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Abstract Ant Colony Optimization (ACO) is a successful method for solving dif-
ficult combinatorial optimization problems. Following Ant System, the first ACO
algorithm, a large number of algorithmic variants have been developed that showed
significantly better performance on a wide range of optimization problems. Typi-
cally, performance was measured according to the solution quality achieved for a
given computation time limit, which usually allowed the evaluation of a very large
number of candidate solutions, often in the range of millions. However, there are
practical applications where the number of evaluations that can be done is very
restricted due to tight real-time constraints or to the high computational cost of
evaluating a solution. Since these situations are quite different from those for which
ACO algorithms were initially designed, current knowledge on good parameter set-
tings or the most promising search strategies may not be directly applicable. In this
paper, we examine the performance of different ACO algorithms under a strongly
limited budget of 1,000 evaluations. We do so using default parameter settings
from the literature and parameter settings tuned for the limited-budget scenario.
In addition, we compare the performance of the ACO algorithms to algorithms
that make use of surrogate modeling of the search landscapes. We show that tun-
ing algorithms for the limited-budget case is of uttermost importance, that direct
search through the ACO algorithms keeps an edge over techniques using surrogate
modeling, and that the ACO variants proposed as improvements over Ant System
remain preferable.

1 Introduction

Ant Colony Optimization (ACO) is a well-established metaheuristic that was in-
vented in the beginning of the 1990s (Dorigo, 1992; Dorigo et al, 1991), inspired
by real ants’ pheromone trail laying and following behavior. After the proposal of
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Ant System (AS), the first ACO algorithm, a number of other ACO algorithms
showing improved performance over AS have been proposed. The main algorith-
mic improvements included Ant Colony System (Dorigo and Gambardella, 1997),
Max-Min Ant System (Stützle and Hoos, 1997, 2000), Rank-based Ant System
(Bullnheimer et al, 1999) and a few others (see Dorigo and Stützle (2004) for a
review).

The development of ACO algorithms has usually focused on situations in which
the computation time that is available allows for the generation of a large number
of candidate solutions to be evaluated. A typical example in this context is the
“First International Contest on Evolutionary Optimisation” (Bersini et al, 1996),
where the competing algorithms were allowed to evaluate up to 10,000 · n candi-
date solutions for the symmetric Traveling Salesman Problem (TSP), where n is
the number of cities. This situation is common in the vast majority of the ACO
literature. Often, the candidate solutions generated by the ants are improved by
means of local search algorithms (Dorigo and Gambardella, 1997; Gambardella
et al, 2012; Stützle and Hoos, 1997), which results in many additional solutions
that need to be evaluated.

However, there are many situations in which an algorithm may evaluate only
very few solutions. One such situation arises if the algorithm operates in a setting
where tight real-time constraints exist such as in robotics applications: Even if
the evaluation of candidate solutions is very fast, the computation time may be
too restricted to allow the evaluation of many solutions. Another such situation
arises in applications where the evaluation of a candidate solution requires inten-
sive computation such that, within feasible computation times, only a very small
number of candidate solutions can be evaluated. The latter is a typical setting that
arises in the area of simulation-optimization (April et al, 2003; López-Ibáñez et al,
2008; Teixeira et al, 2012; Zeng and Yang, 2009), but also in industrial settings,
when the computation of the cost function requires significant computational effort
(Fernandez et al, 2014).

If only few candidate solutions can be evaluated, a first research question is how
to transfer the knowledge available in the ACO literature to this new situation.
This is an interesting question, as most ACO research has considered evaluation
budgets where the number of solutions evaluated is in the order of tens of thousands
or more. In this paper, we consider the evaluation budgets to be much smaller.
Concretely, we consider a budget of 1,000 evaluations in most of the experiments.
Obviously, one may wonder what would happen for even more restricted budgets
(say, 100 evaluations) or slightly larger budgets (say, 10,000 evaluations). However,
as we will see, the setting we examine is enough to show that our initial research
question leads to interesting new insights. We remark that similar questions have
been posed in different contexts on single ACO algorithms such as MAX-MIN Ant
System (Pellegrini et al, 2006) but using much higher evaluation budgets than
the ones we consider here. In addition, here we examine the question of which of
the algorithmic ACO variants are the most performing in very low-budget cases.
In a preliminary conference version of this research (Pérez Cáceres et al, 2014),
we already explored ACO algorithms in reduced budget conditions. The experi-
ments reported there showed that the default parameter settings of popular ACO
algorithms are not appropriate for reduced budget conditions. Here, we confirm
and extend those earlier computational results presenting additional experimental
results.
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In this paper, we also explore the possibility of using surrogate modeling ap-
proaches to help the search for high-quality solutions in low-budget cases (Jones
et al, 1998; Knowles et al, 2009). These methods iteratively build a model of the
solution landscape, which is less expensive to evaluate and can be searched to find
promising solutions. This approach is widely used in continuous optimization in
the form of, for example, the efficient global optimization (EGO) approach (Jones
et al, 1998). Recently, both Zaefferer et al (2014b) and Moraglio and Kattan (2011)
have proposed adaptations of the EGO method to tackle combinatorial problems.
In this paper, we combine the best performing of these adaptations of EGO (Za-
efferer et al, 2014b) with various ACO algorithms for optimizing the surrogate
model. We then compare the performance of some of the main ACO algorithms
—Ant System (AS), Elitist Ant System (EAS), Rank-based Ant System (RAS),
MAX-MIN Ant System (MMAS), and Ant Colony System (ACS)— when applied
directly to the problem and when used for optimizing the surrogate model of EGO.
In both these cases, we compare the default ACO parameter settings recommended
in the literature (Dorigo and Stützle, 2004) and the parameters settings obtained
after tuning with irace (López-Ibáñez et al, 2011), an automatic algorithm config-
uration tool.

As benchmark problems, we use the TSP and the Quadratic Assignment Prob-
lem (QAP), which are the main benchmark problems that have been used in the
early research on ACO (Bullnheimer et al, 1999; Dorigo and Gambardella, 1997;
Dorigo et al, 1996; Stützle and Hoos, 2000). However, here we consider them under
the constraint that at most 1,000 candidate solutions can be evaluated during an
algorithm run.

The article is organized as follows. In Section 2, we present the algorithm de-
tails and the experimental setup. Section 3 presents detailed experimental results.
Finally, we summarize the main findings of our work in Section 4.

2 Experimental Setting

2.1 Problems

The main reasons for choosing the TSP and the QAP as our test problems are that
both problems are standard problems on which many ACO algorithms have been
tested (Dorigo and Stützle, 2004), that they are very difficult to solve (NP-hard),
that they have different structure w.r.t. their landscape properties (Stützle and
Hoos, 2000), and that they are classical combinatorial problems representative of
many other routing or assignment problems. In addition, the solution evaluation in
both problems is very fast in practice: O(n) and O(n2) for the TSP and the QAP,
respectively. This fast evaluation allows us to perform comprehensive experiments
within a feasible amount of time, and in particular, it allows us to consider the
tuning of the involved ACO algorithms by automatic algorithm configuration tools.
The latter is relevant, as it gives a hint on how parameter settings should be chosen
if the evaluation budget is small and can, thus, provide more general guidelines.

For both problems, we have generated a set of benchmark instances to be used
in the evaluation of the algorithms. In the TSP case, we used Random Uniform
Euclidean (RUE) instances. These are generated by first placing points uniformly
at random in a square of dimension 10,000 × 10,000 and then computing the
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distances between the points (rounded to the closest integer). We have generated
55 instances for each number of cities n ∈ {50, 60, 70, 80, 90, 100}. 50 instances of
each size are used for tuning, while the others are used as test set. For the QAP,
the instances used by Pellegrini et al (2014) are taken. These instances have a
structure similar to that of instances occurring in practical applications. We have
used 60 instances for each size n ∈ {60, 80, 100}, using 50 of each size for tuning
and 10 of each size as test set.

2.2 ACO Algorithms

Our study comprises five of the best-known ACO algorithms: AS (Dorigo et al,
1996), EAS (Dorigo et al, 1996), RAS (Bullnheimer et al, 1999), MMAS (Stützle
and Hoos, 2000) and ACS (Dorigo and Gambardella, 1997). A detailed description
of the above algorithms is given by Dorigo and Stützle (2004), as well as in the
original articles; therefore, we only give a concise description of the main algorithm
features so that all the parameters that are later tuned are explained.

Each ant in an ACO algorithm can be seen as a probabilistic construction
procedure, which makes usage of one or two types of numerical information during
the construction process. The first is the pheromone trail information, which is a
numerical value associated with construction decisions that is adapted during the
ACO algorithm run to bias the search toward high-quality solutions. The second
is the heuristic information related to specific construction decisions. Heuristic
information is available (and useful) for many combinatorial problems, and thus,
it helps to improve the quality of the solutions generated by ACO algorithms;
however, if no heuristic information is available, an ACO algorithm may proceed
without it.

Many ACO algorithms use the random-proportional rule introduced with AS.
This rule chooses at each decision point i the next feasible element j to be added
to an ant’s partial solution sp with a probability given by

pij =
ταij · ηβij∑

l∈N(sp)n
ταil · η

β
il

if j ∈ N(sp), (1)

where N(sp) is the set of elements j that can extend a partial solution sp maintain-
ing feasibility of the partial solution; τij is the pheromone trail associated with the
decision, ηij is the related heuristic information, and α and β are two parameters
that regulate the influence of pheromones and heuristic information.

ACS constructs solutions using a rule that allows for a more deterministic
choice: With a probability q0, the element j is chosen as the one that maximizes
the term ταij · ηβij (ties being broken randomly), while with a probability 1 − q0 a
random choice following Equation 1 is made.

In this article, we use two minor variations of the ACO algorithms compared
to how they were defined in the original papers. The first variation is that all ACO
algorithms may use the action choice rule of ACS, that is, make a deterministic
choice with probability q0. The default version of these algorithms is simply ob-
tained by setting q0 = 0. The second is that we allow ACS to use a setting of α 6= 1
(the parameter α does not appear in the original version of ACS). The original
version of ACS is obtained by setting α = 1.
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Once the m ants have terminated their solution construction, where m is a
parameter that is also called colony size, pheromone update takes place. AS and
its direct variants EAS, RAS, and MMAS do so by first reducing the amount of
pheromone (a process called pheromone evaporation) by a fixed factor ρ, where ρ
is a parameter (0 ≤ ρ < 1), and then depositing pheromone of an amount that is
inversely proportional to the solution cost. This update can be written as

τij = (1− ρ) · τij +∆τalgij (2)

where ∆τalgij is the amount of pheromone deposited in an algorithm-specific way for
each of the algorithms alg ∈ {AS,EAS,RAS,MMAS}. In all these four algorithms,
the amount of pheromone deposited by a solution sk considered in the pheromone
update is equal to 1/Lk, where Lk is the solution quality of sk. In AS, each
ant that has generated a solution in the current algorithm iteration deposits its
corresponding amount of pheromone on the edges that it has traversed. In EAS,
in addition to the deposit of AS, the best solution found since the beginning of the
algorithm run, sgb (for global-best solution), deposits an amount of pheromone
equal to e/Lgb, where e is an integer parameter giving the weight of sgb. In RAS,
the best r − 1 solutions of each iteration are assigned weights decreasing from
r − 1 (for the best ranked solution) to one (for the solution ranking r − 1) and
then deposit an amount of pheromone proportional to their rank; additionally, also
solution sgb deposits pheromone using a weight r, a parameter of RAS. In MMAS,
only one solution is chosen for pheromone deposit after each iteration; this may
be the iteration-best, the global-best, or the restart-best solution.

ACS uses a different pheromone deposition rule; it only deposits pheromone
on the global-best solution using the formula

τij = (1− ρ) · τij + ρ · τgbij .

In addition, in ACS, each ant applies immediately after each construction step the
so-called local pheromone update rule, where we have

τij = (1− ξ) · τij + ξ · τ0;

τ0 is a very small constant. This rule has the effect of removing pheromone at each
of the construction steps, and thus, it favors exploration of the search.

In contrast to the pheromone update rule of AS, the other ACO algorithms
use more explicitly the best solutions found (iteration-best, global-best, or restart-
best) during the search, which favors a stronger convergence. However, depending
on the used parameter settings, this stronger convergence may happen only after
a rather long computation time (Dorigo and Stützle, 2004).

Here, we use the implementation of the ACO algorithms as provided by the
ACOTSP software (Stützle, 2002). We neither use candidate sets nor local search.
The former is excluded to avoid usage of problem-specific knowledge that may not
be available in expensive optimization problems; the latter is excluded as the small
number of evaluations does not even allow to complete a single neighborhood scan
for the problem sizes we consider. As ACOTSP provides only the code for tackling
the TSP, we have adapted the software also to the QAP so that we can use the
same implementation of the ACO algorithms for both. However, in the QAP case,
we have not considered the usage of heuristic information. In the TSP case, the
exclusion of heuristic information is simply handled by setting β = 0.
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2.3 Efficient Global Optimization

When the evaluation of solutions is very costly, the use of surrogate models in the
optimization process may prove beneficial (Jones et al, 1998; Knowles et al, 2009).

This approach fits a model M̂ of the search landscape using an available set of
candidate solutions together with their computed objective function values. The
approach then uses the model as an inexpensive estimation (inexpensive w.r.t. the
exact evaluation of a candidate solution) of the objective function and computes

estimates M̂(si) for each candidate solutions si. Only the best (or a subset of the
best) candidate solutions as judged by the model are then actually evaluated using
the exact objective function. This evaluation, in turn, is used to update the model
M̂ , refining it in this way and the process then iterates.

This approach has become rather popular for continuous optimization prob-
lems; a prominent example is the Efficient Global Optimization (EGO) algorithm
by Jones et al (1998). This algorithm iteratively fits a stochastic process model
(Kriging) to approximate the solution space. This is done by estimating the pa-
rameters of the model using maximum likelihood estimation. Initially, the model
is created using a limited set of data points. At each iteration, EGO searches for a
solution that maximizes the Expected Improvement (EI), which is a measure that
takes into account the mean prediction for a solution and the uncertainty about
the estimation. Maximizing EI instead of the model prediction gives EGO a way
to balance exploration and exploitation, avoiding a too fast convergence of the
algorithm.

Recently, these surrogate modeling approaches have been applied to the so-
lution of combinatorial optimization problems (Moraglio and Kattan, 2011) and
of permutation problems (Moraglio et al, 2011; Zaefferer et al, 2014a,b). This is
done by using an appropriate definition of a distance measure between solutions in
order to calculate the correlation between data points. The distance measure must
be selected according to the problem at hand; examples of distance measures and
correlations between these measures can be found in (Schiavinotto and Stützle,
2007; Zaefferer et al, 2014a). In our experiments, we use the bi-directional adja-
cency distance when solving the TSP. This measure defines the distance between
two TSP tours as n minus the number of times two cities are direct neighbors
in both tours. When solving the QAP, we use a generalized Hamming distance,
which defines the distance between two QAP solutions as n minus the number of
positions in the two permutations that are the same. Otherwise, our implemen-
tation of the EGO approach follows the Kriging model that was found to be the
best performing implementation of the EGO principle by Zaefferer et al (2014b).
Our implementation is written in C in order to speed up computation.

When the number of data points increases, the computation of the model
becomes increasingly expensive. We therefore limited the number of solutions that
are used to compute the model M̂ to a maximum of 300. When the number of
available solutions becomes larger than 300, we eliminate the solution with the
smallest average distance from the others in the set of data points. The generation
of the solutions that are to be evaluated by the model M̂ is done in our case by
the same ACO algorithms that we apply in our analysis. As a result, we have
five variants of the EGO algorithms according to which of the ACO algorithms
(AS, EAS, RAS, MMAS, or ACS) is chosen to generate candidate solutions. We
refer to the five resulting algorithms as EGO-AS, EGO-EAS, etc.; if we want to
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refer generically to all of them, we use EGO-ACO. Finally, note that candidate
solutions can be generated in a straightforward way by the ACO algorithms even
when using the model M̂ for evaluating them: The main necessary change is to
replace the direct evaluation of a candidate solution through the objective function
by the estimation through the model M̂ .

2.4 Automatic Configuration

The comparison of ACO and EGO algorithms is done in various stages, where we
first consider default parameter settings and then parameter settings tuned for
the scenario with strongly limited evaluation budget. The comparison using de-
fault parameter settings is interesting because algorithms are often applied using
parameter settings known from the literature even when tackling different scenar-
ios. Parameter tuning reveals that, as maybe expected, this way of proceeding may
result in poor performance for several of the ACO algorithms. The main reason is
that default parameter settings were usually devised considering scenarios where a
large number of solution evaluations can be done. For tuning, we apply the irace

software (López-Ibáñez et al, 2011) that implements Iterated F-race and other
racing methods (Balaprakash et al, 2007). The scenarios we considered for tuning
are the following.

tune-ACOTSP, tune-ACOQAP: These scenarios tune the ACO algorithms
using a maximum budget for the run of each algorithm of 1,000 solution evalua-
tions. These scenarios require the tuning of four parameters (α, β,m, q0) common
to all ACO algorithms for the QAP and the TSP, plus the tuning of β in the
TSP case where the usage of β is considered, plus the tuning of algorithm-specific
parameters for EAS (parameter e) and RAS (parameter r). The parameters and
their ranges are given in Table 1. The budget considered for each tuning is 10,000
runs of the corresponding ACO algorithm. Note that this budget refers to how
many times during a tuning run an algorithm may be executed; each algorithm is
executed for 1,000 evaluations. For each benchmark problem, the first 50 instances
of each size n (see Sec. 2.1) are used as a training set for the tuning.

tune-EGOTSP, tune-EGOQAP: These scenarios tune the settings of the
ACO algorithms when they are used inside EGO. This tuning is only done when
EGO is allowed a maximum of 100 evaluations instead of the default 1,000. The
reason for this is twofold. First, a single execution of EGO for a total of 1,000
evaluations requires about three hours of CPU time on our hardware.1 Second,
our initial experiments with EGO (reported in the next section) show that its use
is beneficial only when a very small number of evaluations is allowed. The total
configuration budget for each tuning run was 5,000 runs of the EGO algorithm
using as training set the same instances as in the scenarios tune-ACOTSP and
tune-ACOQAP.

1 All experiments were performed on a single core of cluster nodes each equipped with two
AMD Opteron 6272 16 cores CPUs running at 2.1 GHz and with 64 GB RAM. Note that the
heavy computation needs for the model update, and other computations in EGO make this
approach an option in case the actual real evaluation of a candidate solution involves very high
computation times but not for the case of very tight real-time constraints.
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Table 1 Range of possible parameter values considered in the tuning of the parameter settings.

Common parameters for all scenarios RAS EAS TSP scenario

m α ρ q0 r e β

[5, 100] [0, 10] [0.01, 1] [0, 1] [1, 100] [1, 750] [0, 10]

3 Experimental Results

In this section, we study the performance of the considered ACO and EGO-ACO
algorithms when solving TSP and QAP instances. All analyses will be done con-
sidering default and tuned parameter settings of the algorithms. We first compare
the five ACO algorithms in Section 3.1 and next the EGO-ACO algorithms in
Section 3.2. The results of this latter comparison suggested to have a closer look
at even smaller budgets than the default 1,000 evaluations we considered, which
is done in Section 3.3. We further examine in Section 3.4 whether the availabil-
ity of heuristic information would change our initial conclusions and explore the
range of parameter settings that are obtained in repeated tuning runs. Finally, in
Section 3.6, we consider cross-benchmark comparisons where parameter settings
tuned on one problem are applied to the other and vice versa.

In the remainder of the paper, statistical significance tests refer to Wilcoxon
signed-rank tests at the 0.05 significance level with Bonferroni correction for mul-
tiple testing and pairing on the instances. For the experiments, we use one single
run for each of 30 test instances for the TSP and the QAP.

3.1 Ant colony optimization algorithms

3.1.1 Default parameter settings

The first comparison uses the ACO algorithms with their default parameter set-
tings as recommended in the relevant literature (see Dorigo and Stützle, 2004) or
the ACOTSP code (Stützle, 2002) and uses an evaluation budget of 1,000. The
experiments reported in this section do not make use of heuristic information: For
ACOQAP, no heuristic information was implemented, while for ACOTSP we set
β = 0. The reason to exclude heuristic information is to simulate a real-world
situation where such kind of information may not be available or be too expen-
sive to compute. The results are presented using AS as a baseline; in particular,
we computed, for each instance separately, the relative percentage deviation of
the solutions’ quality obtained by each ACO algorithm when compared to the
one obtained by AS. (By definition, the percentage deviation from AS to itself is
zero.) The results are then presented as boxplots showing the distribution of these
percentage deviations across the 30 test instances.

Figure 1 gives the resulting plots. A value larger (smaller) than zero indicates
worse (better) performance than AS. The figure shows that the performance of
the ACO algorithms relative to AS is similar in the TSP and the QAP cases.
In both cases, the results obtained by MMAS are not statistically different from
the AS ones, while ACS obtains the best results followed by EAS; RAS obtains
statistically significantly better results than AS only on the TSP.
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Fig. 1 Boxplots of the percentage deviation of the solution quality obtained by the ACO
algorithms taking AS as reference, using their default parameter settings. The line for AS is
by definition the zero-line. Positive values indicate that AS obtained a better solution. The
results are given across all test instances.

Fig. 2 Average solution quality as a function of the number of solution evaluations. Compared
are the five ACO algorithms for ACOTSP (left) and ACOQAP (right) using default parameter
settings. The average is computed across all test instances.

Figure 2 shows the average solution quality as a function of the number of
evaluations across the tested instances for the five ACO algorithms. These curves
show that ACS and EAS intensify the search more effectively than the other
algorithms.

3.1.2 Tuned parameter settings

Tuning the parameters of an algorithm may significantly improve it. The tuning
of the ACO algorithms parameters using the irace software confirms this fact.
Figure 3 shows the improvement of each ACO algorithm comparing the results
obtained with parameter settings from the tune-ACOTSP and tune-ACOQAP
scenarios to default parameter settings. Negative values indicate improved quality.
In all cases except AS, the improvement is statistically significant and in many
cases substantial. MMAS and RAS benefit clearly the most from the tuning.

The performance improvement through tuning has also a direct impact on the
relative ranking of the ACO algorithms. Figure 4 shows the percentage deviation
of the results obtained by the tuned ACO algorithms w.r.t. those obtained by AS
with tuned parameter settings, which is used as a baseline. For both problems,
EAS, RAS, MMAS, and ACS improve significantly over the performance of AS—
all differences being so large that no statistical test is needed. For the TSP, the
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Fig. 3 Boxplots of the percentage deviation of the solution quality obtained by the ACO
algorithms with tuned parameter settings taking as reference the results obtained by the re-
spective ACO algorithms with default parameter settings. As an example, the boxplot of RAS
indicates the difference between RAS using tuned parameter settings and using its default pa-
rameter settings. Positive values indicate that the default version obtained a better solution.
The results are given across all test instances.

Fig. 4 Boxplots of the percentage deviation of the solution quality obtained by the ACO
algorithms taking AS as reference, using their tuned parameter settings. The line for AS is
by definition the zero-line. Positive values indicate that AS obtained a better solution. The
results are given across all test instances.

improvement is substantial, being in the range of 30% to more than 50%. The
best performance among the algorithms is obtained by RAS, which is statistically
significantly better than the other algorithms for both the TSP and the QAP.

The default and tuned parameter settings for each of the ACO algorithms on
the TSP and the QAP are shown in Table 2. Repeating the tuning procedure
results in similar parameter settings found (see Section 3.5). For each of the five
algorithms, there are settings that differ strongly from the recommended default
settings. For example, for MMAS, the largest differences are for ρ and m, while for
ACS, these are for the parameters q0 and α. These differences arise mainly from the
fact that the default ACO algorithm settings were designed for a scenario where
ample computation time is available. The tuned parameter settings, especially
for RAS and MMAS, imply a much stronger exploitation of the best solutions
generated: The high evaporation rate quickly shifts the search focus around the
best solutions found, and the smaller number of ants allows performing more
iterations so that appropriate pheromone distributions reflecting the best found
solutions can be established. Maybe surprising is the low setting of q0 for ACS,
but this is compensated by the very high setting of α, which biases the choice
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Table 2 Tuned and default parameter settings of the five ACO algorithms for the TSP and
QAP scenarios. The values are given as tuned ACOTSP / tuned ACOQAP / default (the same
default is used for both problems, TSP and QAP). The ’specific’ column corresponds to the
parameters specific to EAS (e) and RAS (r).

m α ρ q0 specific

AS 44 / 71 / n 1.08 / 0.53 / 1 0.44 / 0.32 / 0.5 0.07 / 0.53 / 0.0 −
EAS 8 / 9 / n 0.76 / 0.51 / 1 0.32 / 0.34 / 0.5 0.05 / 0.68 / 0.0 221 / 148 / n
RAS 35 / 32 / n 1.31 / 0.78 / 1 0.72 / 0.74 / 0.1 0.16 / 0.36 / 0.0 10 / 8 / 6

MMAS 9 / 14 / n 1.51 / 1.07 / 1 0.23 / 0.60 / 0.02 0.00 / 0.36 / 0.0 −
ACS 10 / 5 / 10 6.87 / 2.24 / 1 0.08 / 0.41 / 0.1 0.25 / 0.03 / 0.9 −

strongly to the decision associated with the highest pheromone level. We provide
a more detailed analysis of the parameter settings in Section 3.5.

3.2 Efficient Global Optimization

In this section, we analyze the performance of the EGO variants using first ACO
default parameter settings and next ACO tuned parameter settings.

3.2.1 Default EGO-ACO parameter settings

We first compare the results obtained by EGO using each of the five ACO algo-
rithms for optimizing the Kriging model; this results in five algorithms that are
in the following identified as EGO-AS, EGO-EAS, etc., depending on which ACO
algorithm is used to optimize the Kriging model. Figure 5 shows the resulting
percentage deviations using as reference the results obtained by EGO-AS. Except
for EGOTSP-ACS2, none of the algorithms show statistically significant differ-
ences for the TSP or the QAP. Hence, one may conjecture that the choice of the
particular ACO algorithm for optimizing the Kriging model has no strong impact
on the final results. Even more surprisingly, EGO-ACS with default settings gives
somewhat worse results than the others, even though ACS was clearly the best
performing ACO algorithm when applied directly to the problem (see Fig. 1).

A first question is whether the usage of surrogate modeling improves over the
direct application of ACO algorithms to the problem. The results of this compari-
son are given in Fig. 6. Although the performance of EGOTSP-AS, EGOTSP-RAS
and EGOTSP-MMAS is statistically significantly better compared to AS, RAS,
and MMAS, respectively, the difference is not large in absolute terms. Moreover,
in the cases of EAS and ACS, the usage of surrogate modeling results in signifi-
cantly worse performance. If we take into account that the tuned ACO algorithms
reached, with the exception of AS, much better performance than their default
versions, it is clear that the EGO variants are not competitive to tuned ACO
algorithms under the settings tested here.

2 In what follows, we use the problem name to identify results specific to a problem, e.g.
EGOTSP-AS refers to the TSP results obtained by using AS to search the landscape of the
expected improvement.
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Fig. 5 Boxplots of the percentage deviation of the solution quality obtained by the EGO-ACO
algorithms taking EGO-AS as reference, using their default parameter settings. The line for
EGO-AS is by definition the zero-line. Positive values indicate that EGO-AS obtained a better
solution. The results are given across all test instances.

Fig. 6 Boxplots of the percentage deviation of the solution quality obtained by the EGO-
ACO algorithms with default parameter settings taking as reference the results obtained by
the respective ACO algorithms with default parameter settings. As an example, the boxplot
of RAS indicates the difference between EGO-RAS and RAS using default parameter settings.
Positive values indicate that the ACO algorithm obtained a better solution. The results are
given across all test instances.

3.2.2 Tuned EGO-ACO parameter settings

The EGO model implicitly has a diversifying effect as it tends to explore unseen
parts of the search space. Hence, the culprit of the relatively poor performance of
the EGO-ACO algorithms we observed may be that the default ACO parameter
settings lead to a too strongly exploratory behavior. To test this conjecture, we
applied the parameter settings of the ACO algorithms tuned for 1,000 evaluations
from Table 2 to EGO-ACO; these parameter settings favor intensification of the
search, as shown by the strongly improved performance shown in Section 3.1.2.
The results of these experiments are shown in Figure 7, where we compare the
solution quality of the default and tuned settings of the ACO algorithms. For
EGOTSP-MMAS, EGOTSP-RAS, and EGOQAP-EAS statistically significantly
improved performance is obtained; in the other cases, the results change slightly
but not significantly. However, this improvement is not enough to make the EGO-
ACO algorithms competitive to the tuned parameter settings of ACO, as it is
shown in Figure 8. Thus, once adequate parameter settings are given for the ACO
algorithms, better or equivalent results are obtained applying them directly to the
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Fig. 7 Boxplots of the percentage deviation of the solution quality obtained by the EGO-
ACO algorithms with tuned parameter settings taking as reference the results obtained by the
respective EGO-ACO algorithms with default parameter settings. As an example, the boxplot
of RAS indicates the difference between EGO-RAS using tuned parameter settings and using
its default parameter settings. Positive values indicate that the default version obtained a
better solution. The results are given across all test instances.

problem without using surrogate modeling. The only exception is EGOTSP-AS,
which results in statistically significantly better quality than AS.

If we compare the development of the solution quality over the number of
solutions generated, we can observe that the ACO algorithms obtain much bet-
ter quality solutions across the largest range of the possible number of evalua-
tions. Only for very few evaluations, the EGO algorithms may compete with the
ACO algorithms, which is most visible for the case of EGOTSP-MMAS in Fig. 9
[analogous plots for the other ACO algorithms are available in the supplementary
material (Pérez Cáceres et al, 2015)].

3.3 Strongly reduced budget case

Surrogate models are usually used when very few evaluations can be made, and
as shown, there may be situations where they can become competitive to ACO
algorithms. Here, we examine whether further restrictions of the evaluation bud-
get may reverse the conclusions we have obtained so far. In particular, here we
consider a maximum of 100 candidate solution evaluations. This also allows us
to directly tune the ACO parameters of the EGO-ACO algorithms (see scenar-
ios tune-EGOTSP and tune-EGOQAP in Sec. 2.4) instead of applying the tuned
settings found in the scenarios tune-ACOTSP and tune-ACOQAP to EGO-ACO.
The scenarios tune-EGOTSP and tune-EGOQAP should be better to judge EGO
performance, as best parameter settings for the ACO algorithms to explore the
surrogate model surface may be very different from the ones that are necessary
to reach high-quality solutions by ACO alone. However, similarly to what was
reported in the previous section, the tuning did not lead to strongly improved
EGO-ACO performance over using default parameter settings. For the TSP, tuned
parameter settings improve statistically significant performance over the respec-
tive ACO algorithms only for EGOTSP-MMAS and EGOTSP-ACS and for the
QAP only for the EGOQAP-RAS and EGOQAP-EAS algorithms. Boxplots of
these results are given in the supplementary material (Pérez Cáceres et al, 2015).

To make a fair comparison, we also re-tuned the ACO algorithms for a budget
of 100 evaluations. The parameter settings can be found in the supplementary
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Fig. 8 Boxplots of the percentage deviation of the solution quality obtained by the EGO-
ACO algorithms with tuned parameter settings taking as reference the results obtained by the
respective ACO algorithms with tuned parameter settings. Positive values indicate that the
ACO algorithm obtained a better solution. The results are given across all test instances.

Fig. 9 Average solution quality as a function of the number of solution evaluations. Compared
are the EGO-ACO algorithms versus the ACO algorithms for MMAS (top) and ACS (bottom)
using tuned ACO parameter settings. The average is computed across all test instances.

material. Figure 10 gives the resulting percentage deviations of solution quality
obtained by the EGO-ACO algorithms w.r.t. the results obtained by the ACO
algorithms, both using parameter settings tuned for 100 evaluations. Except for
AS and EGOTSP-RAS, applying ACO algorithms directly on the problems instead
of searching the surrogate model improves performance in a statistically significant
way. Hence, even in situations with very low overall number of evaluations, the
ACO algorithms are preferred over the EGO-ACO ones. The best performance
among the ACO algorithms is reached by EAS and ACS for the TSP and by RAS
and EAS for the QAP, although the difference with respect to the other algorithms
(except AS) is not large in absolute terms. [For details, see the supplementary
material (Pérez Cáceres et al, 2015)].
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Fig. 10 Boxplots of the percentage deviation of the solution quality obtained after 100 evalu-
ations by the EGO-ACO algorithms with parameter settings tuned for 100 evaluations taking
as reference the results obtained by the respective ACO algorithms with parameter settings
tuned for 100 evaluations. Positive values indicate that the ACO algorithm obtained a better
solution. The results are given across all test instances.

3.4 Heuristic Information

Heuristic information may help to guide the search process and be exploited during
the solution construction by the ants. Even in the case of expensive optimization
problems, the algorithm designer may have knowledge about the problem that may
allow her to derive such heuristic information; often, this will also be possible if one
is in real-time scenarios that allow only for very few evaluations. In this section,
we explore the relative performance of the ACO and EGO-ACO algorithms if
such heuristic information is available. In particular, we use the example of the
application to the TSP, where it is known that the heuristic information provides
reliable guidance towards good-quality solutions.

3.4.1 ACO algorithms

As a first step, we compare the performance of default parameter settings of the
ACO algorithms to that of AS. The only exception is that we set β = 2 for all
ACO algorithms, since we know in advance that different settings of this parameter
will strongly affect the results. Figure 11 (left plot) shows the percentage devia-
tion of the solutions generated by the ACO algorithms from that of AS. Maybe
surprisingly, RAS and MMAS exhibit much worse results than AS. This may be
explained by the fact that both algorithms use a relatively low evaporation rate
setting as default that does not allow them to converge towards high-quality solu-
tions within the available computation budget. Differently, EAS and ACS improve
over the AS results. This might be explained by the fact that their search is more
exploitative already after the first evaluations. For EAS, this is due to the higher
evaporation rate than in RAS and MMAS and to the strong pheromone deposit by
the global-best solution when compared to AS. For ACS, this is mainly due to the
large setting of the q0 parameter that directly exploits the global-best solution. Af-
ter tuning (Fig. 11, right plot) all parameters including β, RAS, EAS, MMAS and
ACS all show better performance than AS. The differences between the algorithms
are not statistically significant except for the difference between MMAS and EAS
and the differences between all other algorithms and AS. The main reason that
the conclusions change after tuning is, as in Section 3.1.2, that the various ACO
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Fig. 11 Boxplots of the percentage deviation of the solution quality obtained by the ACO
algorithms taking AS as reference, using their default (left plot) and tuned (right plot) pa-
rameter settings. The line for AS is by definition the zero-line. All algorithms use heuristic
information. Positive values indicate that AS obtained a better solution. The results are given
across all test instances.

algorithms do not benefit equally from the tuning [see supplementary material for
details (Pérez Cáceres et al, 2015)].

3.4.2 Efficient global optimization

Also in EGO-ACO the ants may use heuristic information during the solution
construction. We therefore did the same analysis as in Section 3.2 but this time
with heuristic information enabled. Figure 12 shows on the left plot the percentage
deviation reached by the EGO-ACO algorithms using default parameter settings
relative to EGO-AS; on the right side, it shows the percentage deviation from
EGO-AS after using tuned parameter settings for the ACO algorithms. For de-
fault parameter settings, EGO-ACS is the only algorithm that gives a statistically
significant improvement over EGO-AS, while EGO-EAS obtains slightly worse re-
sults than EGO-AS. Using tuned parameter settings for the ACO algorithms has
a major impact on the performance of the EGO-ACO algorithms, and except for
EGO-ACS, all other EGO-ACO algorithms profit strongly from it (see right plot
in Fig. 12).

Finally, it is interesting to compare the results obtained with EGO-ACO to
those obtained with the ACO algorithms applied directly to the problem. Figure 13
shows that with the exception of EGO-MMAS and MMAS, in all other cases, it
is beneficial to apply the respective ACO algorithms directly to the combinatorial
problem that is to be solved. Hence, given that among RAS, EAS, MMAS and
ACS no clear winner arises when using tuned parameter settings and heuristic
information, the experimental results would suggest to use any of these instead of
EGO.

3.5 Parameter analysis

It is interesting to examine how the parameter settings differ between different
tuning runs. To do so, we tuned each ACO algorithm 20 times with irace. The
resulting distributions of the parameter settings that were found are given in Fig-
ure 14 for the case in which ACO algorithms are used without heuristic information
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Fig. 12 Left: boxplots of the percentage deviation of solution quality obtained by the EGO-
ACO algorithms taking EGO-AS as reference, using their default parameter settings. Positive
values indicate that EGO-AS obtained a better solution. Right: boxplots of the percentage
deviation of solution quality obtained by the EGO-ACO algorithms using tuned parameter
settings from the respective results using default parameter settings. All algorithms use heuris-
tic information. Positive values indicate that the default version obtained a better solution.
The results are given across all test instances.

Fig. 13 Boxplots of the percentage deviation of the solution quality obtained by the EGO-
ACO algorithms with tuned parameter settings taking as reference the results obtained by
the respective ACO algorithms with tuned parameter settings. All algorithms use heuristic
information. Positive values indicate that the ACO algorithm obtained a better solution. The
results are given across all test instances.

and in Figure 15 for the case in which heuristic information is used. The dotted
(red) line in each of the plots indicates the default parameter setting.

We consider first the case without heuristic information, that is, the results
in Fig. 14. Although the parameter settings selected by irace vary from tuning to
tuning, some clear trends can be observed. The smallest difference between default
and tuned parameter settings is observed for AS, while for other algorithms, the
differences can be much larger. For example, EAS and MMAS use much less ants
(parameter m) than in the default parameter settings. This allows them to do also
a larger number of iterations than is possible with the default setting of m. In addi-
tion, both algorithms and also RAS have a much larger settings for the pheromone
evaporation rate ρ than by default. A high pheromone evaporation helps to focus
the search quickly towards the best solutions that have been identified. Clearly,
an explanation for these differences is the need to exploit aggressively the best
solutions found so far due to the possibility of only evaluating very few solutions.
This interpretation is supported by a setting of q0 that is larger than zero for all
ACO algorithms. Only in the case of ACS the distribution of the tuned values for
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Fig. 14 Distribution of the parameter settings found in 20 runs of irace when ACO algorithms
do not use heuristic information. The dotted (red) lines indicate the default parameter setting
for each algorithm. The default parameter setting for the number of ants is the instance size;
as in our test instances the size varies, we assumed an “average” instance size of 80 to indicate
the default setting.

q0 is maybe surprising as the tuned settings of q0 are mostly much smaller than
the default setting of q0 = 0.9. However, in the case of ACS, this is made up by
the rather high value for α that is obtained in the tuning. In a sense, the way ACS
exploits the best solutions found so far is shifted from high settings to parameter
q0 to exploitation by high settings to parameter α.

The overall trends that arise for the tuned parameter settings in the ACOTSP
and the ACOQAP scenarios are similar. Nevertheless, differences also arise in the
best parameter settings for specific algorithms. In fact, in various cases, the box-
plots for the parameter settings in the two scenarios for two same ACO algorithms
do not overlap (see Fig. 15).

If we consider the tuned parameter settings in the case where heuristic infor-
mation is available (see Fig. 15), the trends are mainly the same, though typically
less pronounced. The main reason here is probably the fact that the heuristic in-
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Fig. 15 Distribution of the parameter settings found in 20 runs of irace when ACO algorithms
use heuristic information. The dotted (red) lines indicate the default parameter setting for each
algorithm. The default parameter setting for the number of ants is the instance size; as in our
test instances the size varies, we assumed an “average” instance size of 80 to indicate the
default setting.

formation in the TSP case is relatively reliable in focusing the attention of the
search on the most promising parts of the search space and, thus, requiring a less
strong focus on exploitation through other parameters.

3.6 Cross-benchmark comparison

The main trend arising in the tuned parameter settings is a shift towards set-
tings that imply a stronger exploitation of the search history and, in particular,
of the best-so-far solution identified during the search. In our case here, tuning is
feasible because we consider benchmark problems such as the TSP and the QAP
for which solution evaluation is very quick in practice. If one would like to apply
ACO algorithms to a problem where tuning becomes infeasible due to the high
computational cost, one may still adopt parameter settings of ACO algorithms
tuned for low-budget scenarios on less expensive benchmark problems. While one
could argue that parameter settings tuned for low-budget scenarios in the TSP
or QAP might not be useful for low-budget scenarios in other expensive prob-
lems, we conjecture that the importance of the low budget might be more crucial
than the actual problem to be tackled. We examine this question by performing a
cross-benchmark comparison of the tuned parameter settings. In other words, we
compare default versus tuned-for-QAP parameter settings on the TSP and default
vs. tuned-for-TSP parameter settings on the QAP. Figure 16 gives the correspond-
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Fig. 16 Left: boxplots of the percentage deviation of the solution quality obtained by the ACO
algorithms with tuned-for-QAP parameter settings taking as reference the results obtained by
the respective ACO algorithms with default parameter settings on the TSP. Right: boxplots of
the percentage deviation of the solution quality obtained by the ACO algorithms with tuned-
for-TSP parameter settings taking as reference the results obtained by the respective ACO
algorithms with default ACO parameter settings on the QAP. Positive values indicate that the
default version obtained a better solution. The results are given across all test instances.

ing results. The plots indicate that RAS, EAS, and MMAS profit strongly from
such a tuning even if done on a different problem. Differently, ACS results worsen
slightly when compared to its default settings, while AS results are almost unaf-
fected. This indicates that the former algorithms suffered in their default setting
from a strong lack of exploitation in the low-budget case, while ACS in its default
version already shows significant exploitation of the search history and does not
benefit from tuning on a single other problem.

When we do the same comparison to explore how much may be gained by
tuning on the right problem, we can observe in Fig. 17 that, as expected, some loss
of performance arises. In the case of RAS, EAS, and MMAS this loss is relatively
small when compared to the gains that may arise if replacing default parameter
settings with more exploitative ones. Differently, the loss for ACS seems to be
already quite significant and even be more than when compared to ACS default
settings. In practice, one would consider re-tuning the various ACO algorithms
across different problems with the goal of obtaining more robust settings that
possibly generalize better than the ones tuned for a single combinatorial problem.
This is, however, left for future research.

4 Conclusions and Future Work

In this paper, we have considered situations where the number of candidate solu-
tions that can be evaluated is very limited. This can be due to either tight real-time
constraints or due to very costly evaluation of candidate solutions as they arise,
for example, in simulation optimization. We have analyzed the performance of five
well-known ACO algorithms for such scenarios using as test problems the TSP and
the QAP. In addition, we have used the ACO algorithms as the search algorithms
within surrogate modeling approaches, in particular, the EGO approach.

Our findings can be summarized as follows. First, the tuning of the ACO al-
gorithms is crucial: Default parameter settings have often been proposed using
different application contexts where a much larger number of evaluations of candi-
date solutions is considered. In particular, RAS and MMAS have strongly profited
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Fig. 17 Left: boxplots of the percentage deviation of the solution quality obtained by the
ACO algorithms with tuned-for-QAP parameter settings taking as reference the results ob-
tained by the respective ACO algorithms with tuned-for-TSP parameter settings on the TSP.
Positive values indicate that the version using tuned-for-TSP parameter settings obtained a
better solution. Right: boxplots of the percentage deviation of the solution quality obtained by
the ACO algorithms with tuned-for-TSP parameter settings taking as reference the results ob-
tained by the respective ACO algorithms with tuned-for-QAP parameter settings on the QAP.
Positive values indicate that the version using tuned-for-QAP parameter settings obtained a
better solution. The results are given across all test instances.

from this tuning; other algorithms such as ACS exploit strongly the best found
solutions at the start of the search process already in their default setting and
profit to a less extent from tuning. Second, when considering tuned parameter
settings, the improved ACO algorithms remain preferable over the basic AS; this
is not necessarily true for the default parameter settings from the literature, high-
lighting the importance of proper tuning. Third, the use of surrogate modeling
approaches does not provide advantages over the known ACO algorithms, at least
for the settings considered here. Fourth, the more exploitative search behavior
implied by the tuned parameter settings seems to be responsible for the improved
performance: Our experiments show that tuned parameter settings for one prob-
lem under low-budget cases for EAS, RAS, and MMAS can be used to obtain
improved performance also on the other problem.

This work can be extended in a number of directions. Even though we have
some indication that the tuned parameter settings transfer from one problem to
some other, the current tuning setting is not the most realistic one. In an ex-
pensive function evaluation setting, tuning would be very time-consuming making
it difficult to afford a time-intensive fine-tuning for each different problem being
tackled. One possibility could be to obtain more general settings, for example,
by tuning ACO algorithms across many different combinatorial problems for low-
budget scenarios and in this way derive robust parameter settings. Alternatively,
one may obtain a candidate set of different parameter settings that were found
to be promising for different problems and select in pre-experiments the most
promising ones. Another direction could be to instantiate new ACO algorithms
for low-budget situations from a framework of ACO algorithms. One may assem-
ble such algorithms from algorithmic components and instantiate possibly new
ones that are superior to the known, pre-defined ACO algorithms. Finally, the
poor performance shown by EGO in the problems tackled here suggests to us that
there is still room for improvement when applying surrogate modeling approaches
(Jones et al, 1998; Knowles et al, 2009) to combinatorial search spaces and, in
particular, permutation-based problems.
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respectively. Leslie Pérez Cáceres acknowledges support of CONICYT Becas Chile.

References

April J, Glover F, Kelly JP, Laguna M (2003) Simulation-based optimization: Prac-
tical introduction to simulation optimization. In: Chick SE, Sanchez PJ, Ferrin
DM, Morrice DJ (eds) Proceedings of the 35th Winter Simulation Conference:
Driving Innovation, ACM Press, New York, NY, vol 1, pp 71–78
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Pérez Cáceres L, López-Ibáñez M, Stützle T (2014) Ant colony optimization on a
budget of 1000. In: Dorigo M, et al (eds) Swarm Intelligence, 8th International
Conference, ANTS 2014, Lecture Notes in Computer Science, vol 8667, Springer,
Heidelberg, Germany, pp 50–61
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Stützle T, Hoos HH (1997) TheMAX–MIN Ant System and local search for the
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