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ABSTRACT
The population-based ant colony optimization algorithm (P-
ACO) uses a very different pheromone update when com-
pared to other ACO algorithms. In this work, we study
P-ACO’s behavior for solving the traveling salesman prob-
lem (TSP) and the quadratic assignment problem (QAP).
In particular, we investigate the impact of a local search on
P-ACO parameters and performance. The results clearly
show that P-ACO is a very competitive tool whose param-
eters and behavior depend strongly on the problem tackled
and on whether a local search is used.
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Methods, and Search—Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization

General Terms
Algorithms

1. INTRODUCTION
In ACO, the way pheromone update is implemented dif-

fers across variants, and the choice of an appropriate phero-
mone update mechanism is essential to obtain effective ACO
algorithms [1].

The population-based ACO (P-ACO) algorithm intro-
duces a new memory and pheromone update [2, 3] but keeps
the same solution construction as in most ACO algorithms.
The pheromone update operates on two data structures: the
pheromone matrix and the solution archive. P-ACO starts
with an empty solution archive, P , and all the entries of
the pheromone matrix are initialized to τ0, which has the
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same effect as the minimum pheromone trail limit inMAX–
MIN Ant System (MMAS) [1]. At each iteration, a solu-
tion π is added to the archive, until the archive size, K, is
reached.

The general form of the P-ACO pheromone matrix is:

τij = τ0 + ∆

|P |∑
k=1

wk · Ikij , where ∆ =
τmax − τ0

K
. (1)

τmax is a parameter and Ikij is an indicator function that
is equal to one if the solution component ij is present in
ant k and zero otherwise. Every time a solution enters (or
exits) P , the amount ∆ · wk (or −∆ · wk) is added to the
pheromone matrix. A new solution replaces another one
in the population matrix when the solution archive reaches
|P |=K solutions. As a result, P-ACO’s pheromone update
mechanism is faster than in other ACO algorithms.

Our objective is to study P-ACO’s behavior on the TSP
and QAP, as it has mainly been studied by a few other
authors only [4], despite its potential.

2. EXPERIMENTS
To meet out objectives, experiments were performed us-

ing instances of the TSP and the QAP, ranging for both
problems from small to relatively large instances. In our
experiments, we studied the influence of P-ACO’s main pa-
rameters on its performance and the interaction with the
usage of local search. We compared it with MMAS, which
was run with standard settings as suggested in [1]. In the
following, we give a snapshot of our main results. For more
details, we refer to the full version of this paper [4]. More de-
tailed information and a full set of the plots is also available
at http://iridia.ulb.ac.be/supp/IridiaSupp2011-010.

Speed of pheromone update. We measure the time
spent by P-ACO and other algorithms for pheromone update
and solution construction. P-ACO, MMAS and Ant Colony
System (ACS) were considered for the TSP; for the QAP,
ACS was not included. P-ACO is much faster than MMAS
for the pheromone update for the TSP. On large instances,
up to 90% of MMAS’s computation time is used for phero-
mone update, while for P-ACO, this is a small percentage,
allowing it to generate many more solutions than MMAS.
With local search, the advantage of the fast P-ACO’s phero-
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Figure 1: Solution quality over time of MMAS and P-ACO using different values of K across 10 trials for
the best setting of τmax, without local search on instance d198 for TSP and on instance wil50 for QAP, with
local search on instance u1817 for TSP, and on instance tai100b for QAP.

mone update is reduced. The same happens if the computa-
tion of solution quality is computationally more demanding,
as it is the case for the QAP; for QAP with local search the
time spent for the pheromone update by P-ACO and MMAS
is negligible and, hence, the speed advantage of P-ACO over
MMAS becomes virtually irrelevant.

As a next step, we examined how P-ACO specific param-
eters influence the algorithm’s behavior; in particular, we
tested the algorithm with different settings of K and τmax.

Analysis of K. The plots in Figure 1 show that, for both
problems, without local search, P-ACO performs the worst
when K = 1, and the best when K = 25, followed closely
by K = 5, with negligible differences. If local search is ap-
plied, the best K now becomes clearly one on the TSP; on
the QAP, P-ACO with a larger value of K performs better
especially for larger instances. Note that in Figure 1, τmax

is 3 for the TSP while for the QAP it is also 3 when local
search is applied but 100 when it is not applied. The choice
of these parameter values is justified in the following.

Analysis of τmax. In P-ACO, the ratio between τmax

and τmin, together with the setting of K, determines how
strong the search intensification is. However, the changes
τmax shows a slitly different behavior when P-ACO is ap-
plied to different problems.

Update of Solution Archive. To compare the influence
of the archive update strategy on algorithm performance,
we tested three of the five strategies proposed in [2]: the
age-based, quality-based, and elitist-based strategies. For
the TSP, the strategies’ performance is quite similar inde-
pendently of whether local search is used. However, the
quality-based strategy obtains better results. For all in-
stances tested, P-ACO often outperforms MMAS, especially
for a short computation time. For the QAP and without lo-
cal search, the elitist-based strategy is almost as good as
MMAS, while the other strategies show worse results. With
local search, P-ACO performs better, where all strategies
are competitive with MMAS.

P-ACO with Restart. P-ACO has a strong exploitation
capability that allows a fast convergence to a good quality
solution. However, its exploration during the search may be
insufficient. As in MMAS, we restart by re-initializing the
pheromone values to τ0 after r iterations without improve-
ment [4]. This mechanism improves P-ACO’s performance,
especially when local search is used.

A more extensive comparison showed that (i) for the TSP
without local search, P-ACO performs better than MMAS

on most instances, (ii) for the TSP with local search, the
performance of MMAS and P-ACO are similar, (iii) for the
QAP without local search, P-ACO performs better but (iv)
with local search the opposite (better performance of MMAS
over P-ACO) was observed. Overall, these results show that
P-ACO with the restart procedure appears to be competitive
with MMAS, regardless of whether local search is used.

3. CONCLUSIONS
In this paper, extensive experiments were conducted in

order to discuss and analyze the P-ACO algorithm for the
TSP and the QAP. New are the insights that the usage or
not of a local search has strong impact on parameters set-
tings for P-ACO applied to the TSP. In addition, we have
shown that P-ACO shows early stagnation behavior and in-
troduced a restart mechanism which has improved signifi-
cantly the overall performance of P-ACO. We conclude that,
with the restart procedure and the right configuration, P-
ACO is competitive to the state-of-the-art ACO algorithms
with the advantage of finding good solution quality in a
shorter computation time. For more details we refer to [4].
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