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Optimisation algorithms with good anytime behaviour try to return as high-quality solutions as possible
independently of the computation time allowed. Designing algorithms with good anytime behaviour is a
difficult task, because performance is often evaluated subjectively, by plotting the trade-off curve
between computation time and solution quality. Yet, the trade-off curve may be modelled also as a set
of mutually nondominated, bi-objective points. Using this model, we propose to combine an automatic
configuration tool and the hypervolume measure, which assigns a single quality measure to a nondom-
inated set. This allows us to improve the anytime behaviour of optimisation algorithms by means of auto-
matically finding algorithmic configurations that produce the best nondominated sets. Moreover, the
recently proposed weighted hypervolume measure is used here to incorporate the decision-maker’s pref-
erences into the automatic tuning procedure. We report on the improvements reached when applying the
proposed method to two relevant scenarios: (i) the design of parameter variation strategies for MAX-MIN
Ant System and (ii) the tuning of the anytime behaviour of SCIP, an open-source mixed integer program-
ming solver with more than 200 parameters.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Many optimisation algorithms are designed without a specific
termination criterion, and generate a sequence of feasible solutions
that are increasingly better approximations of the optimal solu-
tion. However, the performance of an algorithm is often crucially
determined by the choice of the termination criterion and the
parameters of the algorithm. If the parameter settings of an algo-
rithm result in fast convergence to good solutions, this may pre-
vent the algorithm from adequately exploring the search space to
find better solutions if given ample time. On the other hand,
parameter settings that give higher exploration capabilities may
produce poor results if the termination criterion is too short.
Hence, there is a trade-off between solution quality and the run-
time of the algorithm that can be adjusted by appropriately setting
the parameters of the algorithm.

In many practical scenarios, an optimisation algorithm may be
terminated at an arbitrary time, and, upon termination, the algo-
rithm returns the best solution found since the start of the run.
In such scenarios, the termination criterion is not known in ad-
vance, and, hence, the algorithm should produce as high quality
solutions as possible at any moment of its run time. Algorithms
that show a better trade-off between solution quality and runtime
are said to have a better anytime behaviour (Zilberstein, 1996).

There are two classical views when analysing the anytime
behaviour (Hoos & Stützle, 2005). One view defines a number of
termination criteria and analyses the quality achieved by the algo-
rithm at each termination criterion. In this quality-over-time view,
the anytime behaviour can be analysed as a series of plots of time-
dependent solution quality distributions. A different view defines a
number of target quality values and analyses the time required by
the algorithm to reach each target. In this time-over-quality view,
algorithms are often analysed in terms of a series of qualified run-
time distributions.

In this paper, we consider a third view that does not favour time
over quality or vice versa. Instead, this third view models the per-
formance profile of an algorithm as a nondominated set in a multi-
objective space. An algorithm has better anytime behaviour when
it produces better nondominated sets, where ‘‘better’’ means better
in terms of Pareto optimality. Surprisingly, this third view has re-
ceived little attention (Hoos & Stützle, 2005; Chiarandini, 2005;
den Besten, 2004), despite the important advances in theory and
practice achieved in performance assessment of multi-objective
optimisers in the last decade. Essentially, this model allows us to
apply the same unary quality measures used in multi-objective
optimisation to assign a single numerical value to the anytime
behaviour of an algorithm’s run. In this paper, we use the hypervo-
lume measure as the unary quality measure for this purpose. The
main reason is that the hypervolume is the quality measure with
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the highest discriminatory power among the known unary quality
measures (Zitzler, Thiele, Laumanns, Fonseca, & Grunert da
Fonseca, 2003). In addition, recent work has made possible to de-
scribe user preferences in terms of a weighted hypervolume
measure (Auger, Bader, Brockhoff, & Zitzler, 2009), and, hence,
our proposal allows incorporating user preferences when analysing
the anytime behaviour of an algorithm. Moreover, as shown in this
paper, evaluating the anytime behaviour of an algorithm in terms
of the hypervolume allows applying automatic algorithm configu-
ration methods to find parameter settings of an algorithm that
optimise the trade-off between quality and time.

Recent advances in automatic configuration of algorithms (also
called offline parameter tuning) have shown that such methods
can save a significant amount of human effort and improve the
performance of optimisation algorithms, when designing and eval-
uating new algorithms and when tuning existing algorithms to
specific problems (Birattari, 2009; Bartz-Beielstein, 2006; Hutter,
Hoos, Leyton-Brown, & Stützle, 2009; Eiben & Smit, 2011; Hutter,
Hoos, & Leyton-Brown, 2011; Hoos, 2012). Our proposal here is
to combine automatic configuration with the use of the hypervo-
lume as a surrogate measure of anytime behaviour in order to en-
able the automatic configuration of algorithms in terms of anytime
behaviour.

In the scenario described above, where the algorithm does not
know its termination criterion in advance, techniques such as
parameter adaptation are often applied to improve the anytime
behaviour of the algorithm (Eiben, Michalewicz, Schoenauer, &
Smith, 2007; Aine, Kumar, & Chakrabarti, 2009; Stützle et al.,
2012). However, designing such parameter adaptation strategies
is an arduous task, and they usually add new parameters to the
algorithm that need to be tuned. The method proposed in this pa-
per will help algorithm designers to compare and fine-tune such
parameter adaptation strategies to find the settings that improve
the anytime behaviour of the algorithm on the problem at hand.
Indeed, the first case study reported here derives from our own
efforts on designing parameter adaptation strategies for ant colony
optimisation algorithms. This experience motivated us to develop
the method proposed here, since the classical trial-and-error
approach for designing such strategies proved extremely time-
consuming.

The second case study reported here deals with a different sce-
nario, in particular, a general purpose black-box solver (SCIP
(Achterberg, 2009)) with a large number of parameters. The default
parameter settings of such solvers are tuned for solving problem
instances to optimality as fast as possible. However, in some
practical scenarios, users may not want to wait until a problem in-
stance is solved to optimality, and may decide to stop the solver at
an arbitrary time. Using our method for fine-tuning the parameters
of the solver with respect to anytime behaviour, users can improve
the quality of the solutions found when the solver is stopped
before reaching optimality, without knowing in advance the partic-
ular termination criterion.

The outline of the paper is as follows. Section 2 provides a back-
ground on automatic algorithm configuration, summarises the
state of the art and describes the automatic configuration method
(irace) used throughout this paper. Section 3 introduces the two
classical views of the analysis of anytime algorithms and the less-
explored multi-objective view. In Section 4, we describe our pro-
posal in detail. We explain the benefits of using the hypervolume
to evaluate the anytime behaviour of an algorithm in the context
of an automatic configuration method. We discuss the choice of
reference point and how to combine irace with the hypervolume
measure. An additional section summarises related work and high-
lights the differences with our proposed approach. Section 5
describes our first case study, where we apply this proposal to
the design of parameter adaptation strategies for MMAS. Section 6
discusses how our proposal enables a decision maker to incorpo-
rate preferences regarding the anytime behaviour of an algorithm
to the automatic configuration procedure. A second case study is
considered in Section 7, where we tune the anytime behaviour of
SCIP. Finally, Section 8 provides a summary of our results and dis-
cusses possible extensions of the present work.
2. Preliminaries: automatic algorithm configuration

This section is a brief introduction to automatic algorithm con-
figuration. We define the algorithm configuration problem, give an
overview on the state of the art of automatic configuration meth-
ods, and describe irace, the automatic configuration method used
throughout this paper. A more detailed and formal introduction is
available from the literature referenced here and in the extended
version of the paper (López-Ibáñez & Stützle, 2012a).
2.1. The algorithm configuration problem

Most algorithms for computationally hard optimisation prob-
lems have a number of parameters that need to be set. As an exam-
ple, ACO algorithms (Dorigo & Stützle, 2004) often require the user
to specify not only numerical parameters like the evaporation fac-
tor and the number of ants, but also components like the type of
heuristic information and update method. Another example is
mixed-integer programming solvers, such as SCIP (Achterberg,
2009), which often have a large number of configurable parameters
affecting the main algorithm used internally, e.g., selecting among
different branching strategies. The process of designing complex
algorithms from a framework of algorithm components can be
seen as an algorithm configuration problem (KhudaBukhsh, Xu,
Hoos, & Leyton-Brown, 2009; Montes de Oca, Stützle, Birattari, &
Dorigo, 2009; López-Ibáñez & Stützle, 2012c).

Given a parametrised algorithm, where each parameter may
take different values (settings), a configuration of the algorithm
is a unique assignment of values to parameters. When considering
a problem to be solved by this parametrised algorithm, the goal of
automatic configuration is to find the configuration that minimises
a particular cost function over the set of possible instances of the
problem. The cost function assigns a value to each configuration
when applied to a single problem instance. In the case of stochastic
algorithms, this cost measure is a random variable. Since most
algorithms and problems of practical interest are sufficiently com-
plex to preclude an analytical approach, the configuration of such
algorithms follows an experimental approach (Birattari, 2009;
Bartz-Beielstein, 2006).
2.2. Automatic configuration methods

The traditional approach to algorithm configuration consists of
ad hoc experiments testing relatively few configurations. The use
of experimental design techniques (Coy, Golden, Runger, & Wasil,
2001; Adenso-Díaz & Laguna, 2006) began a trend in which the
task of finding the most promising configurations to be tested is
performed automatically. The natural evolution of this trend has
been to tackle algorithm configuration as an optimisation problem
(Nannen & Eiben, 2006; Ansótegui, Sellmann, & Tierney, 2009;
Hutter et al., 2009; Bartz-Beielstein, 2006; Bartz-Beielstein,
Lasarczyk, & Preuss, 2010; Hutter et al., 2011). It is becoming
widely accepted that automatic configuration methods may save
substantial human effort during the empirical analysis and design
of optimisation algorithms, and, at the same time, lead to better
algorithms (Hoos, 2012; Eiben & Smit, 2011; Bartz-Beielstein,
2006; Birattari, 2009).
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2.3. Iterated racing (irace)

Iterated F-race (I/F-Race) (Balaprakash, Birattari, & Stützle,
2007; Birattari, Yuan, Balaprakash, & Stützle, 2010) is a method
for automatic configuration that consists of three steps: (1) sam-
pling new configurations according to a probability distribution,
(2) selecting the best configurations from the newly sampled ones
by means of F-Race, and (3) updating the probability distribution in
order to bias the sampling towards the best configurations. These
three steps are repeated until a termination criterion is met,
usually a predefined budget of runs of the algorithm being tuned.
F-Race (Birattari, Stützle, Paquete, & Varrentrapp, 2002) is a racing
procedure (Maron & Moore, 1997) for the selection of the best
among a given set of algorithm configurations, by means of the
non-parametric Friedman’s two-way analysis of variance by ranks,
and its associated post-hoc test (Conover, 1999).

The irace software (López-Ibáñez, Dubois-Lacoste, & Stützle,
2011) implements a general iterated racing procedure, which in-
cludes I/F-Race as a special case. There are some notable differ-
ences between irace and the original description of I/F-Race,
such as the use of truncated normal distribution for sampling
numerical parameters, a restart mechanism for avoiding prema-
ture convergence, and other features described in the irace docu-
mentation (López-Ibáñez et al., 2011). For an outline of the iterated
racing algorithm, we refer the reader to the extended version of the
paper (López-Ibáñez & Stützle, 2012a).

3. Preliminaries: anytime algorithms

This section is an introduction to the analysis of stochastic
optimisation algorithms and, in particular, anytime algorithms.
We describe the two classical views, and the lesser studied mul-
ti-objective view. The concepts of bivariate runtime distributions
(RTD), performance profiles, and the two classical views are
described in textbooks (Hoos & Stützle, 2005). The extended ver-
sion of the paper provides a more detailed introduction to these
concepts (López-Ibáñez & Stützle, 2012a).
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Fig. 1. Performance profiles of three algorithms A, B, and C (or three independent
runs of the same stochastic algorithm).
3.1. Classical views of the analysis of runtime distributions

Dean and Boddy (1988) describe an anytime algorithm as one that,
first, may be interrupted at any moment and return a solution and, sec-
ond, it keeps steadily improving its solution until interrupted, eventu-
ally finding the optimal. Most metaheuristics and other optimisation
algorithms satisfy this condition, and, hence, they are anytime optimi-
sation algorithms. A concept of anytime behaviour more useful in the
context of metaheuristics was introduced by Zilberstein (1996), who
highlights that algorithms with good anytime behaviour return as
high-quality solutions as possible at any moment of their execution.
A single run of an anytime algorithm generates a sequence of solutions
that are increasingly better approximations of the optimal solution.
Hence, in the context of anytime algorithms, an algorithm run is often
described as a performance profile:

Definition 1 (Performance profile (Zilberstein, 1996)). Let us con-
sider a single run r of an anytime optimisation algorithm A on a
problem instance p, and record the computational effort (ti,
measured, for example as CPU-time in seconds) and the solution
quality (qi, measured, for example, as relative percentage deviation
from the optimal solution quality), whenever a new best-so-far
solution is found during the run of the algorithm. The set
Pr ¼ fðt1; q1Þ; ðt2; q2Þ; . . . cg is called the performance profile of run
r, where ðti; qiÞ are sampled with probability rtdðt; qÞ, and
ti < tj ^ qi > qj; 8i < j, where rtdðt; qÞ is called the bivariate run-
time distribution (RTD) (Hoos & Stützle, 2005).
Fig. 1 gives an example of performance profiles for three runs
A; B, and C. The above definition of performance profile does not
favour quality over time, or viceversa. It would be equivalent to
plot quality or time on either axis. Nonetheless, performance pro-
file plots traditionally place time on the x-axis and quality on the y-
axis, and we follow this custom here. A problem arises, however,
when one wants to aggregate the information from several perfor-
mance profiles in order to analyse the behaviour of an algorithm.

There are two classical views on how to summarise performance
profiles over multiple runs (Hoos & Stützle, 2005). The solution-
quality-over-time (SQT) view examines solution quality distribu-
tions (SQDs) over fixed run-times. However, instead of plotting the
SQDs, it is far more common to aggregate the performance profiles
over fixed run-times and examine SQT curves. This SQT view is the
most popular in combinatorial optimisation, where it is common
to compare the anytime behaviour of optimisation algorithm by
visually inspecting mean SQT curves (Hoos & Stützle, 2005; Wah &
Chen, 2000; Loudni & Boizumault, 2008; Stützle et al., 2012).

A second classical view is to aggregate performance profiles
over fixed quality targets. Although plots of mean time over quality
are possible (Hoos & Stützle, 2005), the most common approach is
to examine the qualified run time distribution (QRTD), which is the
probability of attaining fixed quality-targets over time. In an anal-
ysis based on QRTDs one can state that an algorithm is faster by
some factor than another at reaching a particular quality target.

3.2. A multi-objective view of runtime distributions

A third alternative is to not favour either of the classical views,
but instead use techniques from multi-objective optimisation (den
Besten, 2004; Chiarandini, 2005). Thus, we do not aggregate the
performance profiles over fixed run-times or fixed quality-targets.
Instead, we describe the performance profiles generated by an
optimisation algorithm as random nondominated sets. First, let
us introduce some basic definitions borrowed from multi-objective
optimisation, but adapted to the analysis of RTDs.

Definition 2 (Weak dominance). Given two vectors
ðt; qÞ; ðt0; q0Þ 2 R0 � R0, we say that ðt; qÞ weakly dominates ðt0; q0Þ,
and denote it by ðt; qÞ 6 ðt0; q0Þ iff t 6 t0 ^ q 6 q0.
Definition 3 (Nondominated set). A set X ¼ fðt1; q1Þ; ðt2; q2Þ; . . . cg
is called nondominated iff 9= ðti; qiÞ; ðtj; qjÞ 2 X, i–j such that
ðti; qiÞ 6 ðtj; qjÞ.

According to the definition of performance profile above
(Definition 1), the elements of a performance profile, must also
be mutually nondominated. Therefore, we can analyse perfor-
mance profiles as nondominated sets, using the same techniques
as in multi-objective optimisation.
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The multi-objective view considers the bivariate RTD without
aggregation, which is a well-known approach to the analysis of
optimisation algorithms (Hoos & Stützle, 2005), but much less
studied due to the inherent difficulty of analysing a bivariate distri-
bution. Chiarandini (Chiarandini, 2005) considered such a view for
analysing the anytime behaviour of several metaheuristics for
graph colouring, concretely using the attainment function (Grunert
da Fonseca & Fonseca, 2010).1 For the purposes of automatic config-
uration, the available Kolmogorov-Smirnov test based on the attain-
ment function (Knowles, Thiele, & Zitzler, 2006) is not enough, and
graphical exploration methods (Knowles et al., 2006; Knowles,
2005; López-Ibáñez, Paquete, & Stützle, 2010) require substantial
human interaction.

4. Our proposal: automatic configuration of anytime algorithms
by means of the hypervolume measure

As mentioned above, directly using the attainment function as
the basis of an automatic configuration tool for anytime algorithms
seems difficult. Instead, we identify the hypervolume measure as
the best available choice for this task. The main reasons are its high
discriminatory power, being Pareto-compliant, and the possibility
of incorporating user preferences into the automatic configuration
process. There is also substantial and ongoing research on the the-
oretical properties of the hypervolume (Auger, Bader, Brockhoff, &
Zitzler, 2012).

4.1. Hypervolume measure of performance profiles

As a first step, let us define the classical Pareto-dominance
relation on performance profiles:

Definition 4 (Better in terms of Pareto-optimality, /). Given two
performance profiles Pi and Pj, which are the result of running two
algorithms Ai and Aj on the same problem instance p, we say that
Pi is better, in terms of Pareto-optimality, than Pj ðPi / PjÞ iff Pi–Pj,
and 8ðtj; qjÞ 2 Pj; 9ðti; qiÞ 2 Pi, such that ðti; qiÞ 6 ðtj; qjÞ.

It is often the case, however, that neither performance profile is
better than the other, i.e., they are incomparable. These relations
are independent of the classical views of fixed-quality (first view)
or fixed-runtimes (second view) as described above, and only make
sense in the third view that considers both quality and runtime in
terms of Pareto-optimality.

In the following, we assume that, without any a priori informa-
tion about the actual termination criterion of the algorithm or the
preferred trade-off between solution-quality and computation
time, a performance profile that is better than another in terms
of Pareto-optimality is also better in terms of anytime behaviour,
in the sense that the former is always preferred to the latter.

In order to apply an automatic configuration tool from the liter-
ature for improving the performance profiles produced by an algo-
rithm, we would desire a unary quality measure that unequivocally
indicates whether a performance profile is better than another.
Unfortunately, a well-known result from multi-objective optimisa-
tion states that no unary quality measure (or finite combination
thereof) can indicate whether a performance profile is better, as
defined above, than another (Zitzler et al., 2003). The most power-
ful of the unary quality indicators can at most indicate that a per-
formance profile is not worse than (better than or incomparable to)
another. The hypervolume measure (Zitzler & Thiele, 1999) is the
1 For brevity, we do not explain the attainment function approach here and its
application to the analysis of anytime algorithms. A complete description is provided
in the extended version of the paper (López-Ibáñez & Stützle, 2012a).
only unary quality measure known to have such discriminatory
power (Zitzler et al., 2003).

The hypervolume can be defined as the measure of the region
that is simultaneously weakly dominated by any point in a non-
dominated set and bounded above by a reference point that is
strictly dominated by all points in the set. In the context of perfor-
mance profiles of single-objective optimisation algorithms, this re-
gion is the area contained within the orthogonal polygon defined
by the elements of a performance profile P and an arbitrary refer-
ence point ðtr; qrÞ, such that ðti; qiÞ < ðtr ; qrÞ; 8ðti; qiÞ 2 P.

In this paper, we only consider single-objective optimisation
algorithms. Nonetheless, it is trivial to extend the above discussion
to multi-objective algorithms, where there is more than one mea-
sure of solution quality. In fact, we have applied the method pro-
posed here to automatically improve the anytime behaviour of
multi-objective evolutionary algorithms (Radulescu, López-Ibáñez,
& Stützle, 2013).

4.1.1. The choice or reference point
In the context of anytime algorithms, the choice of reference

point is application specific. The bivariate runtime distribution is
defined without any limits on how bad the solution quality might
be or how long it may take to generate any solution. In practice,
however, large deviations from the optimal quality may be of little
interest (no matter how fast they can be generated) and algorithms
need to be stopped at some point (cut-off time). These limitations
are not specific to any of the three views discussed above. A default
approach is to consider a cut-off quality that corresponds to the
worst solution quality found by any run of the algorithms under
analysis, and a cut-off time that is slightly larger than the maxi-
mum time that would be reasonable for a single run of the algo-
rithm. The reference point would then be defined as a factor
larger than the cut-off quality and cut-off time.

How much larger this factor should be is an open question in
multi-objective optimisation. There are some theoretical results
on how the choice of reference point affects the distribution of ele-
ments within a nondominated set that maximises the hypervo-
lume (Auger et al., 2012). However, it is not clear how these
results extend to the relations between nondominated sets. In
any case, the only effect of the reference point is to bias the prefer-
ence between incomparable performance profiles. In that sense,
our suggestion (and the usual practice in multi-objective optimisa-
tion) is to define the reference point in a consistent manner and
bias this preference by other means, such as the weighted hypervo-
lume (Section 6).

4.2. Automatic configuration of anytime algorithms

The use of the hypervolume to compare performance profiles in
terms of Pareto-optimality has the additional benefit of providing a
unary scalar measure to evaluate anytime behaviour. Integrating
such a measure in most automatic configuration methods should
be straightforward. Here, we discuss the practical aspects of the
integration of the hypervolume in irace for improving the any-
time behaviour of single-objective optimisation algorithms.

Our procedure requires to specify a maximum cut-off time for
the algorithm being tuned by irace. As discussed above, this
cut-off time is necessary because anytime algorithms may in prin-
ciple run forever. The cut-off time could be dynamic or different for
each run, however, for the sake of simplicity, we do not explore
these possibilities here. Each run of the algorithm must produce
a performance profile as defined in Definition 1.

Within a single race in irace, a set of algorithm configurations
are evaluated on a sequence of training instances. After evaluating
an instance, some configurations may be discarded. Let Hp denote
the configurations that have not been discarded before evaluating
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instance p. Let Ph;p denote the performance profile generated by
running configuration h on instance p. First, we normalise the per-
formance profiles Ph;p, for each h 2 Hp to the range [0.0,0.9]. Thus,
after normalisation we obtain for each h a new performance
profile:

P0h;p ¼ f t0i; q
0
i

� �
j8ðti; qiÞ 2 Ph;pg

where

t0i ¼ 0:9 � ðti � tminÞ=ðtmax � tminÞ
q0i ¼ 0:9 � ðqi � qminÞ=ðqmax � qminÞ

�

where tmin is usually zero, tmax is the cut-off time, qmin ¼
minfqij8ðti; qiÞ 2 Ph;p; 8h 2 Hpg and qmax is defined similarly for
the maximum solution quality found after running all configura-
tions in Hp on instance p.

Finally, we compute the hypervolume hvðh;pÞ of each P0h;p using
(1.0,1.0) as the reference point. In our proposal, this hvðh;pÞ value
becomes the cost measure used by irace.

Neither quality values, nor hypervolume values from different
instances are directly compared because normalisation is done
within each instance p, as defined above, and the application of
the F-test within irace transforms the hypervolume values into
ranks per instance. Hence, quality values or hypervolume values
may have different ranges on each instance without introducing
a bias. This approach also allows for instance-dependent cut-off
times, although we do not explore this possibility in this paper.

4.3. Related work on automatic configuration of anytime algorithms

There is substantial work on automatic configuration for deci-
sion problems and single-objective optimisation problems. We re-
fer to recent overviews (Hoos, 2012; Eiben & Smit, 2011) and books
(Bartz-Beielstein, 2006; Birattari, 2009) for a complete bibliogra-
phy. By comparison, there are relatively few works on tuning mul-
ti-objective optimisation algorithms. Wessing, Beume, Rudolph,
and Naujoks (2010) automatically tuned the variation operator of
a multi-objective evolutionary algorithm applied to a single prob-
lem instance. Simultaneously, López-Ibáñez and Stützle (2010,
2012c) automatically instantiated new designs of multi-objective
ant colony optimisation (MOACO) algorithms for the bi-objective
travelling salesman problem from a framework of MOACO algo-
rithmic components. More recently, Dubois-Lacoste, López-Ibáñez,
and Stützle (2011) applied this latter approach to outperform the
state of the art in several bi-objective permutation flow-shop prob-
lems. These works share with our proposal the use of unary quality
measures, such as the hypervolume, as the cost function used by
the automatic configuration method.

On the other hand, our proposal should not be confused with
parameter tuning as a multi-objective problem (Dréo, 2009),
where the aim is to produce a set of parameter configurations that
are mutually nondominated with respect to multiple criteria. In
this paper, our aim is to produce a single parameter configuration
that generates an anytime behaviour that is as good as possible.

There have been some recent attempts at tackling the problem
of tuning anytime algorithms. As mentioned above, Chiarandini
(2005) used the attainment function to analyse the anytime behav-
iour of several metaheuristics for graph colouring. However, it is
far from obvious how to effectively use the attainment function
in an automatic configuration method. The proposal closest to ours
is by den Besten (2004), who combined racing and a performance
measure based on the binary �-indicator. The use of a binary mea-
sure involves computing a matrix of �-measure values, comparing
each alternative with the rest, and transforming it into ranks. More
recently, Branke and Elomari (2011) combined a meta-level evolu-
tionary algorithm and an ad hoc ranking procedure for tuning the
mutation rate of a lower-level algorithm for multiple termination
criteria in a single tuner run. Their ranking method is not based
on any multi-objective quality measure. Instead, it ranks each con-
figuration with respect to the number of discrete time steps in
which the configuration was better than other configurations. In
that sense, it is an example of the classical fixed-runtimes view
(what we call first view above).

5. Case Study: design of parameter variation strategies for
MAX-MIN Ant System on the TSP

Many anytime algorithms use parameter adaptation strategies
(Eiben et al., 2007; Aine et al., 2009), that is, the variation of param-
eter settings while solving a problem instance, to adapt the param-
eters to different phases of the search, and to balance exploration
of the search space and exploitation of the best solutions found.

Designing and comparing parameter adaptation strategies is,
however, an arduous and complex task. Traditionally, the analysis
is performed in terms of one (or both) classical views, that is, either
measuring solution quality over fixed-runtimes (Aine et al., 2009),
or runtime (CPU-time or function evaluations) over fixed quality-
targets (Auger & Hansen, 2005).

In previous work (Stützle et al., 2012; Maur, López-Ibáñez, &
Stützle, 2010), we studied parameter adaptation strategies for
ant colony optimisation (ACO) algorithms using the classical solu-
tion quality over fixed-runtimes view. In particular, we studied the
anytime behaviour of MAX-MIN Ant System (MMAS) on the travel-
ling salesman problem (TSP) by experimenting with various static
parameter settings and parameter variation strategies. As a result,
we identified parameter configurations that are significantly better
in terms of anytime behaviour than the default settings of MMAS
(Maur et al., 2010; Stützle et al., 2012). Our analysis relied on visu-
ally comparing the mean SQT curves of various strategies that were
deemed interesting. Needless to say, this was a human intensive
task that required many iterations of experimentation and analy-
sis. We roughly estimate that the overall effort for obtaining the
best configurations was close to one person-year.

This effort could have been significantly reduced by using an
automatic algorithm configuration tool for improving the anytime
behaviour. This case study was our main motivation for developing
the method proposed in this paper. In this section, we describe the
case study in detail, we examine the setup required for applying
automatic algorithm configuration, and we compare the parameter
adaptation strategies identified as the best by the automatic config-
uration procedure versus the ones identified in our previous work.

5.1. MAX-MIN Ant System

MMAS is an ACO algorithm that incorporates an aggressive
pheromone update procedure and mechanisms to avoid search
stagnation. When applying MMAS to the TSP, each ant starts at a
randomly chosen initial city, and constructs a tour by randomly
choosing at each step the city to visit next according to a probabil-
ity defined by pheromone trails and heuristic information. In par-
ticular, the probability that ant k chooses a successor city j when
being at city i is given by

pij ¼
½sij�a � ½gij�

b

P
h2Nk ½sih�a � ½gih�

b if j 2 Nk; ðotherwise; pij ¼ 0Þ ð1Þ

where sij is the pheromone trail strength associated to edge ði; jÞ;gij

is the corresponding heuristic information; a and b are two param-
eters that influence the weight given to pheromone and heuristic
information, respectively; Nk is the feasible neighbourhood, that
is, a candidate list of cities not yet visited in the partial tour of
ant k.



Table 2
Parameter space for variation strategies of MMAS.

Parameter Domain Constraint

mvar, bvar, {delta, switch, none}
qvar, q0var

m [1,100] if var ¼ none
b [0, 20]
q [0.01,1.0]
q0 [0.0,1.0]

Dm f0:01;0:05;0:1;0:25;0:5;1;2;5g if var ¼ delta
Db f0:01;0:02;0:05;0:1;0:2;0:5;1:0g
Dq f0:001;0:002;0:005;0:01g
Dq0 f0:0001;0:0002;0:0005;0:001;0:002;0:005g

mswitch,
bswitch,

[1,500] if var ¼ switch

qswitch,
q0switch

mstart 1 if var 2 fdelta; switchg
mend [1,500]
bstart [0, 20]
bend [0, 5]
qstart ;qend [0.001,1.0]
q0start; q0end [0.0,1.0]
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Following previous work (Stützle, 1997), we also incorporate
the pseudo-random action choice rule of ACS (Dorigo & Gambardella,
1997), which allows for a greedier solution construction. With a
probability q0, an ant chooses next a city j 2 Nk such that
j ¼ arg maxh2Nk ½sih�a � ½gih�

b
n o

; otherwise, the ant performs the
probabilistic selection based on Eq. (1). A value of q0 ¼ 0 reverts
back to the original MMAS.

The pheromone update of MMAS updates all pheromone trails
as

sij  max smin;min smax; ð1� qÞ � sij þ Dsbest
ij

n on o
; ð2Þ

where q; 0 < q 6 1, is a parameter called evaporation rate and
Dsbest

ij ¼ 1=f ðsbestÞ if edge ði; jÞ 2 sbest, (Dsbest
ij ¼ 0, otherwise), where

f ðsÞ is the tour length of solution s, and sbest is either the iteration-
best solution, the best-so-far solution or the best solution since a
re-initialisation of the pheromone trails (restart-best). In MMAS,
these solutions are chosen alternately (Stützle & Hoos, 2000).

Finally, solutions constructed by the ants may be further im-
proved by the application of a local search algorithm. In this paper,
we will use MMAS with 2-opt local search, as was done in previous
work (Maur et al., 2010; Stützle et al., 2012).

5.2. Parameter variation strategies in MMAS

Following our previous work (Stützle et al., 2012), we focus on
two basic schemes for parameter variation in MMAS, which we call
henceforth delta and switch strategies. During a single run of MMAS,
the variation strategy called delta applied, for example, to parame-
ter b increases the value of b at each iteration of the algorithm by a
certain amount Db, starting from the value bstart and stopping at the
value bend. If bstart > bend, then the value of b is decreased at each
iteration by Db instead of increased. Conversely, the variation
strategy called switch changes, at iteration bswitch, the value of
parameter b from the value bstart to the value bend. An additional
parameter bvar controls the variation strategy, which is either delta,
switch or none, where none means that the parameter value of b
stays constant throughout the run of the algorithm. As a result,
we add to MMAS five additional parameters for varying b : bstart,
bend; Db; bswitch and bvar .

We apply the same parameter variation strategies to parame-
ters b;q, the number of ants (m), and q0. Hence, we add five addi-
tional static parameters for each parameter that is dynamically
varied. Table 2 describes the domains of all parameters, and Table 1
describes the default values (Stützle & Hoos, 2000).

5.3. Automatic configuration of parameter adaptation strategies

We consider random uniformly generated instances of the sym-
metric TSP with 3000 cities (Johnson, McGeoch, Rego, & Glover,
2001). Our instances are available in the supplementary material
page (López-Ibáñez & Stützle, 2012b). We generate 50 training
(tuning) instances and 50 test instances.

We apply our proposed method for the automatic configuration
of the anytime behaviour (Section 4.2). The automatic configura-
tion tool is the implementation of I/F-Race provided by the irace
software package (López-Ibáñez et al., 2011). As explained above,
we incorporate the hypervolume measure to irace in order to
evaluate the anytime behaviour of a single run of MMAS. We use
Table 1
Default settings of the parameters under study for MMAS.

Algorithm TimeCPU a b q m q0

MMAS 500 s 1.0 2.0 0.2 25 0.0
a publicly available implementation of the hypervolume measure
(Fonseca, Paquete, & López-Ibáñez, 2006), and the MMAS imple-
mentation is based on the ACOTSP software (Stützle, 2002). All
experiments are run on Intel Xeon E5410 CPUs (2:33 GHz,
2�6MB L2 cache) running Cluster Rocks Linux version 6/CentOS
6.3, 64 bits. Each individual run of the algorithms being tuned uses
just one core.

In a first step, we tune separately the variation strategy of one
dynamic parameter at a time, while other parameters are fixed
to their default values as given in Table 1. That is, we perform
one run of irace for each parameter fm; b; q0;qg. For example,
in the run of irace that tunes the variation strategy of b, the
parameters tuned are bvar ; b, Db; bswitch; bstart, bend, whereas the
other parameters (m; q0, q) are fixed to their default values
(Table 1) and their variation strategies (paramvar) are set to
none, and, hence, their corresponding variation parameters
(Dparam; paramswitch; paramstart, paramend) are not considered (see
Table 2). We give each run of irace a budget of 1000 runs of
MMAS. Each run of MMAS is stopped after TimeCPU seconds
(Table 1).

In a second step, we automatically configure all parameter var-
iation strategies at the same time, that is, we configure 24 param-
eters instead of six. Since the parameter space is much larger now,
we assign a larger tuning budget to this run of irace, specifically
10000 runs of MMAS.

After each run of irace finishes, we apply the resulting param-
eter configurations (Table 4) to the test instances. In addition, we
also run, on the test instances, the default parameter configuration
of MMAS (Table 1) without any variation strategy and several var-
iation strategies previously found by manual ad hoc experimenta-
tion (Table 3) (Stützle et al., 2012). We present these results in the
following sections.
5.4. Analysis of the results

5.4.1. Automatic configuration vs. manual configuration
Our goal is to improve the anytime behaviour of MMAS over the

whole set of test instances. Hence, we analyse the overall results by
plotting the average solution quality over time (SQT) for all test in-
stances at once. However, as explained above, our proposed ap-
proach does not rely on these SQT curves for improving the
anytime behaviour, and it does not favour solution-quality over



Table 3
Parameter configurations found by a human expert when varying one parameter at a
time in MMAS (Stützle et al., 2012).

Configuration Parameter settings

manual var ants mvar ¼ delta; mstart ¼ 1; mend ¼ 25; Dm ¼ 0:1
manual var beta bvar ¼ switch; bstart ¼ 20; bend ¼ 3; bswitch ¼ 50
manual var rho qvar ¼ none; q ¼ 0:9
manual var q0 q0var ¼ delta; q0start ¼ 0:99; q0end ¼ 0; Dq0 ¼ 0:0005
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time or viceversa. We could also visualise our results in terms of
qualified runtime distributions (Hoos & Stützle, 2005), or in terms
of attainment surfaces (Grunert da Fonseca & Fonseca, 2010;
Chiarandini, 2005). We chose SQT curves as one of the traditional
means of visualising the anytime behaviour of an algorithm, and
the most popular view in the literature on combinatorial optimisa-
tion algorithm (Hoos & Stützle, 2005).

For each algorithm configuration, we have the best solution
quality found frit on run r on instance i at time t. We compute
the relative percentage deviation (RPD) from the optimal solution
for each instance as RPDrit ¼ 100 � frit=f opt

i , where f opt
i is the optimal

tour length of instance i. Then, we compute the mean RPD over all
50 instances and over all 15 independent runs of each algorithm as
RPDt ¼ 1

50�15 �
P50

i¼1

P15
r¼1RPDrit . Each line in the plots in Fig. 2 corre-

sponds to the RPDt of one algorithm configuration, that is, aggre-
gating solution-quality over time.

In the case of the hypervolume computation, we do not aggre-
gate over time, but compute the hypervolume of the (nondominat-
ed) performance profile of each run on each instance by
normalising both time and solution quality to the interval
[0.0,0.9] and using (1.0,1.0) as the reference point. Then, for each
algorithm configuration we compute its mean hypervolume over
all its runs on all test instances, and we give this value in the leg-
end of each plot.

The first important observation is how a larger hypervolume va-
lue matches a better anytime behaviour. The four plots in Fig. 2
show a large improvement in the anytime behaviour of the manu-
ally tuned configurations with respect to the default configuration
of MMAS. Nonetheless, the automatically found configurations are
able to match, and in most cases surpass, the manually tuned
configurations in terms of hypervolume, despite the fact that the
manually tuned configurations were found by extensive experi-
mentation under the guidance of human expertise.

Fig. 3(a) compares the configuration obtained after automati-
cally configuring all parameter variation strategies at once versus
the best configurations obtained after automatically configuring
the variation strategy of one parameter at a time. In our previous
Table 4
Parameter configurations found by irace for MMAS: (auto var param) wa
strategy of parameter param, while the other parameters are set to their d
anytime behaviour, all variation parameters at the same time; (auto fix fi

any variation, with respect to final quality, that is, the solution quality ob
variation parameters with respect to final quality.

Configuration Parameter settings

auto var ants mvar ¼ delta; mdelta ¼ 0:05; ms

auto var beta bvar ¼ delta; bdelta ¼ 0:05; bstar

auto var q0 q0var ¼ switch; q0switch ¼ 200;
auto var rho qvar ¼ delta; qdelta ¼ 0:001; qs

auto var ALL mvar ¼ delta; mdelta ¼ 1; mstart

q0var ¼ delta; q0delta ¼ 0:002; q
qvar ¼ none; q ¼ 0:68

auto fix final b ¼ 5:9; q ¼ 0:62; m ¼ 84; q0

auto var final mvar ¼ switch; mswitch ¼ 50; m
q0var ¼ switch; q0switch ¼ 139;
qvar ¼ switch; qswitch ¼ 493; q
study, the manual tuning and analysis of all parameter strategies
at once was ruled out as infeasible, given the extremely large num-
ber of potential configurations and interactions among different
parameters. Here, we see that automatically configuring all param-
eters at once leads to an additional improvement in anytime
behaviour.

Figs. 2(a–d) and 3(a) show the mean hypervolume over all runs
and all test instances. To assess whether the observed differences
are statistically significant, we perform a statistical analysis of
the results over the whole set of test instances. The analysis is
based on the Friedman test for analysing non-parametric unrepli-
cated complete block designs, and its associated post-test for mul-
tiple comparisons (Conover, 1999). First, we calculate the mean
hypervolume of the 15 runs of each algorithm for each instance.
Then, we perform a Friedman test using the instances as the block-
ing factor, and the different configurations of MMAS as the treat-
ment factor. The null hypothesis is that the configurations have
identical effect on the ranking according to the hypervolume with-
in each instance. If the Friedman test rejects the null hypothesis gi-
ven a significance level of a ¼ 0:05, we proceed to calculate the
minimum difference between the sum of ranks of two configura-
tions that is statistically significant (DRa). In this manner, we iden-
tify which configurations are significantly different from the best
ranked one, i.e., the one with the lowest sum of ranks.

Table 5 summarises the results of the statistical analysis. It
shows the value of DRa for a ¼ 0:05, the different configurations
of MMAS sorted by increasing sum of ranks, and the difference be-
tween the sum of ranks of each configuration and the best config-
uration (DR). For each parameter considered, the ranking shown in
Table 5 always ranks higher the configurations found automati-
cally than their counterparts found by ad hoc experimentation
(auto vs. manual, respectively). More importantly, it shows that
the best ranked configuration is the one that automatically config-
ured all parameters at once, and that the difference in ranks be-
tween this configuration and the rest is statistically significant.

5.4.2. Hypervolume vs. final quality
Here, we show that the use of the hypervolume as the tuning

criterion is the key factor for improving the anytime behaviour.
Fig. 3(b) shows four configurations of MMAS: the default configu-
ration (default); the one resulting from automatically tuning all
variation parameters (auto var ALL); a configuration obtained
by tuning all variation parameters with respect to final quality,
that is, the solution quality obtained at 500 seconds (auto var fi-
nal); and a configuration obtained by tuning the classical MMAS
parameters, without any variation, with respect to final quality
(auto fix final). The plot shows that, independently of whether
s obtained by tuning, with respect to anytime behaviour, the variation
efault settings; (auto var ALL) was obtained by tuning, with respect to
nal) was obtained by tuning the classical MMAS parameters, without

tained at 500 seconds; and (auto var final) was obtained by tuning all

tart ¼ 1; mend ¼ 417

t ¼ 9; bend ¼ 4
q0start ¼ 0:96; q0end ¼ 0:30

tart ¼ 0:82; qend ¼ 0:84
¼ 1; mend ¼ 384; bvar ¼ switch; bswitch ¼ 79; bstart ¼ 5; bend ¼ 0,

0start ¼ 0:87; q0end ¼ 0:57,

¼ 0:099
start ¼ 1; mend ¼ 317; bvar ¼ delta; bdelta ¼ 0:5; bstart ¼ 8; bend ¼ 2,
q0start ¼ 0:6241; q0end ¼ 0:2725,

start ¼ 0:338; qend ¼ 0:7495
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default (0.9079)
manual var ants (0.9181)
auto var ants (0.9349)

1 2 5 10 20 50 100 200 500
time in seconds

1 2 5 10 20 50 100 200 500
time in seconds

1 2 5 10 20 50 100 200 500
time in seconds

1 2 5 10 20 50 100 200 500
time in seconds

default (0.9079)
manual var beta (0.9144)
auto var beta (0.9236)

default (0.9079)
manual var rho (0.9403)
auto var rho (0.9471)

default (0.9079)
manual var q0 (0.9501)
auto var q0 (0.955)

Fig. 2. Anytime behaviour of manually tuned vs. automatically tuned configurations of MMAS. The number in the legend is the mean hypervolume of each configuration over
all runs. For the meaning of the labels, see the caption of Table 4.
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auto var final (0.9247)
auto fix final (0.9304)
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Fig. 3. Anytime behaviour of automatically tuned configurations of MMAS vs. the
default configuration. The number in the legend is the mean hypervolume of each
configuration over all runs. For the meaning of the labels, see the caption of Table 4.

Table 5
Various configurations of MMAS ordered according to the sum of ranks with respect
to the hypervolume obtained over all test instances. The numbers in parenthesis are
the differences of ranks relative to the best ranked configuration. DRa is the
statistically significant difference in ranks according to the post-hoc test for the
Friedman-test with a ¼ 0:05. All configurations are statistically significantly worse
than the best one (auto var ALL). For the meaning of the labels, see the caption of
Table 4.

DRa Configurations (DR)

9.87 auto var ALL (0), auto var q0 (34), manual q0 (94), auto var rho (125),
manual rho (189), auto var ants (236), auto var beta (294),
manual ants (345), manual beta (380), default (433)

2 The confidence interval is computed using the Welch’s t statistic for two paired
samples, which assumes that the samples follow a normal distribution. Nonetheless,
for large sample sizes, as used here, the method is robust against deviations from
normality.
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MMAS uses parameter variation or not, the results not tuned with
respect to the hypervolume have worse anytime behaviour.

A possible concern of tuning for anytime behaviour is a signifi-
cant loss of final quality. Hence, we examine the final quality
achieved by these four variants of MMAS in Fig. 4. According to
the boxplots, there is an important improvement in the final qual-
ity achieved in comparison with the default configuration of
MMAS, even for the configuration tuned for anytime behaviour.
The boxplot does not show a large difference between the three
automatically configured variants. Nonetheless, the Friedman test
indicates that the final quality obtained by the variant tuned for
anytime behaviour is statistically worse than the variants tuned
for final quality (Table 6). In order to assess the loss of final quality,
we compute the 95% confidence interval on the mean difference in
final quality between the configuration tuned for anytime behav-
iour and the best ranked configuration, which is [0.0244,0.0480],
measured in RPD.2 Although the loss in final quality when tuning
for anytime behaviour is small in this case, an anytime algorithm
should aim to match the best possible final quality in the ideal case.



auto var final

auto var ALL

auto fix final

default

0.4 0.6 0.8 1.0 1.2
RPD from optimal at 500 seconds

Fig. 4. Final quality achieved by several variants of MMAS. For the meaning of the
labels, see the caption of Table 4.

Table 6
Configurations of MMAS ordered according to the sum of ranks with respect to the
final solution quality obtained after 500 seconds. The numbers in parenthesis are the
difference of ranks relative to the best configuration. DRa is the statistically significant
difference in ranks according to the post-hoc test for the Friedman-test with a ¼ 0:05.
Configurations that are not significantly different from the best one are indicated in
bold face. For the meaning of the labels, see the caption of Table 4.

DRa Configurations (DR)

13.68 auto var final (0), auto var ALL (48), auto fix final (52), default (132)

M. López-Ibáñez, T. Stützle / European Journal of Operational Research 235 (2014) 569–582 577
6. Articulation of preferences in automatic configuration of
anytime algorithms

The use of the hypervolume for automatic tuning of anytime
algorithms has an additional advantage compared to other unary
measures, that is, the possibility of specifying the decision-maker’s
preferences. A recent proposal extends the hypervolume indicator
by a weight function over the objective space (Zitzler, Brockhoff, &
Thiele, 2007; Auger et al., 2009). A weight function that assigns a
larger value to a certain region of the objective space will bias
the hypervolume indicator to favour nondominated sets that dom-
inate that region. We show here that this formulation can straight-
forwardly be used to introduce a bias in the anytime behaviour
produced by automatic configuration.

As an example, let us assume that the decision maker’s prefer-
ence is to obtain as good final solution quality as possible, while
still giving some minor importance to achieving a good anytime
behaviour. In other words, the decision maker prefers configura-
tions that generate solution-quality curves that are better towards
minimising the solution quality (in our case, the second objective).
Zitzler et al. (2007) suggest to model this preference by considering
the following weight function (adapted here to minimisation):

wqualðzÞ ¼ e20�ð1�z2Þ=e20 ð3Þ

where z ¼ ðz1; z2Þ 2 Z is an objective vector, with z1 representing
time and z2 representing solution quality, and Z ¼ ½0;1� � ½0;1� rep-
resents the normalised bi-objective space of time � quality.

The weighted hypervolume is computed as the integral of the
weight function over the region dominated by a set of nondomi-
nated points and bounded above by a reference point. To give a
rough idea of this integral when using the weighted function
wqual, Fig. 5(b) shows the value of the weighted hypervolume for
each individual vector in the normalised objective space Z and with
reference point (1,1). The plot shows that vectors with very small
values of z2 are assigned a high hypervolume, but vectors with val-
ues of z2 larger than 0.2 are assigned a hypervolume close to zero.
By comparison, Fig. 5(a) shows the value of the non-weighted
hypervolume, which is symmetric around the diagonal, that is,
without a preference for either objective.

As shown in Fig. 5(b), when using the weighted function wqual,
the gradient of the hypervolume values is very steep and most of
the objective space has a hypervolume close to zero. We can
make the gradient gentler by weighting also the z1 component
(corresponding to time), but then we have to increase the expo-
nent associated to z2 in order to keep a strong preference for
low solution quality. This is done with the following weight
function:

wxqual ¼ e10�z1=e10 þ e100�ð1�z2Þ=e100 ð4Þ
The weighted hypervolume using this weight function for each
individual vector in the objective space Z is shown in Fig. 5(c). In
this case, there is a gentler gradient of the hypervolume value than
in Fig. 5(b). Moreover, the value of the hypervolume increases
exponentially in the direction of decreasing z2 (solution quality),
while it stays roughly constant along z1 (except for very high val-
ues of z1).

We illustrate the differences between the original hypervolume
and the two weighted variants above with an example. Fig. 6
shows five performance profiles (not aggregated over fixed run-
time or over fixed quality-targets) in the normalised objective
space Z. The plot shows the region z2 2 ½0:0;0:15�, where we can
see that the performance profiles are ordered according to the final
quality achieved, with profile a being the best and profile e being
the worst. The legend provides three numbers for each profile,
which correspond to evaluating the profile with the classical
hypervolume, the hypervolume weighted by wqual and the hyper-
volume weighted by wxqual, respectively. Table 7 gives the profiles
in increasing order of preference according to each measure.

In this example, the classical hypervolume ranks profile a,
which is the profile with the best final quality, worse than other
three profiles. The weighted hypervolume functions increase the
preference for profile a, and our proposed variant wxqual gives it
the highest rank.

Next, we test the effect of these two weighted hypervolume
functions on the automatic configuration procedure. In particular,
we carry out additional runs of irace using the weighted hypervo-
lume variants described above, i.e., wqual (Eq. (3)) and wxqual (Eq.
(4)). We run irace with the same setup as for tuning all parameter
variations at once in Section 5.2, in particular, with a budget of
10000 runs of ACOTSP. These additional tuning runs produce two
new configurations of MMAS, which we ran 25 times with different
random seed on each test instance.

Fig. 7(a) plots the mean RPD over all runs of the resulting four
configurations of MMAS: the default configuration (default);
the one resulting from automatically tuning all variation parame-
ters at once using the classical hypervolume (auto var ALL); the
configuration obtained with the same tuning setup but using the
weighted hypervolume with wqual (whv qual); and the configura-
tion obtained using the weighted hypervolume with wxqual (whv

xqual). In addition, the legend provides three numbers for each pro-
file, which correspond to evaluating the results with the classical
hypervolume, the hypervolume weighted by wqual and the hyper-
volume weighted by wxqual, each of them averaged over all runs.

Interestingly, the values reported in the legend of Fig. 7(a) indi-
cate that the configuration tuned using wxqual as the anytime crite-
rion obtains a better hypervolume weighted by wqual than the
configuration tuned using wqual as the anytime criterion. Taking
into account Fig. 5(b and c), we can observe that both weight func-
tions are strongly correlated and also that wqual is ‘‘flatter’’ than
wxqual, that is, there are more plateau regions with almost the same
value for different points. Our conjecture is that the strong correla-
tion makes possible to tune for one weight function and maximise
the other. At the same time, the relative flatness of wqual makes it a
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harder optimisation criterion for tuning than wxqual. Additional
experiments (López-Ibáñez & Stützle, 2012a) appear to confirm
this conjecture.

In terms of final quality, the two configurations tuned with the
weight functions (wqual and wxqual) are slightly better than the one
tuned with the classical hypervolume, as indicated by the boxplots
given in Fig. 7(b). Moreover, the configurations tuned with the
weight functions obtain the lowest final quality in most instances.
In fact, according to the Friedman test, these configurations are sig-
nificantly better than configurations obtained by tuning for the
classical hypervolume and for final quality (Table 8). The main con-
clusion of these experiments is that the weighted hypervolume al-
lows us to set preferences on the trade-off between quality and
time. For example, the weighted function wxqual imposes a strong
preference for good final quality.
Table 7
Ranking of the performance profiles in Fig. 6 according to various
preferences.

Preference Ranking (best to worst)

Final quality a b c d e

Hypervolume c b d a e

wqual c b a d e

wxqual a c b d e
7. Case study: automatic configuration of an anytime MIP solver

7.1. Experimental setup

In this second scenario, we apply our proposed approach to a
very different problem with a large number of parameters. In par-
ticular, we tune 207 parameters of SCIP (Achterberg, 2009), a
mixed integer programming (MIP) solver. The number of parame-
ters is too large to be detailed here, but details can be found in the
supplementary page (López-Ibáñez & Stützle, 2012b).

The benchmark set is composed of 2000 MIP-encoded instances
(200 goods, 1000 bids) of the NP-hard winner determination prob-
lem for combinatorial auctions (Leyton-Brown, Pearson, & Shoham,
2000; Hutter et al., 2009). The benchmark set is split in two disjoint
sets of 1000 instances each, one is used for training and the other
for testing. In a combinatorial auction, bids are placed for subsets
of goods. The goal in the winner determination problem is to find
an assignment of goods to bids that maximises the total value of
the winning bids.

For our experiments here, we use SCIP version 2.0.2 linked with
the linear programming solver SoPlex 1.5.0. We set the maximum
memory limit of SCIP to 350MB. During our experiments, we dis-
covered that some parameter configurations produced an incorrect
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Fig. 7. Automatically tuned configurations of MMAS vs. the default configuration. (a) SQT curves, the legend shows the classical hypervolume, and the weighted hypervolume
variants wqual and wxqual. (b) Final quality achieved. For the meaning of the labels, see the caption of Table 4.

Table 8
Configurations of MMAS ordered according to the sum of ranks with respect to the
final solution quality obtained. The numbers in parenthesis are the difference of ranks
relative to the best configuration. DRa is the statistically significant difference in ranks
according to the post-hoc test for the Friedman-test with a ¼ 0:05. Configurations
that are not significantly different from the best one are indicated in bold face. For the
meaning of the labels, see the caption of Table 4.

DRa Configurations (DR)

23.16 whv (xqual) (0), auto var final (11), whv (qual) (47),
auto var ALL (94), auto fix final (99), default (199)
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behaviour of SCIP, and we assign those configurations the worst
possible hypervolume. We give SCIP a time limit of 300 seconds,
and we allow 5000 runs of SCIP for each run of irace. We carry
out the tuning as before, that is, we combine irace with the
hypervolume measure in order to improve the anytime behaviour
of SCIP. We seed the automatic configuration procedure with the
default configuration of SCIP.

For the purposes of comparison, we perform two additional
tuning runs with two different objectives: (1) minimising the run-
time to find the optimal solution and (2) maximising the final
objective value obtained after 300 seconds. Thus, we obtain two
additional configurations of SCIP, which we label as auto time and
auto quality, respectively. We use these configurations to asses
the potential loss of either run time or final solution quality, when
tuning for improving the anytime behaviour. Finally, we run all
configurations of SCIP obtained from the various tuning setups plus
the default configuration one time on each test instance.
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Fig. 8. Mean RPD over all test instances for different configurations of SCIP. The
number in parentheses is the mean hypervolume corresponding to that
configuration.
7.2. Analysis of SCIP configurations

As a first step, we graphically examine the solution quality over
time. For each configuration, we compute the mean RPD over the
1000 test instances at each time step. Next, we plot the mean
RPD over time (Fig. 8). The legend gives the mean hypervolume va-
lue corresponding to each configuration of SCIP. The plot uses a
logarithmic scale for the x-axis (time), since the largest differences
appear on the first half of the computation time limit.

The plot shows that the configuration tuned with the hypervo-
lume (auto anytime) obtains a better anytime behaviour (and a
higher hypervolume) than the rest. Moreover, both the configura-
tion tuned for final quality and the one tuned for solving time show
worse anytime behaviour (and lower hypervolume) than the de-
fault configuration of SCIP. The differences observed in the hyper-
volume values (and, hence, in the anytime behaviour) of each SCIP
configuration are more evident in Fig. 9(a), which shows that the
hypervolume values corresponding to auto anytime are much
larger than those corresponding to the other configurations of SCIP.

Improving the anytime behaviour does not necessarily mean
that instances are solved faster to optimality. Fig. 9(b) shows the
time required by each configuration to solve each of the 1000 test
instances. The best configurations of SCIP according to this crite-
rion are the default configuration and the configuration tuned spe-
cifically for this criterion (auto time). This result is not surprising,
since this is the most popular evaluation criterion in mixed-integer
programming, and, hence, we presume that SCIP is by default
tuned for it.

We also examine the potential loss of final quality. Fig. 9(c)
shows the RPD from the optimal at the cut-off time of 300 seconds.
All configurations solve most of the instances to optimality (or very
close to it). However, the configuration tuned for anytime (auto
anytime) is the one that diverges most often from near-optimal-
ity. Hence, there is some loss of final quality when tuning using
the hypervolume.

If we look at the solution quality up to a different cut-off time,
the situation is certainly different. For example, if we consider
solution quality up to 10 seconds (Fig. 9(d)), there is a large differ-
ence between the configurations. While the auto anytime config-
uration obtains an RPD value much lower than 10% in most cases,
the RPD values of the default configuration are frequently larger
than 10%.

The observations above are further confirmed by statistical
analysis. We carry out four independent Friedman tests (as de-
scribed in Section 5.4.1), one for each evaluation criterion shown
in Fig. 9. The results of the four tests are reported in Table 9. As ex-
pected, the best configuration in terms of hypervolume is the one
tuned for that criterion (auto anytime), which is significantly bet-
ter than the rest by a large margin. The auto anytime configura-
tion is also the clear winner in terms of the solution quality
obtained if stopped after 10 seconds. Moreover, in terms of final
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Table 9
Configurations of SCIP ordered according to the sum of ranks with respect to four different evaluation criteria. The numbers in parenthesis are the difference of
ranks relative to the best ranked configuration. DRa is the statistically significant difference in ranks according to the post-hoc test for the Friedman-test
(a ¼ 0:05). Configurations that are not significantly different from the best one according to the Friedman test are in bold face.

DRa Configurations (DR) Evaluation criterion

75.1 auto anytime (0), default (1183), auto quality (1490), auto time (2335) Hypervolume
53.52 auto time (0), default (192), auto quality (1603), auto anytime (2353) Time to best found
83.01 auto anytime (0), default (460), auto quality (1019.5), auto time (2024.5) Quality after 10 seconds
1 default (0), auto time (8.5), auto quality (19), auto anytime (44.5) Final quality (300 seconds)
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quality, the differences between the strategies are not statistically
significant. The difference in the sum of ranks between auto any-

time and default is only 44.5.
Finally, by using the weighted hypervolume as explained in

Section 6, we are able to find a configuration of SCIP with good
anytime behaviour and that ranks better than default according to
final quality. However, the differences in ranks are still not statis-
tically significant. Hence, for conciseness, we do not discuss the re-
sults of using the weighted hypervolume for tuning SCIP here, but
we provide the results as supplementary material (López-Ibáñez &
Stützle, 2012b). The results provided here are sufficient to con-
clude that the proposed method was able to find a configuration
of SCIP that has better anytime behaviour than the default, without
a significant loss of final quality.

8. Conclusions

In this paper, we have shown that the combination of irace
and the hypervolume quality measure is effective at improving
the anytime behaviour of optimisation algorithms. We have pre-
sented two representative and challenging case studies. The first
case study compared the results obtained automatically against
those obtained by a human expert for the task of designing param-
eter variation strategies that show good anytime behaviour. Our
results show that the automatic configuration method is able to
match the anytime behaviour obtained by the parameter variation
strategies designed by a human expert. Moreover, the automatic
method allows exploring a much larger design space, potentially
leading to configurations with better anytime behaviour. These
are expected results when using automatic configuration tools
for tuning with a fixed termination criterion. However, this is the
first time that such results have been obtained when automatically
designing anytime algorithms. In a follow-up work, we have ap-
plied the approach proposed here to improve the anytime behav-
iour of a state of the art optimiser for black-box continuous
optimisation (López-Ibáñez, Liao, & Stützle, 2012). Our results
there show that even for such state-of-the-art optimisers, the de-
fault parameter settings are not well-suited for scenarios where
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the termination criterion is unknown in advance. Although the re-
sults presented here focus on single-objective optimisers, our ap-
proach is applicable to multi-objective optimisers as well. In
another follow-up work, we have applied it to automatically con-
figure the parameters of multi-objective evolutionary algorithms
in order to improve their anytime behaviour (Radulescu et al.,
2013).

In the second case study presented here, we apply our approach
to an off-the-shelf optimisation solver, with a very large number of
parameters. In this case, the optimisation solver is already tuned to
solve problems to optimality as fast as possible. However, we show
that if stopped before reaching optimality, the results may be very
poor. Our proposed approach helps to tune such solvers in order to
be more robust in case of earlier termination, without specifying in
advance when the algorithm could be terminated. Our results
show that important improvements can be obtained, specially for
very early termination, without sacrificing much of the final qual-
ity. Moreover, comparing the configurations that produce better
anytime behaviour versus those that produce better final quality
(or shorter time to optimality) may lead to improvements in the
solvers themselves.

The choice of the hypervolume measure also allows incorporat-
ing preference information into the automatic configuration pro-
cess by means of the weighted hypervolume. We propose a
weighted formulation that emphasises a good final quality but still
takes into account the overall anytime behaviour of the algorithms.
We show that, by adding such preferences, it is possible to effec-
tively bias the configurations selected by the automatic configura-
tion tool. This allows customising algorithms to very specific
anytime scenarios, where an exact termination criterion is not
known, but there is some a priori knowledge of what is expected.

An open question is how to extend the results to longer termi-
nation criteria than the ones that are feasible to test during auto-
matic configuration. A problem that may arise is that
configurations produce good results up until the tested termina-
tion criterion, but the performance becomes unsatisfactory for
longer runs. Woodruff, Ritzinger, and Oppen (2011) have studied
how to dynamically set a termination criterion. Survival analysis
techniques may help to estimate the behaviour of the algorithms
for longer runtime (Gagliolo & Legrand, 2010). These techniques
could be incorporated into our approach in order to dynamically
adjust the maximum cut-off time while tuning the anytime
behaviour.

Finally, we are convinced that our approach contributes to-
wards the final goal of designing algorithms that are more robust
to different termination criteria and, hence, applicable to a wider
range of scenarios, without sacrificing solution quality.
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