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Abstract Applying parameter adaptation means operating on parameters of an algorithm
while it is tackling an instance. For ant colony optimization, several parameter adaptation
methods have been proposed. In the literature, these methods have been shown to improve
the quality of the results achieved in some particular contexts. In particular, they proved to
be successful when applied to novel ant colony optimization algorithms for tackling prob-
lems that are not a classical testbed for optimization algorithms. In this paper, we show that
the adaptation methods proposed so far do not improve, and often even worsen the per-
formance when applied to high performing ant colony optimization algorithms for some
classical combinatorial optimization problems.

Keywords Ant colony optimization · Parameter adaptation · Traveling salesman problem ·
Quadratic assignment problem

1 Introduction

Many swarm intelligence techniques, such as ant colony optimization (ACO) (Dorigo and
Stützle 2004) and particle swarm optimization (Clerc 2006), have a number of numerical
and categorical parameters that can have a crucial impact on performance. The appropriate
setting of these parameters depends on the problem to be tackled and, for a given problem,
on the problem instances.

Parameter adaptation methods (Angeline 1995), also known as parameter control meth-
ods (Eiben et al. 2007), operate on the parameter setting during the execution of the algo-
rithm. These methods constantly modify the parameter setting on an instance-per-instance
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basis. The use of adaptation methods is motivated by the fact that an instance-optimal pa-
rameter setting always obtains better results than any other setting. Adapting the parameter
setting on an instance-per-instance basis is an intriguing possibility that, in principle, could
allow using the instance-optimal setting in each case. Aiming at using an instance-optimal
setting, several authors have proposed adaptation methods.

For ACO, several parameter adaptation methods have been proposed. Some of these
methods are self-adaptive, following the classification proposed by Eiben et al. (2007): the
space of the parameter settings is coupled with the solution space of the instance to be tack-
led, and the algorithm operates in the joint space so obtained. Four main applications of
self-adaptive ant colony optimization have been published so far. They are all based on orig-
inal variants of existing algorithms. Randall (2004) tackled 12 instances of both the traveling
salesman problem and the quadratic assignment problem through a self-adaptive variant of
ant colony system. Martens et al. (2007) proposed a self-adaptive variant of AntMiner for
tackling classification problems. Förster et al. (2007) dealt with function allocation in vehi-
cle networks using a self-adaptive variant of a multi-colony ant algorithm. Finally, Khichane
et al. (2009) introduced a self-adaptive variant of an ant-solver for tackling constraint sat-
isfaction problems. Another parameter adaptation method that has been proposed in the
literature is based on local search. Anghinolfi et al. (2008) applied it in an adaptive variant
of ant colony system for the single machine total weighted tardiness scheduling problem
with sequence-dependent setup times. For a review of these and other adaptation methods
that have been proposed for ACO, we refer the reader to Stützle et al. (2011). In the liter-
ature, no direct comparison among different adaptation methods has been proposed. Thus,
it is not possible to formally identify any method as the state-of-the-art one. Nonetheless,
the self-adaptive ones can be considered, to some extent, the state-of-the-art in the field of
parameter adaptation in ACO: the results reported in the papers in which they are proposed
indicate that they positively contribute to performance.

In this paper, we implement into ACO algorithms four self-adaptation methods that
are based on the work of Martens et al. (2007), Randall (2004), Förster et al. (2007) and
Khichane et al. (2009), and one local-search-based adaptation method that is based on the
work of Anghinolfi et al. (2008). We consider an experimental setup that has been adopted
in several analyses reported in the literature. In this way, we capture the contribution of
adaptation methods independently of the particular algorithms and problems for which they
were proposed. We use MAX –MI N ant system (MMAS) (Stützle and Hoos 2000), and
we solve both the traveling salesman problem (TSP) (Lawler et al. 1985) and the quadratic
assignment problem (QAP) (Lawler 1963). For each problem, we run the algorithm under
multiple experimental setups. We vary the experimental setup with respect to four factors:

(i) the number of parameters adapted,
(ii) the quality of the results achieved by the algorithm,1

(iii) the heterogeneity of the instances to be tackled,
(iv) the runtime.

Intuitively, these factors affect the impact of adaptation methods on the performance of the
algorithm. First, a large number of parameters adapted corresponds to a large space of the
parameter settings, the effective exploration of which may be quite difficult. Second, an
algorithm achieving high quality results has already been optimized: little margin remains
for further improvements. Third, very heterogeneous instances are much better tackled with

1Without parameter adaptation.
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a parameter setting selected on an instance-per-instance basis than with a common parameter
setting. Fourth, a short runtime may be too stringent for having both the adaptation methods
selecting the appropriate setting, and the algorithm finding a good quality solution to the
problem instance. Thus, we conjecture that:

(i) the more parameters adapted,
(ii) the higher the quality of the results achieved by the algorithm,

(iii) the lower the heterogeneity of the set of instances to be tackled, and
(iv) the shorter the runtime,

the smaller the improvement on the performance of the algorithm that adaptation methods
can produce. For either refuting or corroborating one or more of these conjectures, we con-
sider for both, the TSP and the QAP, (i) different numbers of parameters adapted, (ii) mul-
tiple settings for statically assigned parameters,2 (iii) several sets of instances with different
levels of heterogeneity, and (iv) short and long runtimes. By assigning different values to the
statically assigned parameters, we capture the impact of the quality of the results achieved
by the algorithm on the improvement obtained by adaptation methods. In particular, by set-
ting statically assigned parameters as suggested in the literature, the algorithm may achieve
only relatively low quality results. This is due to the fact that the suggested parameter set-
ting is not necessarily the most appropriate one in a context that is different from the one for
which it was originally proposed. We have the algorithm achieve high quality solutions by
setting statically assigned parameters as resulting from the application of an off-line tuning
procedure (Birattari 2009). In this context, off-line tuning is a means that we use to create
algorithms of different levels of performance.

The results we obtain in this extensive experimental analysis show that, in the strong ma-
jority of the cases, adaptation methods not only fail to improve the performance MMAS,
but they even worsen it. This happens also in cases in which we would have expected to ob-
tain good performance with an adaptation method, such as, for example, with heterogeneous
instances, long runtime and few parameters to be adapted. The only exception is when the
setting of statically assigned parameters leads the algorithm to achieve relatively low quality
results under specific experimental conditions. This case is anyway of little interest: virtually
any sensible refinement of the algorithm is likely to increase the quality of the results.

The rest of the paper is organized as follows. In Sect. 2, we describe the main charac-
teristics of MMAS and of the specific algorithms that we implement for solving the two
problems tackled. In Sect. 3, we present the adaptation methods we tested. In Sects. 4 and 5,
we report the experimental setup and the results, respectively. Finally, in Sect. 6, we draw
some conclusions.

2 MAX –MIN ant system

In ACO, a colony of artificial ants explores the search space iteratively. Ants are independent
agents that construct solutions incrementally, component by component. Ants communicate
indirectly with each other through pheromone trails, biasing the search toward regions of
the search space containing high quality solutions.

When applying an ACO algorithm, an optimization problem is typically mapped to a
construction graph G = (V ,E), with V being the set of nodes and E being the set of edges

2That is, those that are not handled by the adaptation mechanism.
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connecting the nodes. Solution components may be represented either by nodes or by edges
of this graph. In the following, we describe the main procedures that characterize MMAS,
considering solution components associated to edges, and supposing that a minimization
problem is to be solved.

A pheromone trail τij is associated to each edge (i, j) ∈ E; it represents the cumulated
knowledge of the colony on the convenience of choosing solution component (i, j). At the
end of each iteration, in which m ants construct one solution each, this cumulated knowledge
is enriched by applying a pheromone update rule. Some pheromone evaporates from each
edge, and some is deposited on the edges belonging to the best solution, considering either
the last iteration (iteration-best solution), the whole run (best-so-far solution), or the best
since a re-initialization of the pheromone trails (restart-best solution) (Stützle and Hoos
2000). This pheromone update rule is implemented as

τij = (1 − ρ) · τij +
{

F(sbest) if edge (i, j) is part of the best solution sbest;
0 otherwise;

(1)

where F(sbest) is the inverse of the cost of the best solution (recall that we are dealing with
minimization problems here), and ρ is a parameter of the algorithm called the evaporation
rate (0 < ρ < 1). In addition, the pheromone strength is constantly maintained in the interval
[τmin, τmax]. These bounds are functions of the state of the search. When pheromone trails are
excessively concentrated, they are re-initialized uniformly on all edges to favor exploration
(Stützle and Hoos 2000).

Exploiting the common knowledge represented by pheromone trails, ants construct solu-
tions independently of each other, by selecting at each construction step the edge to traverse.
In MMAS, this selection is done according to the random-proportional rule: ant k, being
in node i, moves to node j ∈ Nk with probability

pij = [τij ]α · [ηij ]β∑
h∈Nk

i
[τih]α · [ηih]β , (2)

where α and β are parameters of the algorithm, ηij is a heuristic measure representing the
desirability of using edge (i, j) from a greedy point of view, and Nk

i is the set of nodes to
which the ant can move to, when being in node i.

Typically, the m solutions generated by ants at each iteration are used as starting points
for local search runs, one for each initial solution. The solutions returned are then used in
the pheromone update as if they had been built by the ants.

The procedures just described may be used for designing algorithms for virtually any
optimization problem. In Sects. 2.1 and 2.2, we describe the specific implementation we use
for the TSP and the QAP, respectively.

2.1 MMAS for the TSP

The TSP consists in finding a minimum-cost tour for visiting a set of cities exactly once,
starting and ending at the same location. The cost of going from one city to another is fixed.
A TSP instance is mapped to a graph by associating a node to each city, and an edge with a
predefined cost to the connection between each pair of cities. The objective of the problem
is to construct a minimum cost Hamiltonian tour (Lawler et al. 1985).

For solving the TSP, we use the MMAS algorithm included in ACOTSP (Stützle 2002).
The heuristic measure ηij is the inverse of the cost of traversing the edge (i, j). The set
Nk

i of nodes to which ant k can move includes all nodes that belong to the candidate list
associated to node i and that have not been visited yet. The candidate list contains the nn
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nearest neighbors of node i, where nn is a parameter of the algorithm. The remaining nodes
are included in Nk

i only if all nodes in the candidate list have already been visited.
The performance of MMAS for the TSP can possibly be improved by using the pseudo-

random proportional rule that is used by another ACO algorithm, namely the ant colony
system (ACS) (Dorigo and Gambardella 1997). Thus, we exploit this rule here: with a prob-
ability q0, the next node j to be inserted in an ant’s partial solution is the most attractive
node according to pheromone and heuristic measure:

j = arg max
h∈Nk

i

{
τα
ihη

β

ih

}
. (3)

With probability 1 − q0, the ant uses the traditional random proportional rule of (2). Thus,
q0 is a further parameter of the algorithm, with 0 ≤ q0 < 1. A 2-opt local search is applied
to all solutions constructed by ants.

2.2 MMAS for the QAP

The QAP consists in finding a minimum-cost assignment of a set of n facilities to a set of
n locations (Lawler 1963). A flow fij is associated to each pair of facilities i, j = 1, . . . , n,
and a distance dhk is given for each pair of locations h, k = 1, . . . , n. A solution corresponds
to an assignment of each facility to a location. It can be represented as a permutation π : the
value in position i of the permutation, π(i), corresponds to the facility that is assigned to
location i. The cost of a solution is equal to the sum over all pairs of locations of the product
of the distance between them, and the flow between their assigned facilities:

n∑
i=1

n∑
j=1

fπ(i)π(j)dij . (4)

A QAP instance is mapped to a graph by associating nodes to facilities and locations: us-
ing edge (i, j) in the solution construction corresponds to the assignment of facility i to
location j .

The implementation of MMAS for the QAP used in this paper is described by Stützle
and Hoos (2000). Pheromone trail is associated to edges, and no heuristic measure is used;
thus, parameter β is not considered here.

The algorithm follows the general framework of MMAS described at the beginning of
the current section. Depending on the characteristics of the set of instances tackled, the best
performing local search may vary (Stützle and Hoos 2000). Thus, local search is a further
parameter of the algorithm. In the following, it will be referred to as l.

3 The adaptation methods considered

We study the results achieved by MMAS when applying state-of-the-art parameter adapta-
tion methods proposed for ACO. In the following, let P be the set of all parameters that may
be adapted, and A be the set of parameters to be adapted, A ⊆ P . Adaptation methods oper-
ate in a parameter setting space determined a priori. Each possible setting of a parameter p

is given by a set Sp . Here we only deal with numerical parameters. We assume that the possi-
ble values are obtained by a discretization of the feasible intervals in the case of real-valued
parameters, or by a selection of representative values in the case of integer parameters; the
possible values are then listed in Sp in increasing order. The space of the parameter setting
to be explored by adaptation methods is then given by all possible combinations of elements
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of set Sp , for all p ∈ A. One can extend this concept to the case of categorical parameters in
a straightforward way. A possible strategy is defining an arbitrary ordering of the elements
of Sp .

3.1 Self-adaptive methods

The first four methods we consider are self-adaptive. In self-adaptive methods, the mech-
anism that is used to adapt parameters is the same as that underlying the optimization al-
gorithm (Eiben et al. 2007). This can be realized by associating to each parameter p ∈ A a
set of nodes V ′

p in the construction graph, corresponding to all possible settings in Sp . This
results in an additional set of nodes,

V ′ =
⋃
p∈A

V ′
p. (5)

After defining an ordering on set A, each node associated to a parameter is connected
through an edge to each node associated to the following parameter in A, resulting in edge
set E′. Each node associated to the last parameter is connected to all nodes in the original
set V . Pheromone trails are associated to all edges in E ∪ E′ and they are all managed with
the update rule reported in (1). The parameter settings to be used are selected by the search
mechanism that is used in the ACO algorithm, by choosing one node in each set V ′

p .
Multiple attempts have been made for exploiting efficiently self-adaptive methods in

ACO algorithms. They differ in two main points:

Dependent/Independent parameters. Parameters are considered either independently or in-
terdependently from one another. If parameters are considered independent of one another,
pheromone trails are associated to the nodes in V ′. In this way, a setting for one parameter
is chosen independently of the other settings. If parameters are considered dependent on
one another, pheromone is on the edges. In this way, interactions among parameters may
be taken into account.

Colony-level/Ant-level parameters. Parameters are managed either at the colony or at the
ant level. When they are managed at the colony level, at each iteration the same setting is
used for the whole colony. When parameters are managed at the ant level, at each iteration
the ants may use a different setting.

In the four self-adaptive methods used in this paper, parameters are considered as interde-
pendent. Following the literature (Martens et al. 2007; Khichane et al. 2009), the ordering
defined on set A, that is, the order in which parameter settings are selected, is fixed a priori
and maintained constant throughout the runs. The methods differ in the level at which they
manage parameters and in the selection of the setting on which pheromone is reinforced:

– SAc: colony-level parameters; it reinforces pheromone on the parameter setting with
which the best-so-far, the iteration-best, or the restart-best solution was found according
to the schedule defined by Stützle and Hoos (2000);

– SAcb: colony-level parameters; it reinforces pheromone on the parameter setting with
which the algorithm found the best solution in the last 25 iterations;

– SAcm: colony-level parameters; it reinforces pheromone on the parameter setting with
which the algorithm found the set of solutions with the lowest mean cost in the last 25
iterations;

– SAa: ant-level parameters; similarly to SAc, it reinforces pheromone on the parameter
setting with which the best-so-far, the iteration-best, or the restart-best solution was found
according to the schedule defined by Stützle and Hoos (2000).
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Both ρ and m are colony-wise parameters. Thus, they cannot be adapted by the methods that
use multiple settings in each iteration of MMAS, that is, the methods where parameters are
handled at the ant level. Hence SAc, SAcb and SAcm may adapt all the parameters described
in Sect. 2: P = (α,β,ρ,m,q0, n) for the TSP, and P = (α,ρ,m) for the QAP. SAa, instead,
adapts fewer parameters: P = (α,β, q0, n) for the TSP, and P = (α) for the QAP. The order
in which these parameters are listed reflects the ordering we define for A in our experiments.

3.2 Local-search-based method

The fifth adaptation method, LS, is based on the exploration of the space of the parameter
setting using a naive local search approach (Anghinolfi et al. 2008). LS evaluates at each
step one reference setting and the neighbors of it. The neighborhood includes all settings that
differ in exactly one parameter p from the reference one. If this parameter in the reference
setting is the element in position i in the set Sp of possible ones, the neighbors are the ones
taking the elements in position (i − 1) and (i + 1). If either the elements in position (i − 1)

or (i + 1) do not exist in Sp , which means that the reference setting includes either the first
or the last element in Sp , one neighbor is not valid, and LS doubles the reference setting.
The reference setting is replaced by one of the neighbors if it is not the best performing.

LS evaluates the settings by splitting the ant colony in groups, and by having each group
of ants build solutions using a different setting. The number of groups is equal to the size
of the neighborhood. The performance of each setting is defined as the value of the best
solution found by the corresponding group of ants. LS evaluates each candidate setting for
10 iterations of MMAS before deciding whether to change the reference setting or not, as
done by Anghinolfi et al. (2008). Ties are resolved randomly.

Analogously to SAa, LS adapts only parameters that are appropriate for the ant level, that
is, P = (α,β, q0, n) for the TSP and P = (α) for the QAP.

4 Experimental setup

In the experimental analysis, we empirically show that the state-of-the-art adaptation meth-
ods proposed for ant colony optimization do not achieve good performance under several
experimental conditions.

We apply five adaptation methods to MMAS for both the TSP and the QAP. We analyze
the performance of the methods as a function of the cardinality of the set of parameters
adapted, of the setting of statically assigned parameters, of the heterogeneity of the set of
instances tackled, and of the runtime.

The results reported for each adaptation method are obtained with one single run of
MMAS on 100 instances for each set and for each runtime (Birattari 2004). We perform
the experiments on Xeon E5410 quad core 2.33 GHz processors with 2 × 6 MB L2-Cache
and 8 GB RAM, running under the Linux Rocks Cluster Distribution, after compiling the
code with gcc, version 3.4.

4.1 Number of parameters adapted

We evaluate the adaptation methods in correspondence to different numbers of parameters
adapted, that is, to different cardinalities of the sets A. For each cardinality, we test all sets
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Table 1 Possible parameter
settings for the TSP and the QAP.
The settings reported in bold type
are the ones suggested in the
literature (Stützle and Hoos 2000;
Dorigo and Stützle 2004)

TSP

parameter settings (S)

q0 0.0, 0.25, 0.5, 0.75, 0.9

β 1, 2, 3, 5, 10

ρ 0.1, 0.2, 0.3, 0.5, 0.7

m 5, 10, 25, 50, 100

α 0.5, 1, 1.5, 2, 3

nn 10, 20, 40, 60, 80

QAP

parameter settings (S)

m 1, 2, 5, 8, 16

ρ 0.2, 0.4, 0.6, 0.8

α 0.5, 1, 1.5, 2, 3

that can be extracted from P . The total number of combinations, and thus the total number
of sets A for each cardinality |A| is:( |P |

|A|
)

= |P |!
|A|!(|P | − |A|)! . (6)

In the experiments, we consider the same space of the parameter settings for all adaptation
methods to avoid any possible bias. In Table 1, we report the set S of possible settings
of each parameter. The space of the parameter settings includes all combinations of the
different settings; it amounts to 15,625 candidates for the TSP, and 100 for the QAP. The
settings suggested in the literature (Stützle and Hoos 2000; Dorigo and Stützle 2004) are
reported in boldface.

For the QAP, the literature suggests to use 2-opt with best improvement for structured
instances, and tabu search relying on 2-opt for unstructured instances (Stützle and Hoos
2000): it is not possible to identify a single local search that dominates the other. Thus, we
initially considered different possible settings of parameter l: first improvement using don’t
look bits (0), first improvement without using don’t look bits (1), best improvement (2),
tabu search runs of length 2n (3), and tabu search runs of length 6n (4). Preliminary results
show that the methods implemented are penalized by the presence of the type of local search
in the set of parameters to be adapted. In fact, both the computation time and the solution
quality differ for runs of different local search procedures. So, there is a trade-off between
computation time and solution quality. Adjusting adaptation methods to take this trade-off
into account is beyond the scope of this research work.

4.2 Setting of statically assigned parameters

The setting of statically assigned parameters may have a strong impact on the quality of
the results achieved by the algorithms. We consider multiple settings of statically assigned
parameters. We apply the off-line tuning method named F-Race (Birattari 2009; Birattari et
al. 2002) for selecting the appropriate setting of all parameters. In the experiments, we use
the so-obtained setting for all parameters that are not handled through an adaptation method,
that is, that are not included in set A. Off-line tuning selects the appropriate parameter setting
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on an instance class basis: an instance class is formally defined as a probability measure
over the space of the instances of the optimization problem at hand (Birattari 2009). The
appropriate setting is the one that achieves the best expected performance on the instances
of a class. For testing different settings of statically assigned parameters, we vary the tuning
effort required for selecting them. The tuning effort is represented by the maximum number
of experiments performed in the off-line tuning phase, where, in our context, an experiment
is one run of MMAS.

For both, the TSP and the QAP, we say that a null effort has been devoted to tuning
when the maximum number of experiments equals zero, and the parameter setting is the one
suggested in the literature, as reported in Table 1. On the other extreme, we say that a high
effort has been devoted to tuning when the maximum number of experiments equals ten (15
for the QAP) (Birattari 2009; Birattari et al. 2002) multiplied by the number of combinations
obtainable by considering all the settings reported in Table 1 (times the five possible settings
for the local search for the QAP reported in Sect. 4.1). The maximum number of experiments
is 156,250 for the TSP, and 7,500 for the QAP. For the TSP, we perform three off-line tunings
with intermediate levels of effort by proportionally decreasing the order of magnitude of the
maximum number of experiments: 15,625; 1,562; and 156. In these cases, off-line tuning
operates on a randomly sampled subspace of the parameter settings.3 For the QAP, we do
not consider these intermediate levels of tuning effort. As we will see in Sect. 5.2, these
intermediate levels are not necessary for supporting our conclusions.

We perform a separate off-line tuning for each set of instances, and for each runtime. For
each off-line tuning, we use 1000 instances. These instances do not include those used in the
evaluations of the tuning methods (Birattari et al. 2006). F-Race terminates when one among
three stopping criteria is met: (i) all instances are used, (ii) a fixed number of experiments
are executed, (iii) only one parameter setting survives. In our experiments, F-Race always
terminates due to either the second or the third stopping criterion.

4.3 Instances and runtimes

We assess the performance achieved when applying parameter adaptation on multiple sets
of instances for each problem. These sets are characterized by different heterogeneities of
the instances included. Intuitively, when the instances to be tackled are very heterogeneous,
adapting parameter settings on an instance-per-instance basis should strongly improve the
performance of the algorithm. We perform both short and long runs, conjecturing that long
runs allow adaptation methods to properly handle parameter settings and the algorithm to
solve the instance to be tackled.

Traveling salesman problem To examine the impact of the heterogeneity of instance sets
on adaptation methods, for the TSP we define six sets of instances with different numbers
of cities and different spatial distributions of the cities. All instances are generated through
portgen, the instance generator used in the 8th DIMACS Challenge on the TSP (Johnson et
al. 2001). The characteristics of each set are described in Table 2. On the right-hand side
of this table, we report the setting selected through off-line tuning for short and long runs.
Hereafter, we will refer to a set of TSP instances as TSP followed by a parenthesis indi-
cating the number of cities included and their spatial distribution. When either the number

3To randomly sample the space of the parameter settings, we use an automatic procedure implemented for
Iterated F-Race. The size of the sampled subspace is a function of the tuning effort, as described by López-
Ibáñez et al. (2011).
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Table 2 Sets of instances considered for the TSP. U(a,b) indicates that a number was randomly drawn
between a and b for each instance, according to a uniform probability distribution. The right-hand side of the
table reports the setting selected through off-line tuning for short and long runs, and for each tuning effort

set number spatial Tuning selection for short runtime

of nodes distribution effort α β ρ q0 m nn

TSP(2000, u) 2000 uniform 156,250 1 5 0.75 0.5 25 20

15,625 1 5 0.75 0.5 50 20

1,562 1 2 0.75 0.25 50 10

156 1.5 1 0.75 0.25 50 10

TSP(2000, c) 2000 clustered 156,250 2 1 0.25 0.75 25 40

15,625 2 1 0.25 0.75 10 40

1,562 3 3 0.25 0.75 25 60

156 2 1 0.25 0.25 50 40

TSP(2000, x) 2000 uniform & 156,250 1 1 0.25 0.9 25 20

clustered 15,625 2 1 0.25 0.75 100 20

1,562 3 1 0.25 0.25 50 20

156 3 3 0.5 0.25 25 10

TSP(x,u) U(1000,2000) uniform 156,250 1 5 0.75 0.25 50 20

15,625 1 3 0.75 0.0 100 10

1,562 1 2 0.75 0.25 10 10

156 2 1 0.25 0.75 100 20

TSP(x, c) U(1000,2000) clustered 156,250 2 2 0.25 0.75 50 40

15,625 3 5 0.5 0.5 50 40

1,562 1.5 1 0.25 0.9 25 20

156 1 5 0.5 0.5 25 20

TSP(x, x) U(1000,2000) uniform & 156,250 1 1 0.25 0.9 50 20

clustered 15,625 1.5 3 0.25 0.75 50 20

1,562 2 3 0.25 0.75 100 40

156 1.5 3 0.75 0.9 100 40

set number spatial Tuning selection for long runtime

of nodes distribution effort α β ρ q0 m nn

TSP(2000, u) 2000 uniform 156,250 1 3 0.5 0.5 100 20

15,625 1 2 0.5 0.5 100 20

1,562 0.5 3 0.75 0.9 50 20

156 1 2 0.75 0.25 100 60

of cities or their spatial distribution are not the same in all instances, we report an x in
the corresponding position. For example, if a set includes instances with 2000 cities that
can be either uniformly distributed in the space or grouped in clusters, we use the acronym
TSP(2000, x). The different sets have different levels of heterogeneity:

– We call a set homogeneous if all instances have the same number of cities and the same
spatial distribution, as in TSP(2000, u) and TSP(2000, c);
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Table 3 Sets of instances considered for the QAP. The right-hand side of the table reports the setting selected
through off-line tuning for short and long runs

set size type Tuning selection

effort α ρ l m

QAP(80,RR) 80 unstructured 7,500 short 1 0.6 3 2

7,500 long 1 0.4 3 1

QAP(80,ES) 80 structured 7,500 short 1.5 0.4 0 5

7,500 long 1.5 0.2 0 5

QAP(80, x) 80 unstructured or 7,500 short 1 0.4 3 2

structured 7,500 long 1 0.4 3 2

QAP(x,RR) ∈ {60,80,100} unstructured 7,500 short 1 0.6 3 2

7,500 long 1 0.8 2 3

QAP(x,ES) ∈ {60,80,100} structured 7,500 short 1.5 0.4 0 2

7,500 long 1.5 0.4 0 5

QAP(x, x) ∈ {60,80,100} unstructured or 7,500 short 1 0.4 2 5

structured 7,500 long 1 0.4 2 5

– We call a set heterogeneous if neither the number of cities nor their spatial distribution is
the same in all instances, as in set TSP(x, x);

– At an intermediate level between those two extremes, we define instance sets where either
the number of cities or their spatial distribution is not the same in all instances, as in sets
TSP(2000, x), TSP(x,u) and TSP(x, c). For convenience we refer to these sets as semi-
heterogeneous.

The runtime is 10 and 60 CPU seconds for short and long runs, respectively. In short
runs, the literature version completes between 100 and 120 iterations on instances of set
TSP(2000, u). Long runs last 60 CPU seconds and are performed only on instances of set
TSP(2000, u). In long runs, the literature version completes between 560 and 600 iterations.
We limit the experiments in this sense due to the extremely long computation time that
would have been required for replicating the analysis on all the sets.

Quadratic assignment problem For the QAP, we consider six sets of instances. We gen-
erate instances of three sizes: 60, 80 and 100. Moreover, we generate both unstructured
(RR) and structured (ES) instances. The former are among the hardest QAP instances to
solve exactly, but they do not have practical relevance; the latter are instances that show
a structure (in particular, of the flow matrix) similar to those occurring in real-world QAP
instances (Taillard 1995). In unstructured instances, the entries of both distance and flow
matrices are random numbers uniformly distributed in the interval [0,99] (Taillard 1991).
For the structured instances, we follow Hussin and Stützle (2010). In structured instances,
the entries of the distance matrix are the Euclidean distances of points positioned in a square
100×100 according to a uniform distribution. The entries are rounded to the nearest integer.
For what concerns the flow matrix, first a set of points are randomly located in a square of
size 100 × 100. For each pair of points, if the distance is longer than a predefined threshold
t , then the flow is set to zero; otherwise it is equal to a value x resulting from the following
procedure: first, consider a random number x1 ∈ [0,0.7]; next, compute x2 = − lnx1; finally,
set x = min{100x2.5

2 ,3000}. By setting the parameters of the instance generator in this way,
the expected quartiles of the distribution of the values are 4, 14 and 50, respectively. The re-
sult of this procedure is a matrix with an asymmetric distribution of values (high frequency
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of low values and low frequency of high values), which we consider an interesting testbed
for our experiments. We generate instances by setting parameter t equal to 72. The peculiar-
ities of each set are described in Table 3. On the right-hand side of Table 3, we report the
setting selected through tuning for short and long runs. Hereafter, we will refer to the sets
of QAP instances as QAP followed by a parenthesis indicating the size of the instances and
the characteristics of the matrices. As in the TSP, when the instances in a set have different
characteristics, an x is reported in the corresponding position. For example, the set of in-
stances generated inserting random entries in the distance and flow matrices of size 60, 80
or 100, is indicated as QAP(x,RR). For the QAP, we define a scale of heterogeneity for the
sets of instances, analogously to the TSP case:

– An instance set is homogeneous if all instances have the same size and characteristics of
the distance and the flow matrices, as in sets QAP(80,RR) and QAP(80,ES);

– An instance set is heterogeneous if neither the size nor the characteristics of the distance
and the flow matrices are the same in all instances, as in set QAP(x, x);

– Semi-heterogeneous refers to instance sets where either the size or the instance character-
istics, either RR or ES, are not the same in all instances, as in sets QAP(80, x), QAP(x,ES)

and QAP(x,RR).

The runtime is 17 and 29 CPU seconds for short and long runs, respectively. To determine
these values, we run the literature version with 2-opt local search on instances of size 60, 80
and 100, considering as stopping criterion the number of iterations performed. Short runs
are stopped after 200 iterations; long runs after 600. In the experiments, the time available
for solving one instance is the average computational time used in these runs.

5 Experimental results

In this section, we assess the performance of MMAS for the TSP and for the QAP when
applying a parameter adaptation method. We consider all possible numbers of parameters
to be adapted, and all possible sets A of each number of parameters. For each problem, we
graphically present the results of one adaptation method for two sets of problem instances.
We report in the following both the analysis concerning the adaptation of a single parameter,
and the results obtained by the adaptation of more than one parameter. When the number
of parameters adapted is greater than one, we report the best case results for the adaptation
method: for each instance set, runtime, and tuning effort, we report the results of the set
A for which the algorithm achieved the best average result. These results are those that one
could obtain if one had an oracle that perfectly predicts which parameters should be included
into the set A, so that the best performance is obtained with respect to any other possible
choice of parameters to be adapted. We call this the a posteriori best results. These a poste-
riori best results do not realistically represent the performance of adaptation methods, since
they would require knowing the right composition of A before running the experiments. In
this sense, by reporting the a posteriori best case results, we overestimate the quality of the
results obtained by adaptation methods. As we will show in this section, this overestimation
is not strong enough to improve the performance of the adaptation methods in a qualita-
tively relevant way. For the TSP, we show here only the results obtained when the setting of
statically assigned parameters is either:

– The one suggested in the literature; or
– The one selected through off-line tuning with low tuning effort (maximum number of

experiments set to 156).
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Fig. 1 No parameter adapted. Relative error made when using the literature setting with respect to the one
selected through off-line tuning

For the QAP, we show the results obtained when the setting of statically assigned parameters
is either:

– The one suggested in the literature; or
– The one selected through off-line tuning with high tuning effort (maximum number of

experiments set to 7,500).

These results refer to a portion of the experiments described in Sect. 4. This portion of results
allows drawing the conclusions of our analysis. The results of the whole study are available
in Pellegrini et al. (2010a), which further confirm our conclusions.

Figure 1 reports the relative performance of MMAS when no parameter is adapted,
with the different settings of statically assigned parameters. For each problem, it shows
the summary over all sets of instances and all runtimes. The values plotted represent the
relative error: for example, in literature vs. low tuning effort, we compute the difference of
the results obtained using the literature setting minus the results obtained using the setting
selected through off-line tuning with low tuning effort, divided by the latter. A value greater
than zero indicates that the literature setting performs worse than the low tuning effort one
(recall we are tackling minimization problems). These results show that in the TSP the use
of the three settings (that is, when the statically assigned parameters are set as suggested
in the literature, as selected through off-line tuning with low effort, or as selected through
off-line tuning with high effort) lead to different performance: as expected, the literature
one is worse than both settings returned by off-line tuning, and the setting selected with low
tuning effort is worse than the one selected with high tuning effort. This can be seen by
observing that the relative error made by the literature setting with respect to the high tuning
effort is larger than to the low tuning effort. These differences are statistically significant at
the 95% confidence level, according to the Wilcoxon rank-sum test (Wilcoxon 1945). In the
QAP, instead, tuning does not improve much with respect to the results obtained with the
literature setting, which is quite well performing in itself. The Wilcoxon rank-sum test does
not detect any significant difference in the results.

In Sects. 5.1 and 5.2, we will assess the adaptation methods by using the just described
way for computing the relative error, and the Wilcoxon rank-sum test at the 95% confidence
level for performing statistical tests.

The results reported in Fig. 2 and Fig. 3 indicate the quality of the results achieved by
the various versions of MMAS on the TSP and the QAP, respectively. In these figures, we
report the relative error with respect to the optimal solutions for the TSP, and with respect to
the best-known solutions for the QAP. For the TSP, the optima were determined by using the
publicly available Concorde solver (Applegate et al. 2003). For the QAP, it is unfeasible to
compute the optimal solution of the instances we use. We therefore consider as a good upper
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Fig. 2 Boxplots of the relative error with respect to the optimal solution when no parameter is adapted. Short
runtime on TSP instances. The x axis reports the tuning effort. Null tuning effort corresponds to the literature
version

bound for the optimal value the result obtained by MMAS when the computation time
available is one order of magnitude larger than the longest runtime fixed in the experiments,
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Fig. 3 Boxplots of the relative error with respect to the best-known solution when no parameter is adapted.
Short runtime on QAP instances. The x axis reports the tuning effort. Null tuning effort corresponds to the
literature version

that is, 290 seconds. As it can be seen in these figures, there is a quite clear difference in
the performance of the MMAS configurations from different tuning budgets. Moreover,
under all the experimental conditions we consider, there is margin for adaptation methods to
improve the performance. Only the results achieved in the short runtime are reported here.
The results obtained for the long runtime are available in Pellegrini et al. (2010a), and they
confirm these observations.

5.1 Traveling salesman problem

In Table 4 and Table 5, we show the average relative error made on the TSP by the five
methods described in Sect. 3 when adapting one parameter. The reference results for the
computation are the ones obtained by MMAS when no parameter is adapted. We show in
the two tables the error made when the setting of statically assigned parameters is either the
one suggested in the literature, or the one selected through off-line tuning with low tuning
effort. We compute the average relative error for each set of instances and each runtime.
In Fig. 4 and Fig. 5, we report the boxplots of these relative errors for short runs on the
instance sets TSP(2000, u) and TSP(x, x) for adaptation method SAc. SAc usually gets the
best performance compared to the other adaptation methods. Still, the results achieved with
the other methods appear qualitatively equivalent to those of SAc and they are available in
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Table 4 Average relative error for each set of instances of the TSP. Comparison between M MAS applying
each of the five parameter adaptation methods to one single parameter, and the version with static parameter
settings (no adaptation). Statically assigned parameters are set as suggested in the literature. Given is the rel-
ative error for each set of instances between the version with parameter adaptation and the statically assigned
parameter settings for M MAS. When the relative error is followed by a bullet, no adaptation is statistically
better than adaptation. When it is followed by a star, no adaptation is statistically worse than adaptation

instance set runs q0 β ρ m α nn

SAc

TSP(2000, u) short −0.0072� −0.0013� −0.0080� 0.0014• −0.0050� 0.0034•
TSP(2000, c) short −0.0024� 0.0007� −0.0023� 0.0015• −0.0019� 0.0030•
TSP(2000, x) short −0.0053� −0.0007� −0.0049� 0.0015• −0.0035� 0.0028•
TSP(x,u) short −0.0101� −0.0009� −0.0099� 0.0009• −0.0060� 0.0031•
TSP(x, c) short −0.0035� −0.0001 −0.0035� 0.0000 −0.0030� 0.0020•
TSP(x, x) short −0.0066� 0.0000 −0.0067� 0.0012• −0.0043� 0.0026•
TSP(2000, u) long 0.0008 0.0025 0.0025• 0.0005• 0.0033 0.0024•

SAcb

TSP(2000, u) short −0.0062� −0.0008� −0.0044� 0.0005 −0.0050� 0.0031•
TSP(2000, c) short −0.0027� 0.0013� −0.0016� 0.0014• −0.0018� 0.0028•
TSP(2000, x) short −0.0044� −0.0002 −0.0029� 0.0006 −0.0043� 0.0027•
TSP(x,u) short −0.0079� −0.0004 −0.0057� −0.0010 −0.0069� 0.0031•
TSP(x, c) short −0.0041� −0.0002 −0.0017� 0.0000 −0.0031� 0.0013•
TSP(x, x) short −0.0054� 0.0002 −0.0025� −0.0003 −0.0049� 0.0025•
TSP(2000, u) long 0.0038• 0.0036• 0.0067 0.0033• 0.0052 0.0051•

SAcm

TSP(2000, u) short −0.0122� −0.0006� −0.0060� 0.0035• −0.0018� 0.0028•
TSP(2000, c) short −0.0041� 0.0007 −0.0008 0.0019• −0.0017� 0.0029•
TSP(2000, x) short −0.0069� 0.0000 −0.0037� 0.0022• −0.0026� 0.0031•
TSP(x,u) short −0.0141� 0.0000 −0.0081� 0.0027• −0.0017� 0.0028•
TSP(x, c) short −0.0050� −0.0001 −0.0020� 0.0009• −0.0031� 0.0015•
TSP(x, x) short −0.0090� 0.0005 −0.0042� 0.0020• −0.0018� 0.0025•
TSP(2000, u) long 0.0072 0.0089• 0.0086 0.0071• 0.0096 0.0081•

SAa

TSP(2000, u) short −0.0095� −0.0014� −0.0105� 0.0024

TSP(2000, c) short −0.0013� 0.0029• −0.0014� 0.0029•
TSP(2000, x) short −0.0053� 0.0000 −0.0062� 0.0023•
TSP(x,u) short −0.0113� −0.0004 −0.0126� 0.0016•
TSP(x, c) short −0.0038� 0.0007 −0.0049� 0.0011•
TSP(x, x) short −0.0067� 0.0008 −0.0081� 0.0019•
TSP(2000, u) long 0.0154 0.0022• 0.0141 0.0023•
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Table 4 (Continued)

instance set runs q0 β ρ m α nn

LS

TSP(2000, u) short −0.0095� −0.0014� −0.0105� 0.0024

TSP(2000, c) short −0.0013� 0.0029• −0.0014� 0.0029•
TSP(2000, x) short −0.0053� 0.0000 −0.0062� 0.0023•
TSP(x,u) short −0.0113� −0.0004 −0.0126� 0.0016•
TSP(x, c) short −0.0038� 0.0007 −0.0049� 0.0011•
TSP(x, x) short −0.0067� 0.0008 −0.0081� 0.0019•
TSP(2000, u) long 0.0154 0.0022• 0.0141 0.0023•

Fig. 4 Relative error of M MAS with parameter adaptation, adapting parameters with respect to adapting
none in TSP. Short runs on instances of set TSP(2000, u). Plots (a) to (c) refer to the case of a single parameter
adapted: the x axis reports the specific parameter adapted. Plots (d) to (f) refer to the case of many parameters
adapted: the x axis reports the number of parameters adapted. Adaptation method: SAc

Pellegrini et al. (2010a). In the same figures, we also report the relative error made when
several parameters are adapted. For each number of parameters to be adapted, we plot the
results obtained with the best set A. We show also the results achieved when statically as-
signed parameters are set as selected by off-line tuning with high tuning effort. We report
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Table 5 Average relative error for each set of instances of the TSP. Comparison between M MAS applying
each of the five parameter adaptation methods to one single parameter, and the version with static parameter
settings (no adaptation). Statically assigned parameters are set as selected through off-line tuning with low
tuning effort. Given is the relative error for each set of instances between the version with parameter adap-
tation and the statically assigned parameter settings for M MAS. When the relative error is followed by a
bullet, no adaptation is statistically better than adaptation. When it is followed by a star, no adaptation is
statistically worse than adaptation

instance set runs q0 β ρ m α nn

SAc

TSP(2000, u) short 0.0012• 0.0011• 0.0034• 0.0004• 0.0036• 0.0012•
TSP(2000, c) short 0.0023• 0.0021• 0.0014• 0.0005• 0.0013• 0.0014•
TSP(2000, x) short 0.0046• 0.0040• 0.0011• 0.0002• 0.0016• 0.0017•
TSP(x,u) short 0.0004 0.0011• 0.0072• 0.0006• 0.0050• 0.0016•
TSP(x, c) short 0.0014• 0.0018• 0.0012• 0.0000 0.0013• 0.0008•
TSP(x, x) short 0.0022• 0.0040• 0.0010• 0.0007• 0.0010• 0.0006•
TSP(2000, u) long 0.0009• 0.0025• 0.0025• 0.0006• 0.0043• 0.0025•

SAcb

TSP(2000, u) short 0.0029• 0.0029• 0.0087• 0.0028• 0.0057• 0.0035•
TSP(2000, c) short 0.0052• 0.0059• 0.0058• 0.0048• 0.0048• 0.0056•
TSP(2000, x) short 0.0144• 0.0072• 0.0066• 0.0070• 0.0100• 0.0120•
TSP(x,u) short 0.0022• 0.0038• 0.0117• 0.0024• 0.0065• 0.0039•
TSP(x, c) short 0.0027• 0.0032• 0.0028• 0.0030• 0.0035• 0.0036•
TSP(x, x) short 0.0084• 0.0048• 0.0039• 0.0057• 0.0066• 0.0073•
TSP(2000, u) long 0.0036• 0.0039• 0.0077• 0.0036• 0.0062• 0.0053•

SAcm

TSP(2000, u) short 0.0054• 0.0056• 0.0091• 0.0055• 0.0092• 0.0069•
TSP(2000, c) short 0.0055• 0.0067• 0.0060• 0.0055• 0.0061• 0.0062•
TSP(2000, x) short 0.0065• 0.0106• 0.0066• 0.0070• 0.0082• 0.0083•
TSP(x,u) short 0.0031• 0.0048• 0.0117• 0.0034• 0.0105• 0.0057•
TSP(x, c) short 0.0049• 0.0069• 0.0059• 0.0050• 0.0069• 0.0052•
TSP(x, x) short 0.0074• 0.0095• 0.0070• 0.0065• 0.0076• 0.0077•
TSP(2000, u) long 0.0078• 0.0084• 0.0096• 0.0076• 0.0106• 0.0087•

SAa

TSP(2000, u) short 0.0070• 0.0070• 0.0070• 0.0070

TSP(2000, c) short 0.0120• 0.0121• 0.0120• 0.0119•
TSP(2000, x) short 0.0066• 0.0067• 0.0066• 0.0066•
TSP(x,u) short 0.0064• 0.0064• 0.0065• 0.0065•
TSP(x, c) short 0.0056• 0.0057• 0.0057• 0.0056•
TSP(x, x) short 0.0035• 0.0036• 0.0036• 0.0036•
TSP(2000, u) long 0.0027• 0.0027• 0.0028• 0.0027•
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Table 5 (Continued)

instance set runs q0 β ρ m α nn

LS

TSP(2000, u) short 0.0069• 0.0074• 0.0095• 0.0072•
TSP(2000, c) short 0.0118• 0.0119• 0.0110• 0.0118•
TSP(2000, x) short 0.0064• 0.0071• 0.0055• 0.0056•
TSP(x,u) short 0.0062• 0.0070• 0.0110• 0.0064•
TSP(x, c) short 0.0054• 0.0049• 0.0052• 0.0053•
TSP(x, x) short 0.0037• 0.0035• 0.0036• 0.0039•
TSP(2000, u) long 0.0026• 0.0042• 0.0072• 0.0029•

Fig. 5 Relative error of M MAS with parameter adaptation, adapting parameters with respect to adapting
none in TSP. Short runs on instances of set TSP(x, x). Plots (a) to (c) refer to the case of a single parameter
adapted: the x axis reports the specific parameter adapted. Plots (d) to (f) refer to the case of many parameters
adapted: the x axis reports the number of parameters adapted. Adaptation method: SAc

these latter results for showing that, when varying the tuning effort, the general pattern of the
relative error obtained by adaptation methods as a function of the cardinality of A remains
the same, but the magnitude of this relative error increases as a function of the tuning effort.
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Table 6 Parameters that allow each adaptation method to achieve the best and the worse overall performance
on TSP instances

adaptation best performance parameter worst performance parameter

method literature low effort high effort literature low effort high effort

SAc q0 m m nn α α

SAcb q0 m m nn ρ α

SAcm q0 q0,m m nn α α

SAa α q0, β,α,m nn m q0, β,α,m α

LS α q0, nn nn m α α

The results show that the relative performance achieved by MMAS when one of its
parameters is adapted strongly depends on the setting of the statically assigned parameters.
In particular, when the setting of the statically assigned parameters makes the algorithm
achieve quite poor results, the application of an adaptation method may improve the quality
of the results: when the literature setting is used for short runs on the classes of instances
considered here (Pellegrini et al. 2010b), the adaptation methods achieve better performance
than the statically assigned version, as shown in Table 4, Figs. 4(a), 4(d) and Figs. 5(a), 5(d).
When the setting of the statically assigned parameters makes the algorithm achieve rather
good results, that is, when off-line tuning selects the setting of statically assigned parameters,
even with an extremely low tuning effort, the adaptation methods proposed in the literature
for ACO perform very poorly. This can be seen in Table 5, Figs. 4(b), 4(e) and Figs. 5(b),
5(f). Even if it is not evident from the boxplots in either Fig. 4(b) or Fig. 5(b), Table 4
shows that the difference is statistically significant in favor of the MMAS version when
no parameter is adapted, except when adapting parameter q0 on instances of set TSP(x,u)

and parameter m on instances of set TSP(x, c). The statistical significance of the differences
is, in this context, more relevant than their absolute size. The fact that the degradation of
the performance brought by the adaptation methods is statistically significant guarantees
that we are indeed facing a degradation, even if sometimes rather small, and not a neutral
contribution (or even a slight improvement) hidden by the experimental noise. If the tuning
effort increases, thus in principle if the expected quality of the selected setting improves,
the difference between adapting parameters or not increases as well (Fig. 4(c), 4(f), and
Figs. 5(c), 5(f)). In fact, in the strong majority of the cases we analyzed, the difference in the
performance is statistically significant in favor of the version with static parameter settings.
This result is irrespective of the instance set, the cardinality of the set of parameters adapted,
the adaptation method, and the tuned setting of the statically assigned parameters.

By analyzing the results achieved when adapting more than one parameter, we can
see that the more parameters are adapted, the worse the performance (Figs. 4(d)–4(f) and
Figs. 5(d)–5(f)). This result holds regardless the instance set, runtime, setting of the statically
assigned parameters, and adaptation method. Only in few cases, adapting either two or three
parameters is better than adapting one, but in all the experiments adapting five or six param-
eters is disadvantageous. In all cases, if adapting one parameter is worse than adapting none,
the same holds when adapting two or three. This is true even if we overestimate the quality
of the results obtainable by adaptation methods, namely by considering the a posteriori best
case.

The best set of parameters to be adapted depends on the setting of statically assigned
parameters. Focusing on the case in which |A| is one, Table 6 reports the parameter for
which each adaptation scheme achieves the best and the worst overall performance, in terms
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Fig. 6 Relative error of M MAS with parameter adaptation, adapting parameters with respect to adapting
none in QAP. Short runs on instances of set QAP(80,RR). Plots (a) and (b) refer to the case of a single
parameter adapted: the x axis reports the specific parameter adapted. Plots (c) and (d) refer to the case of
many parameters adapted: the x axis reports the number of parameters adapted. Adaptation method: SAc

of average relative error computed over all instance sets and runtimes for each setting of
statically assigned parameters. There is no single parameter that, when adapted, resulted in
the best performance across all the experimental setups and sets of instances.

The heterogeneity of the set of instances does not appear to have a predictable impact
on the results, as visible in Table 4 and Table 5, and in Fig. 4 and Fig. 5. This observation
contradicts the intuition according to which the more heterogeneous the set of instances, the
more advantageous the use of an adaptation method. The same observation holds for the use
of different runtimes.

5.2 Quadratic assignment problem

In Table 7, we show the average relative error made on the QAP by the five methods de-
scribed in Sect. 3 when adapting one parameter. The reference results for the computation
are the ones obtained by MMAS when no parameter is adapted. In the two parts of the
table, we show the error made when the setting of the statically assigned parameters is ei-
ther the one suggested in the literature, or the one selected through off-line tuning with high
tuning effort. We compute the average relative error for each set of instances and each run-
time. We report only the results for the short runtime, since the long runtime does not lead to
qualitatively different conclusions; the results for the long runtime are available in Pellegrini
et al. (2010a). In Fig. 6 and Fig. 7, we report the boxplots of these relative errors for short
runs on the sets of instances QAP(80,RR) and QAP(x, x) for the adaptation method SAc,
which is in general the best performing. The results achieved with the other methods appear
qualitatively equivalent; we refer to Pellegrini et al. (2010a) for the full results. In the same
figures, we report the relative error made when several parameters are adapted, plotting for
each number of parameters to be adapted the results for the best set A.

Differently from the TSP, applying an adaptation method when solving the QAP is al-
ways a disadvantage in terms of solution quality (see Table 7). For all instance sets, for any
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Table 7 Average relative error for each set of instances of the QAP. Comparison between M MAS applying
each of the five parameter adaptation methods to one single parameter, and the version with static parameter
settings (no adaptation). Given is the relative error for each set of instances between the version with parame-
ter adaptation and the statically assigned parameter settings for M MAS. When the relative error is followed
by a bullet, no adaptation is statistically better than adaptation. When it is followed by a star, no adaptation is
statistically worse than adaptation

Setting of statically assigned Setting of statically assigned

parameters: literature parameters: high effort

instance set runs m ρ α m ρ α

SAc

QAP(80,RR) short 0.0016• 0.0024• 0.0007• 0.0026• 0.0010• 0.0013•
QAP(80,ES) short 0.0033• 0.0035• 0.0026• 0.0018• 0.0009• 0.0011•
QAP(80, x) short 0.0185• 0.0217• 0.0126• 0.0242• 0.0029• 0.0102•
QAP(x,RR) short 0.0035• 0.0020• 0.0013• 0.0027• 0.0017• 0.0017•
QAP(x,ES) short 0.0030• 0.0028• 0.0022• 0.0010• 0.0008• 0.0008•
QAP(x, x) short 0.0154• 0.0094• 0.0070• 0.0188• 0.0053• 0.0082•

SAcb

QAP(80,RR) short 0.0017• 0.0016• 0.0004• 0.0022• 0.0008• 0.0013•
QAP(80,ES) short 0.0033• 0.0031• 0.0018• 0.0011• 0.0007• 0.0015•
QAP(80, x) short 0.0186• 0.0087• 0.0077• 0.0201• 0.0079• 0.0113•
QAP(x,RR) short 0.0030• 0.0018• 0.0014• 0.0028• 0.0015• 0.0016•
QAP(x,ES) short 0.0030• 0.0027• 0.0019• 0.0009• 0.0006• 0.0011•
QAP(x, x) short 0.0189• 0.0079• 0.0082• 0.0187• 0.0061• 0.0072•

SAcm

QAP(80,RR) short 0.0016• 0.0036• 0.0006• 0.0024• 0.0011• 0.0010•
QAP(80,ES) short 0.0031• 0.0038• 0.0023• 0.0012• 0.0009• 0.0013•
QAP(80, x) short 0.0248• 0.0252• 0.0103• 0.0252• 0.0057• 0.0104•
QAP(x,RR) short 0.0027• 0.0016• 0.0016• 0.0027• 0.0016• 0.0013•
QAP(x,ES) short 0.0028• 0.0036• 0.0021• 0.0009• 0.0011• 0.0012•
QAP(x, x) short 0.0178• 0.0122• 0.0065• 0.0224• 0.0055• 0.0077•

SAa

QAP(80,RR) short 0.0020• 0.0033•
QAP(80,ES) short 0.0045• 0.0010•
QAP(80, x) short 0.0228• 0.0341•
QAP(x,RR) short 0.0031• 0.0041•
QAP(x,ES) short 0.0042• 0.0007•
QAP(x, x) short 0.0135• 0.0226•

runtime, for all adaptation methods, for all cardinalities of the set of parameters adapted, and
for all the tuning efforts applied for setting statically assigned parameters, the difference is
statistically significant in favor of the MMAS version in which no parameter is adapted.
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Table 7 (Continued)

Setting of statically assigned Setting of statically assigned

parameters: literature parameters: high effort

instance set runs m ρ α m ρ α

LS

QAP(80,RR) short 0.0020• 0.0061•
QAP(80,ES) short 0.0103• 0.0084•
QAP(80, x) short 0.0495• 0.0490•
QAP(x,RR) short 0.0031• 0.0064•
QAP(x,ES) short 0.0098• 0.0085•
QAP(x, x) short 0.0595• 0.0585•

Fig. 7 Relative error of M MAS with parameter adaptation, adapting parameters with respect to adapting
none in QAP. Short runs on instances of set QAP(x, x). Plots (a) and (b) refer to the case of a single param-
eter adapted: the x axis reports the specific parameter adapted. Plots (c) and (d) refer to the case of many
parameters adapted: the x axis reports the number of parameters adapted. Adaptation method: SAc

The adoption of an adaptation method is disadvantageous even in the case of a null tun-
ing effort, that is, for the literature version. We expect this latter to be the context in which
adaptation methods perform the best. Thus, using parameter adaptation will increase the
relative error when any tuning effort is devoted to selecting the setting of statically assigned
parameters: it is not necessary to test several levels of tuning effort, as we did for the TSP.

Even if it is less evident than in the TSP case, increasing the cardinality of the set of
parameters adapted is not advantageous (Figs. 6(c), 6(d), Figs. 7(c), 7(d)).

As in the TSP, it is not possible to identify either the best adaptation method, or the best
set of parameters to be adapted: they vary as a function of both the set of instances tackled
and the runtime, as it can be seen in Table 7. Moreover, neither the heterogeneity of the set
of instances nor the runtime influence the results in a predictable way.
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6 Conclusions

In this paper, we empirically showed that the state-of-the-art parameter adaptation meth-
ods often worsen the performance of ACO algorithms in case they are applied out of the
particular context for which they were proposed. The context that we considered is based
on a high performing state-of-the-art ACO algorithm and two classical combinatorial opti-
mization problems. We applied five adaptation methods to MMAS for both the traveling
salesman problem and the quadratic assignment problem. We ran an extensive experimental
analysis, considering several experimental setups. We exploited these setups for either re-
futing or corroborating four conjectures. Two of them were corroborated by the results, and
two were refuted. We verified that:

(i) the more parameters adapted, and
(ii) the higher the quality of the results achieved by the algorithm,

the smaller the improvement (or rather the larger the worsening) of the performance of the
algorithm that adaptation methods can produce. We could not verify that:

(iii) the lower the heterogeneity of the set of instances to be tackled, and
(iv) the shorter the runtime,

the smaller the improvement (or the larger the worsening) of the performance of the algo-
rithm that adaptation methods can produce.

The ineffectiveness of the adaptation methods is evident in the results. We could observe
only one exception to this conclusion, when the setting of statically assigned parameters
leads the algorithm to achieve relatively low quality results. Otherwise, we could obtain bet-
ter quality results without adapting any parameter during the runs. The number of parameters
adapted does not affect these conclusions: even if considering the (unrealistic) a posteriori
best case for the adaptation methods, applying an adaptation method worsens the results
unless the setting of statically assigned parameters is performing poorly.

We will devote future research to the application of successful methods proposed for
other metaheuristics to ACO. An example of such methods is the rank-based multi-armed
bandit (Fialho 2010) that was proposed for genetic algorithms. Despite the poor performance
achieved by the methods proposed for ACO, in fact, our results do not contradict in absolute
terms the merits of adaptation methods. In some specific cases, and when the appropriate
method is used for adapting only the appropriate parameter(s), adaptation methods may pro-
vide an advantage. In future works, we will try to characterize situations in which parameter
adaptation is useful. Moreover, we will devote further studies to the understanding of the im-
pact that each parameter has on the behavior of the algorithms. This may help in identifying
the appropriate parameters to be adapted. In particular, we will try to combine off-line tun-
ing and parameter adaptation by using off-line tuning to decide which parameters to adapt,
and letting an adaptation method operate only on those parameters during the run.
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