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Abstract. Ant Colony Optimization (ACO) was originally developed as
an algorithmic technique for tackling NP-hard combinatorial optimiza-
tion problems. Most of the research on ACO has focused on algorithmic
variants that obtain high-quality solutions when computation time al-
lows the evaluation of a very large number of candidate solutions, often
in the order of millions. However, in situations where the evaluation of
solutions is very costly in computational terms, only a relatively small
number of solutions can be evaluated within a reasonable time. This sit-
uation may arise, for example, when evaluation requires simulation. In
such a situation, the current knowledge on the best ACO strategies and
the range of the best settings for various ACO parameters may not be
applicable anymore. In this paper, we start an investigation of how dif-
ferent ACO algorithms behave if they have available only a very limited
number of solution evaluations, say, 1000. We show that, after tuning the
parameter settings for this type of scenario, still the original Ant System
performs relatively poor compared to other ACO strategies. However,
the best parameter settings for such a small evaluation budget are very
different from the standard recommendations available in the literature.

1 Introduction

The first Ant Colony Optimization (ACO) algorithms were introduced more than
two decades ago [5]. After the publication of the main journal article describing
Ant System (AS) [7], a large number of other ACO algorithms were introduced
with the goal of improving over AS’s performance and of showing that ACO
algorithms could reach highly competitive results for various well-known combi-
natorial optimization problems. These improved algorithms include Ant Colony
System (ACS) [6], Max-Min Ant System (MMAS) [21], rank-based Ant System
(RAS) [4] and various others [8]. The main test problems at that time included
the Traveling Salesman Problem (TSP) [4,6,7,21] and the Quadratic Assignment
Problem (QAP) [7, 21], among few others.

When it comes to computational effort, typically a sufficiently large number
of solutions constructed or significantly long computation times have been con-
sidered. For example, in the 1996 “First International Contest on Evolutionary
Optimisation” [3], the competing algorithms could evaluate up to 10 000 ·n can-
didate solutions, where n is the problem dimension, that is, the number of cities
in the TSP. Similarly, in most papers large enough computation times have been
given to allow a large number of solutions to be generated or expensive local
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search methods to be used [9]. In particular, local search usually requires the
evaluation of a large number of solutions.

On the other hand, there are situations where an algorithm can generate and
evaluate only very few solutions before having to return the best solution found.
This is the case when there are very tight real-time constraints even when it is
quick to evaluate individual solutions or when the evaluation of solutions itself is
very costly and in reasonable computation times only a small number of solutions
can be evaluated. Common examples for the latter can be found in the field of
simulation-optimization [1,14,23,24]. Moreover, in such a situation the usage of
incremental updates to explore neighboring candidate solutions, one of the key
factors that make local search algorithms fast [10], is often not applicable. In
such situations, an ACO algorithm may only be able to evaluate a few thousand
(or even fewer) solutions.

When facing a situation where very few solutions can be evaluated, a first
question is how to transfer the knowledge available in the ACO literature, since
most experiments on ACO algorithms typically consider many more solution
evaluations. Hence, we consider it a valid question to pose which algorithmic
ACO variants may be the most promising in such situations and also which
values their parameters should take. In this paper, we explore these questions,
acknowledging that similar questions have been posed on single ACO algorithms
but usually at still much higher computation budgets than we consider here [18].
We do so by comparing the performance of some of the main ACO algorithms,
including AS, elitist AS (EAS), RAS, MMAS, and ACS using their default pa-
rameter values recommended in the literature [8] and using their parameters
tuned by irace [13], an automatic algorithm configuration tool. As benchmark
problems, we use the TSP and the QAP, but with the additional limitation that
at most 1 000 candidate solutions can be evaluated per run. Our experimental
results show that the ACO algorithms that were proposed as improvements over
AS still are clearly preferable, even in such a scenario. However, for some of the
ACO algorithms this is only the case after re-tuning their parameter settings.
In fact, some of the tuned parameter settings differ very strongly from what has
been recommended in the literature and, in some cases such as for ACS, from
what intuition would dictate as a good setting.

The article is structured as follows. In Sec. 2 we give details on the algorithms
we used, the parameter ranges considered and the benchmark problems we used
for our tests. Sec. 3 gives the experimental results and we conclude in Sec. 4.

2 Experimental Setting

2.1 Problems

In this article, we consider a scenario where evaluating a solution is costly enough
that only a few candidate solutions can be evaluated per run. To allow for a
significant number of experiments and to allow for parameter tuning, we evaluate
the ACO algorithms on two standard test problems (the TSP and the QAP), but
we restrict the number of solution evaluations to 1000. Both the TSP and the
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QAP are well-known NP-hard combinatorial optimization problems, often used
as benchmarks for heuristic algorithms and in the early literature on ACO [8].
For both problems, we generate a set of benchmark instances to be used in the
evaluation of the ACO algorithms.

For the TSP, we generate random uniform Euclidean instances, where points
are randomly distributed in a square of dimension 10000×10000.We generate 100
instances for each value of 50, 60, 70, 80, 90, and 100 cities. Half of these instances
of each size are used as training instances for the ACO algorithm tuning, while
the other half are used as test set for the comparison of the algorithms. For
the QAP, we use the instances proposed in [19]. These QAP instances have a
structure analogous to the instances that arise in practical applications of the
QAP. The instance set comprises 100 instances of each size 60, 80, and 100.

2.2 ACO Algorithms

In our experiments, we use five of the best-known ACO algorithms, namely AS
[7], EAS [7], RAS [4], MMAS [21] and ACS [6]. A detailed description of the above
algorithms can be found in [8]; here we recall just the main algorithmic rules in
the solution construction and the pheromone update so that the parameters we
later tune are defined.

ACO algorithms iteratively construct solutions to a problem by using heuris-
tic information and pheromone trails. Most ACO algorithms make use of the
random-proportional rule that was introduced with AS: At a decision point i,
the next element j is chosen with a probability pij that is proportional to ταij ·ηβij ,
where τij is the pheromone related to a choice of solution component (i, j), ηij
is the associated heuristic information and α and β are two parameters that
weigh the influence of the pheromone with respect to the heuristic information.
ACS used a more deterministic construction, where with a probability q0, the
next element j is chosen deterministically as the one that maximizes ταij · ηβij
(ties being broken randomly). AS-based algorithms may also use this latter rule,
that is, make a deterministic choice with probability q0 and we consider this
possibility also in this paper. Once all m ants have constructed a solution, where
m is a parameter corresponding to the colony size, the pheromones are up-
dated by evaporating a factor ρ of each pheromone trail, where ρ is a parameter
(0 ≤ ρ < 1), and depositing an amount of pheromone that is inversely propor-
tional to the solution cost. The various ACO algorithms differ in which ants
deposit pheromones and how much they deposit. For example, in AS each ant
deposits an amount of pheromone equal to the inverse of the solution cost; in
EAS the best solution since the start of the algorithm, the best-so-far solution,
deposits additionally a large amount of pheromone; in RAS only some of the
best solutions generated in each iteration and the best-so-far solution deposit
pheromone; in MMAS only one ant deposits pheromone, which may be either
the iteration-best or the best-so-far ant; finally, in ACS typically only the best
solution since the start of the algorithm deposits pheromone. As a result, espe-
cially the more recent extensions such as RAS, MMAS, and ACS tend to exploit
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better the best solutions found during the search, but possibly only after longer
computation times [8].

For this paper, we have used the implementation of the ACO algorithms given
by the ACOTSP software [20]. We do not use candidate sets or local search to
avoid biases due to a priori exploitation of specific problem features. For the
QAP, we have adapted the ACOTSP software in a straightforward way so that
we could use the same implementation. The main difference between the ACO
algorithms for the TSP and the QAP is that for the latter we have not derived
heuristic information. In the TSP case the avoidance of heuristic information
can simply be simulated by setting β = 0. We also extended ACOTSP such that
parameter settings may vary during a single run as described in [15].

2.3 Automatic Configuration

We compare the ACO algorithms using default parameter settings, which were
normally derived considering other application scenarios, such as rather large
numbers of solution evaluations, and the ACO algorithms after tuning. As tuning
tool we use the irace software [13] that implements Iterated F-race and other
racing methods for automatic parameter tuning [2]. The details of the various
configuration scenarios are described below and the scenario files are available as
supplementary material (http://iridia.ulb.ac.be/supp/IridiaSupp2014-006/).

ACOTSP, ACOQAP: These configuration scenarios execute the algorithms
using fixed parameter values and they consider a fixed maximum budget for the
run of each algorithm of 1 000 evaluations. These scenarios require the configu-
ration of five (QAP) or six (TSP) parameters common to all ACO algorithms,
plus one specific parameter in the case of configuring EAS (elitistants: the weight
given to the best-so-far solution) or RAS (rasrank: the maximum rank considered
corresponding to the maximum number of ants (m) that deposit pheromone).
The parameters and their ranges are given in Table 1. The tuning goal is to
minimize the solution cost reached after 1 000 solution evaluations.

ACOTSP-V, ACOQAP-V: These scenarios allow the parameters to vary
during the algorithm execution by tuning pre-scheduled parameter variations
identical to those described in Table 2 of [15]; the other parameters use fixed
settings in a range as indicated in Table 1. The pre-scheduled parameter variation
is possible for the four parameters; m, β (only in the case of TSP), q0 and ρ.
The rationale for using this alternative tuning scenario is to examine whether
parameter variations may improve performance. The configuration goal remains
the same as in the ACOTSP and ACOQAP scenarios.

ACOTSP-VA, ACOQAP-VA: These scenarios consider the algorithms with
the possibility of pre-scheduled parameter variations as in the previous scenario.
However, they consider a different configuration goal: The optimization of the
anytime behavior as measured by the normalized hypervolume of the space that
is dominated by the pairs of points that describe the development of the best-so-
far solution quality over the number of solution evaluations [15]. In this case, the
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Table 1. Range of parameters used in the tuning for fixed parameter settings

Common parameters for all scenarios RAS and EAS TSP scenario

m α ρ q0 rasrank elitistants β

[5, 100] [0, 10] [0.01, 1] [0, 1] [1, 100] [1, 175] [0, 10]

configuration goal is to minimize the normalized hypervolume. The goal of this
tuning setting is to obtain a parameter configuration that is good independent
of the specific maximum number of solution evaluation that is given. To still
optimize the algorithm behavior for short runs, the maximum execution budget
of each run of an ACO algorithms was limited to 5 000 solution evaluations.

In all scenarios, the total configuration budget for each tuning run was 10 000
runs of the algorithm and, as said above, half of the available benchmark in-
stances are used as training set for the tuning.

3 Experimental Results

In this section, we examine the ACO algorithms using different parameter set-
tings. First, we compare the results of the five ACO algorithms when using their
default settings in the ACOTSP software. Next, we consider parameter settings
that have been tuned following scenarios ACOTSP and ACOQAP. Finally, we
consider tuning parameter variation strategies and the anytime behavior of the
ACO algorithms, that is, scenarios ACOTSP-V / VA and ACOQAP-V / VA. In
the following, each time statistical significance tests are mentioned they refer to
Wilcoxon rank-sum tests at the 0.05 significance level with Bonferroni’s correc-
tion for multiple tests. The experimental results reported here are based on one
run on each of the test instances (300 instances for the TSP and 150 instances
for the QAP).

3.1 Default Parameter Settings

As a first step, we compare the five ACO algorithms using default parameter
settings. For the presentation of the results, we use AS as a baseline, that is,
we compute the relative quality deviation obtained by each ACO algorithm with
respect to AS on each instance. More concretely, for each test instance i and each
ACO algorithm a, we compute the percentage deviation of the result obtained
by a on instance i from the result of AS on the same instance i. Figure 1 gives
the boxplots of the resulting deviations. A value larger then zero indicates worse
performance than AS, while a value lower than zero indicates better performance.

Maybe surprisingly, when using the default settings and limiting the number
of evaluations to 1000, some of the ACO algorithms perform much worse than
AS. This is particularly striking for MMAS, which generates tours that are about
70% worse than those of AS. Also RAS performs much worse than AS on the
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Fig. 1. Boxplots of the percentage deviation of the solution quality obtained by five
ACO algorithms from the solution generated by AS, which is taken as reference. The
results are given across all test instances.

TSP. The poor performance of these algorithms for short runs is due to the fact
the MMAS and RAS parameters were set to allow for a very high final solution
quality after a large number of candidate solutions have been generated [8]; for
example, both MMAS and RAS use a relatively small evaporation, which does
not allow them to bias the search fast enough to focus on the best solutions found.
Another reason is the different default setting of the parameter β, which for AS
is set to 5 whereas for MMAS and RAS is set to 2. EAS and ACS both show
better performance than AS. All differences are statistically significant at the
0.05 significance level. For the QAP, the situation is different from the one of the
TSP. None of the other ACO algorithms performs worse than AS. Considering
statistical significance, EAS, RAS and ACS perform statistically significantly
better than AS, whereas there is no statistically significant difference between
MMAS and AS. This difference to the TSP results can be explained by the fact
that the ACO algorithms for the QAP do not make use of heuristic information.
In fact, if one eliminates heuristic information for the TSP by setting β = 0,
the performance relative to AS follows the same trends as for the QAP (more
details are given in the supplementary material).

3.2 Tuned Settings

In a next step, we tuned the parameter settings for both ACOTSP and ACO-
QAP scenarios as defined in Section 2.3. After tuning, all algorithms significantly
improve the solution quality reached within the limit of 1 000 candidate solu-
tions. Figure 2 shows the relative deviation of each tuned ACO algorithm over
its default version. As before, negative values indicate improved quality. The
algorithms that most improve their performance are MMAS and RAS, while
AS on the QAP is the only ACO algorithm that does not strongly improve its
quality after tuning.

Figure 3 compares the performance of the ACO algorithms using AS as a
reference in the same way as in the previous section, that is, the relative deviation
of the quality obtained by the tuned version of each ACO algorithm with respect
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Fig. 2. Boxplots of the observed percentage improvement of each ACO algorithm with
tuned parameter settings over the solutions reached with default parameter settings.
The reference cost of each tuned ACO algorithm is its respective default parameter
setting. For example, the boxplot of MMAS indicates the improvement observed of
MMAS with tuned parameter settings over its default parameter settings. The results
are given across all test instances.

Fig. 3. Boxplots of the percentage deviation of the solution quality obtained by five
ACO algorithms from the solution generated by AS, which is taken as reference. The
results are given across all test instances.

to the tuned version of AS. This comparison shows that, for both the TSP
and QAP, the four ACO algorithms (EAS, RAS, MMAS, and ACS) improve
significantly over the performance of AS. (All the differences between AS and the
other ACO algorithms are statistically significant.) The overall best performance
on the TSP and on the QAP is obtained by MMAS and RAS, respectively.

A main reason for the strong improvements of most ACO algorithms over their
default parameter settings is that these settings were designed for scenarios where
ample computation time is available, that is, where a large number of candidate
solutions may be constructed. To examine the differences between the default
and the tuned parameter settings, we performed for each ACO algorithm 20 runs
of irace and we analyzed the distribution of the parameter configurations that
were obtained. These distributions are given in Figure 4 using boxplots; the red
line for each algorithm indicates the default parameter settings.

While the parameter settings selected by irace varied from run to run, we can
observe some clear trends. The algorithm for which the tuned parameter settings
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Fig. 4. Distribution of the parameter values found in 20 runs of irace. The dotted red
lines indicate the default parameter setting for each algorithm. For the number of ants,
the default parameter setting is the instance size; since in our test instances the size
varies, we assumed an “average” instance size of 80 to indicate the default setting.
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differ the least from the default ones is AS. For the other algorithms, major dif-
ferences arise. RAS and especially MMAS use much smaller number of ants (m)
than in their default version, which allows them to perform more iterations than
in the default settings. In the ACOTSP scenario, also the heuristic information
gets a much higher emphasis by using a median value for β of around seven
instead of the default setting of two. The most noteworthy is probably the much
higher evaporation rate ρ in RAS and MMAS than the default evaporation rate
for both the ACOTSP and the ACOQAP scenarios. A very high pheromone
evaporation has the effect that the search can quickly forget previously obtained
worse solutions and focus quickly around the best recent ones. All these differ-
ences can be explained by the need of exploiting much more aggressively the
search history (and heuristic information if available and helpful) due to the
very small number of solutions to be generated biasing in this way the search
around the best solutions found so far.

The setting of q0 larger than zero for all ACO algorithms supports this in-
terpretation, although in the case of ACS the tuned value for q0 is somewhat
surprising: a rather low value of q0 together with a rather high value for α is pro-
posed by the tuning, thus providing here another means for the exploitation of
the search history. If we compare the settings of the ACOTSP and the ACOQAP
scenarios, we can observe similar overall trends. However, there are differences
in the best parameter settings for specific algorithms. For example, differences
in good parameter settings in the two scenarios are evidenced by the fact that
the boxplots of the distribution of the tuned parameter settings for the same
ACO algorithm in the ACOTSP and ACOQAP scenarios often do not overlap.

3.3 Parameter Variation and Anytime Parameter Tuning

Instead of using fixed parameter settings, another option may be to adapt the
parameter settings while running the algorithm. Earlier studies have indicated
that pre-scheduled parameter variations [16, 22] may be more promising than
self-adaptive schemes for deriving improved ACO parameter settings [17]. In
particular, pre-scheduled parameter variation was shown to be particularly suc-
cessful to improve the anytime behavior of MMAS [15]. In this section, we vary
the parameters q0, β, ρ, and m within a single run using the same variation
schemes as proposed in [15]: We consider for all parameters as possible changes
either their gradual variation iteration-by-iteration or a single switch of the pa-
rameter setting from some value to another one at a particular iteration.

For tuning, we consider the two possibilities that are offered by the scenarios
ACOTSP-V / VA and ACOQAP-V / VA, which were described in Section 2.3.
In a nutshell, the results do not show a strong difference when tuning for the
final quality or for the anytime behavior, when the algorithms are evaluated
according to the quality reached at 1 000 evaluations (Fig. 5).

On the other hand, the possibility of tuning the anytime behavior has a pos-
itive impact on the behavior of at least some of the algorithms if we look at the
solution quality reached for different values of the evaluation budget. The plots
of the solution quality development (as measured by the percentage deviation of
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Fig. 5. Performance the ACO algorithm tuned for optimizing their anytime behavior
versus the fixed parameter settings tuned for best performance at 1 000 evaluations.
The results are given for an evaluation of the algorithms on the test set after 1 000
evaluated candidate solutions.

Fig. 6. Plots of the development of the solution quality over the number of solution
evaluations for the TSP (left) and the QAP (right). The solution quality is measured
as the percentage improvement over the solutions generated by AS across the test
instances. The algorithms shown (MMAS and RAS) where tuned either for a fixed
evaluation budget (fixed) and for optimizing their anytime behavior (anyt).

the algorithms from the AS solutions) over the number of evaluations (Fig. 6)
show that, while MMAS’ curve is almost identical independently of how the
tuning was done, the curves for RAS show a clear stagnation effect of the RAS
tuned for a fixed evaluation budget when compared to the version of RAS tuned
for anytime behavior. Since it may be unknown a priori how many evaluations
can be done in practice, we would recommend tuning for anytime behavior.

4 Final Remarks and Future Work

In this paper, we have analyzed the performance of five ACO algorithms for very
low budgets on the evaluation of candidate solutions. Our computational results
showed that EAS, RAS, MMAS, and ACS improve in performance over AS even
in such circumstances. However, to make these algorithms reach high perfor-
mance in short runs, very different parameter settings from the usual default
ones have to be used.
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There are a number of directions in which this work can be extended. Even
though by the analysis of the tuned parameter settings we obtained new insights
into the best parameter values for very short runs, the current tuning setting is
maybe not the most realistic one. In fact, in an expensive function evaluation
setting, the tuning would be rather time-consuming and it may be unrealistic
to afford a time-intensive fine-tuning for each different problem being tackled.
A next step would be to obtain more general settings. For example, we may
tune the ACO algorithms across many different combinatorial problems and in
this way derive robust parameter settings. Another question concerns whether
to use specific known ACO algorithms or rather consider a framework of ACO
algorithms from which known and new ACO algorithms may be instantiated.
Such a framework may lead ultimately to a higher performing ACO algorithm
than those we know nowadays–and this also holds for the here considered settings
of very few solution evaluations. Finally, another possibility is to use surrogate
modeling approaches to model fitness landscapes [11, 12]. While such surrogate
modeling approaches have widely been applied to black-box continuous function
optimization problems, their usage is more rare for combinatorial optimization
problems. Hence, the exploration of such models and their integration into ACO
algorithms may be a promising next step.

Acknowledgments. This work received support from the COMEX project
within the Interuniversity Attraction Poles Programme of the Belgian Science
Policy Office and from the European Research Council under ERC grant agree-
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