.

[6] B. Barán and M. Schaerer, “A multiobjective ant colony
system for vehicle routing problem with time windows,”
in Proceedings of the Twentyfirst IASTED International
Conference on Applied Informatics, Insbruck, Austria,
2003, pp. 97–102.

[7] S. Iredi, D. Merkle, and M. Middendorf, “Bi-criterion
optimization with multi colony ant algorithms,” in Evo-
lutionary Multi-criterion Optimization (EMO 2001), ser.
Lecture Notes in Computer Science, E. Zitzler, K. Deb,
L. Thiele, C. A. Coello, and D. Corne, Eds. Springer,
Heidelberg, Germany, 2001, vol. 1993, pp. 359–372.

[8] M. López-Ibáñez, L. Paquete, and T. Stützle, “On the
design of ACO for the biobjective quadratic assignment
problem,” in Ant Colony Optimization and Swarm In-
telligence, 4th International Workshop, ANTS 2004, ser.
Lecture Notes in Computer Science, M. Dorigo et al.,
Eds. Springer, Heidelberg, Germany, 2004, vol. 3172,
pp. 214–225.

[9] I. Alaya, C. Solnon, and K. Ghédira, “Ant colony op-
timization for multi-objective optimization problems,”
in 19th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2007). Los Alamitos, CA:
IEEE Computer Society Press, 2007, vol. 1, pp. 450–457.

[10] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System:
Optimization by a colony of cooperating agents,” IEEE
Transactions on Systems, Man, and Cybernetics – Part
B, vol. 26, no. 1, pp. 29–41, 1996.

[11] T. Stützle and H. H. Hoos, “MAX -MIN Ant System,”
Future Generation Computer Systems, vol. 16, no. 8, pp.
889–914, 2000.

[12] M. Dorigo and L. M. Gambardella, “Ant Colony Sys-
tem: A cooperative learning approach to the traveling

LÓPEZ-IBÁÑEZ AND STÜTZLE: THE AUTOMATIC DESIGN OF MULTIOBJECTIVE ANT COLONY OPTIMIZATION ALGORITHMS 17

salesman problem,” IEEE Transactions on Evolutionary
Computation, vol. 1, no. 1, pp. 53–66, 1997.

[13] M. López-Ibáñez and T. Stützle, “An analysis of algorith-
mic components for multiobjective ant colony optimiza-
tion: A case study on the biobjective TSP,” in Artificial
Evolution: 9th International Conference, Evolution Artifi-
cielle, EA, 2009, ser. Lecture Notes in Computer Science,
P. Collet, N. Monmarché, P. Legrand, M. Schoenauer, and
E. Lutton, Eds. Springer, Heidelberg, Germany, 2010,
vol. 5975, pp. 134–145.

[14] ——, “The impact of design choices of multi-objective
ant colony optimization algorithms on performance: An
experimental study on the biobjective TSP,” in Pro-
ceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2010, M. Pelikan and J. Branke,
Eds. New York, NY: ACM press, 2010, pp. 71–78.

[15] ——, “Automatic configuration of multi-objective ACO
algorithms,” in Swarm Intelligence, 7th International
Conference, ANTS 2010, ser. Lecture Notes in Computer
Science, M. Dorigo et al., Eds. Springer, Heidelberg,
Germany, 2010, vol. 6234, pp. 95–106.

[16] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-
Brown, “SATenstein: Automatically building local search
SAT solvers from components,” in Proceedings of the
Twenty-First International Joint Conference on Artificial
Intelligence (IJCAI-09), 2009, pp. 517–524.

[17] P. Balaprakash, M. Birattari, and T. Stützle, “Improve-
ment strategies for the F-race algorithm: Sampling design
and iterative refinement,” in Hybrid Metaheuristics, ser.
Lecture Notes in Computer Science, T. Bartz-Beielstein,
M. J. Blesa, C. Blum, B. Naujoks, A. Roli, G. Rudolph,
and M. Sampels, Eds. Springer, Heidelberg, Germany,
2007, vol. 4771, pp. 108–122.

[18] M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle,
and M. Birattari, “The irace package, iterated
race for automatic algorithm configuration,” IRIDIA,
Université Libre de Bruxelles, Belgium, Tech.
Rep. TR/IRIDIA/2011-004, 2011. [Online]. Available:
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

[19] S. Wessing, N. Beume, G. Rudolph, and B. Naujoks,
“Parameter tuning boosts performance of variation oper-
ators in multiobjective optimization,” in Parallel Problem
Solving from Nature, PPSN XI, ser. Lecture Notes in
Computer Science, R. Schaefer, C. Cotta, J. Kolodziej,
and G. Rudolph, Eds. Springer, Heidelberg, Germany,
2010, vol. 6238, pp. 728–737.

[20] M. Birattari, Tuning Metaheuristics: A Machine Learning
Perspective, ser. Studies in Computational Intelligence.
Berlin / Heidelberg: Springer, 2009, vol. 197.

[21] H. H. Hoos and T. Stützle, Stochastic Local Search—
Foundations and Applications. San Francisco, CA:
Morgan Kaufmann Publishers, 2005.

[22] M. Ehrgott and X. Gandibleux, “Approximative solution
methods for combinatorial multicriteria optimization,”
TOP, vol. 12, no. 1, pp. 1–88, 2004.

[23] L. Paquete and T. Stützle, “Design and analysis of
stochastic local search for the multiobjective traveling
salesman problem,” Computers & Operations Research,

vol. 36, no. 9, pp. 2619–2631, 2009.
[24] T. Lust and J. Teghem, “Two-phase Pareto local search

for the biobjective traveling salesman problem,” Journal
of Heuristics, vol. 16, no. 3, pp. 475–510, 2010.

[25] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Im-
proving the strength Pareto evolutionary algorithm for
multiobjective optimization,” in Evolutionary Methods
for Design, Optimisation and Control, K. Giannakoglou,
D. Tsahalis, J. Periaux, K. Papaliliou, and T. Fogarty,
Eds. CIMNE, Barcelona, Spain, 2002, pp. 95–100.

[26] K. F. Doerner, R. F. Hartl, and M. Reimann, “Are
CompetAnts more competent for problem solving? The
case of a multiple objective transportation problem,”
Central European Journal for Operations Research and
Economics, vol. 11, no. 2, pp. 115–141, 2003.

[27] L. M. Gambardella, É. D. Taillard, and G. Agazzi,
“MACS-VRPTW: A multiple ant colony system for vehi-
cle routing problems with time windows,” in New Ideas
in Optimization, D. Corne, M. Dorigo, and F. Glover,
Eds. McGraw Hill, London, UK, 1999, pp. 63–76.

[28] M. Guntsch and M. Middendorf, “Solving multi-
objective permutation problems with population based
ACO,” in Evolutionary Multi-criterion Optimization
(EMO 2003), ser. Lecture Notes in Computer Science,
C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, Eds., vol. 2632. Springer, Heidelberg, Ger-
many, 2003, pp. 464–478.

[29] D. Angus, “Population-based ant colony optimisation
for multi-objective function optimisation,” in Progress in
Artificial Life, ser. Lecture Notes in Computer Science,
vol. 4828. Springer, Heidelberg, Germany, 2007, pp.
232–244.

[30] C. E. Mariano and E. Morales, “MOAQ: An Ant-Q
algorithm for multiple objective optimization problems,”
in Proceedings of the Genetic and Evolutionary Com-
putation Conference, GECCO 1999, W. Banzhaf, J. M.
Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. J.
Jakiela, and R. E. Smith, Eds. Morgan Kaufmann
Publishers, San Francisco, CA, 1999, pp. 894–901.

[31] M. Schilde, K. F. Doerner, R. F. Hartl, and G. Kiechle,
“Metaheuristics for the bi-objective orienteering prob-
lem,” Swarm Intelligence, vol. 3, no. 3, pp. 179–201,
2009.

[32] M. Birattari, P. Pellegrini, and M. Dorigo, “On the invari-
ance of ant colony optimization,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 6, pp. 732–742,
2007.

[33] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-
race and iterated F-race: An overview,” in Experimental
Methods for the Analysis of Optimization Algorithms,
T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and
M. Preuss, Eds. Berlin, Germany: Springer, 2010, pp.
311–336.

[34] C. M. Fonseca, L. Paquete, and M. López-Ibáñez, “An
improved dimension-sweep algorithm for the hypervol-
ume indicator,” in Proceedings of the 2006 Congress on
Evolutionary Computation (CEC 2006). Piscataway, NJ:
IEEE Press, Jul. 2006, pp. 1157–1163.

18 FINAL DRAFT ACCEPTED FOR IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

[35] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca,
and V. Grunert da Fonseca, “Performance assessment of
multiobjective optimizers: an analysis and review,” IEEE
Transactions on Evolutionary Computation, vol. 7, no. 2,
pp. 117–132, 2003.

[36] T. Stützle and H. H. Hoos, “MAX -MIN Ant System
and local search for combinatorial optimization prob-
lems,” in Meta-Heuristics: Advances and Trends in Local
Search Paradigms for Optimization, S. Voss, S. Martello,
I. Osman, and C. Roucairol, Eds. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1999, pp. 137–
154.

[37] T. Stützle, “ACOTSP: A software package of various ant
colony optimization algorithms applied to the symmetric
traveling salesman problem,” 2002. [Online]. Available:
http://www.aco-metaheuristic.org/aco-code/

[38] M. López-Ibáñez and T. Stützle, “The au-
tomatic design of multi-objective ant colony
optimization algorithms: Supplementary material,”
2011. [Online]. Available: http://iridia.ulb.ac.be/supp/
IridiaSupp2011-007/Iridia-2011-007.pdf

[39] T. Lust and A. Jaszkiewicz, “Speed-up techniques for
solving large-scale biobjective TSP,” Computers & Op-
erations Research, vol. 37, no. 3, pp. 521–533, 2010.

Manuel López-Ibáñez received the M.S. degree in
computer science from the University of Granada,
Granada, Spain, in 2004, and the Ph.D. degree from
Edinburgh Napier University, Edinburgh, U.K., in
2009.

He is currently a Postdoctoral Researcher (Chargé
de recherche) of the Belgian F.R.S.-FNRS at
the Institut de Recherches Interdisciplinaires et
de Développements en Intelligence Artificielle
(IRIDIA), Université libre de Bruxelles, Brussels,
Belgium. His current research interests are the en-

gineering, experimental analysis and automatic configuration of stochastic
optimization algorithms for single and multi-objective optimization problems.

Thomas Stützle received the Diplom, M.S. degree,
in business engineering from the Universität Karl-
sruhe (TH), Karlsruhe, Germany in 1994, and the
Ph.D. degree and the ”Habilitation” in computer
science both from the Computer Science Department
of Technische Universität Darmstadt, Darmstadt,
Germany in 1998 and 2004, respectively.

He is currently a Research Associate of the
Belgian F.R.S.-FNRS working in the Institut de
Recherches Interdisciplinaires et de Développements
en Intelligence Artificielle (IRIDIA), Université libre

de Bruxelles, Brussels, Belgium. He is author of the two books: Stochastic
Local Search: Foundations and Applications (Morgan Kaufmann) and Ant
Colony Optimization (MIT Press). He has published extensively in the wider
area of metaheuristics (more than 150 peer-reviewed articles in journals,
conference proceedings, or edited books). His research interests range from
stochastic local search (SLS) algorithms, large scale experimental studies,
automated design of algorithms, to SLS algorithms engineering.

