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Abstract Task partitioning is the decomposition of a task into two or more sub-tasks that
can be tackled separately. Task partitioning can be observed in many species of social in-
sects, as it is often an advantageous way of organizing the work of a group of individuals.
Potential advantages of task partitioning are, among others: reduction of interference be-
tween workers, exploitation of individuals’ skills and specializations, energy efficiency, and
higher parallelism. Even though swarms of robots can benefit from task partitioning in the
same way as social insects do, only few works in swarm robotics are dedicated to this sub-
ject. In this paper, we study the case in which a swarm of robots has to tackle a task that
can be partitioned into a sequence of two sub-tasks. We propose a method that allows the
individual robots in the swarm to decide whether to partition the given task or not. The
method is self-organized, relies on the experience of each individual, and does not require
explicit communication between robots. We evaluate the method in simulation experiments,
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using foraging as testbed. We study cases in which task partitioning is preferable and cases
in which it is not. We show that the proposed method leads to good performance of the
swarm in both cases, by employing task partitioning only when it is advantageous. We also
show that the swarm is able to react to changes in the environmental conditions by adapting
the behavior on-line. Scalability experiments show that the proposed method performs well
across all the tested group sizes.

Keywords Task partitioning · Foraging · Swarm robotics · Self-organization

1 Introduction

Task partitioning is a way of organizing work that consists in dividing a task into two or more
sub-tasks (Jeanne 1986; Ratnieks and Anderson 1999). The sub-tasks can then be tackled
separately by different individuals at the same time, or by the same individual at different
times.

In nature, task partitioning can be observed in many species of social animals. The most
evident example are humans, that exploit the advantages of task partitioning both at the
individual and at the societal level. At the level of the individual, a natural way of tackling a
non-trivial and lengthy task is to decompose it into less complex sub-tasks. At the level of the
society, many activities and interactions are so complex that in order to be manageable, they
need to be simplified by partitioning them. Partitioning has been studied and formalized
in many different disciplines. In politics and sociology it is coded in the divide et impera
principle, born in ancient roman times and applied throughout the centuries. In computer
science, this principle consists of recursively breaking down problems into sub-problems,
till the sub-problems become solvable, and then re-combining their solutions (Aho 1983).

As we move to simpler forms of individuals, such as social insects, problems and needs
also become simpler. Nonetheless, also in insect societies task partitioning can be an advan-
tageous way of organizing work. In fact, task partitioning can be observed in several species
of ants and bees, for example in material transportation, nest construction and waste removal
(Ratnieks and Anderson 1999). Benefits of task partitioning in all the mentioned activities
are, among others, reduction of interference between workers, better exploitation of individ-
uals’ skills and specializations, increased energy efficiency, and higher parallelism. On the
other hand, it has to be noticed that task partitioning also has associated costs, typically due
to coordination efforts, delays and overheads where two sub-tasks interface with each other.
Nonetheless, the fact that many examples of task partitioning can be observed in nature
suggests that the gain of using partitioning often overcomes its costs.

In this paper, we study task partitioning in the context of swarm robotics. Swarm robotics
deals with the study and the implementation of distributed robotic systems composed of a
large number of autonomous robots. Such systems are implemented drawing inspiration
from social insects. Therefore, they have many similarities with swarms of insects. As in
social insects, the individuals are simple with respect to the task they have to solve, and the
control of the swarm is decentralized. Complex behaviors result from individuals’ decisions
based on local perceptions, local interactions, and local communication. Parallels between
swarm robotics and the world of social insects are not limited to the characteristics of the
individuals, but they can also be drawn at the level of the problems to be solved. In fact, many
of the problems faced by social insects have also a relevance for swarm robotics. Examples
are: foraging, collective transport of heavy objects, self-assembly, exploration, and collective
decision making (see Beni 2005 and Şahin 2005 for a review). The fact that there are cases
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in which insects obtain benefits by employing task partitioning, makes appealing the study
of task partitioning in swarms of robots facing similar situations.

In this paper, we propose a method that allows a swarm of robots to decide which strategy
to use for tackling a given task: a strategy that makes use of task partitioning, and decom-
poses a task into a sequence of sub-tasks, or one that does not, and tackles the given task as
a single, unpartitioned task. The method is fully distributed, based on the individuals’ local
perception and requires no explicit communication between the robots. We test the method
using a swarm of robots in simulation-based experiments. The testbed for these experiments
is foraging, where the task of retrieving each object is pre-partitioned into a sequence of two
sub-tasks. We test different experimental conditions that vary in terms of the cost of employ-
ing task partitioning. The method proposed in this paper allows each robot in the swarm to
make a choice depending on this cost. The choice is either to perform the object retrieval
task as single, unpartitioned task, or to employ task partitioning and perform one of the two
sub-tasks. We show that the proposed method gives good performance in all the cases, with
the robots selecting an advantageous strategy. The method is able to react to changes in the
environment by adapting the strategy to new conditions. Additionally, the method scales
well with the number of robots, providing good performance across different swarm sizes.

The rest of the paper is organized as follows. Section 2 provides a review of related works.
Section 3 defines the task-partitioning problem studied in this work. Section 4 presents the
method we propose for tackling this problem. Section 5 presents the experimental frame-
work we use for evaluating the proposed method. Section 6 presents and discusses the ex-
periments and the results we obtained. Section 7 concludes the paper by summarizing the
contribution of the research and describing directions for future work.

2 Related work

Task partitioning and task allocation are ways of organizing work in groups of individuals.
Gordon (1999) defines task allocation as “the process that adjusts the numbers of workers
engaged in each task”. Ratnieks and Anderson (1999) describe task partitioning as “the phe-
nomenon in which a piece of work is divided among two or more workers”. The difference
between task partitioning and task allocation resides in the fact that, while task allocation
acts at the level of the workforce, task partitioning acts on the tasks themselves by decom-
posing them into smaller sub-tasks. The two topics are strongly intertwined as task allocation
is often applied to previously partitioned tasks.

Task allocation has been intensively studied both in biology and in robotics. Bonabeau et
al. (1996) describe the response threshold model and show that it can explain the division of
labor observed in Pheidole ants. Bonabeau et al. (1999) introduce a simple algorithm that is
based on the response threshold model and can be used to obtain flexible task allocation in
artificial systems.

Threshold-based task allocation methods have been studied, among others, in the context
of robotic foraging (Krieger and Billeter 2000; Labella et al. 2006) and objects clustering
(Agassounon and Martinoli 2002). Kalra and Martinoli (2006) compared threshold-based
and market-based task allocation methods. The authors claim that, when the information is
not accurate, threshold-based methods and market-based methods have similar performance.
With accurate information market-based methods perform better. Threshold-based methods
have the advantage of being less costly in terms of communication and computational re-
sources.

While studies in task allocation assume the existence of two or more tasks and focus on
the problem of assigning individuals to these tasks, this paper focuses on the problem of
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self-organized task partitioning. In the following we give a detailed review of the literature
on the topic. We start by reviewing the large body of research that has been carried out on
the topic in the field of biology. Then we review the few works that have been devoted to the
topic in the context of swarm robotics.

Task partitioning can be observed in many species of social insects, with variations in
terms of the task being performed, the number of sub-tasks, and the modality by which it is
realized (Ratnieks and Anderson 1999). Theraulaz et al. (2002) study the hunting strategy
of the ponerine ant Ectatomma ruidum. The ant partitions the hunting task into stinging
and transporting. Some individuals kill prey animals that are then transported to the nest by
others. The authors mention the fact that individuals’ differences and learning could be the
reasons why task partitioning is employed: it allows a better exploitation of the specialization
of the individuals. The work of Hart and Ratnieks (2001b) describes how task partitioning
is employed by the leaf cutting ant Atta cephalotes when performing garbage disposal and
management. This ant grows fungi in gardens located in the nest. Garbage has to be removed
from these gardens and stored in garbage heaps. The garbage removal task is partitioned into
two sub-tasks: first the garbage is removed by the ants working in the garden and then stored
in the garbage heaps by other workers. Partitioning the garbage removal task allows the ants
to isolate heap workers from the rest of the colony, as they are possibly contaminated by
hazardous pathogens. The one of Atta cephalotes is an example of another benefit of task
partitioning: it can be used to obtain physical separation of groups of workers. Lopes et al.
(2003) and Hubbell et al. (1980) point out that partitioning a foraging task allows workers to
return quickly to a food source, reinforcing the pheromone trail that leads to it. In this case
partitioning is beneficial as it increases the performance of the swarm.

When the task being partitioned involves the transportation of materials, the material
needs to be transferred between individuals working on the different sub-tasks. There are
two possible ways to make this happen: either through direct transfer between workers,
or through indirect transfer (Hart et al. 2002; Ratnieks and Anderson 1999). Anderson et
al. (2002) review partitioned foraging through bucket brigades: material is transferred di-
rectly from one individual to another. Transfers usually happen in locations that are not
determined a priori, but depend on the occasional encounters between workers. A benefit
of direct transfer is that it allows the adaptation of the weight of the load to the strength
of the transporter. The result is an increase of the throughput of objects delivered to the
nest (Reyes and Fernández Haeger 1999; Anderson and Jadin 2001). Most of the exam-
ples cited by Anderson et al. (2002) concern ants, but direct material transfer has also
been reported in the foraging activity of social wasps (Jeanne 2002) and bees (Seeley 1989;
Anderson and Ratnieks 1999).

When material transfer is indirect, specific locations called caches serve as temporary
storage, where materials can be dropped and picked up. Caches allow the individuals to
exchange material in an asynchronous fashion. The use of caches has been reported in sev-
eral species of social insects. Fowler and Robinson (1979) describe the strategy employed
in leaf foraging by the Atta ants: some individuals work on the tree, cutting the leaves and
then dropping them to the ground, which serves as cache. On the ground, leaves are cut in
pieces and transported to the nest by other workers. Here the advantage of partitioning stems
from the fact that the individuals do not need to repeatedly climb the tree. Partitioning the
task therefore reduces the energy requirements at the level of the swarm. Hart and Ratnieks
(2000, 2001a) point out that caches can be beneficial because they can reduce material losses
due to imbalances between foraging and processing rates.

Despite the potential advantages, task partitioning received only marginal attention in
swarm robotics research. In the work of Fontan and Matarić (1996), a foraging task is pre-
partitioned into several sub-tasks; each robot works on one of the sub-tasks in an exclusive
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area, assigned a priori. The study shows that the partitioning strategy increases task effi-
ciency by reducing robots’ competition for space. A similar result, with non-exclusive and
dynamically assigned working areas was presented by Pini et al. (2011a). Shell and Matarić
(2006) and Østergaard et al. (2001) compared homogeneous foraging and bucket brigade al-
gorithms. They focused on the importance of spatial subdivision in reducing interference and
improving performance. Lein and Vaughan (2008) extended the work of Shell and Matarić
(2006) by introducing a mechanism that adapts the size of the working areas of the robots in
response to the interference experienced by them. Parker and Zhang (2010) studied the case
in which a group of robots has to perform a predefined sequence of two mutually exclusive
sub-tasks: a sub-task should begin only when the preceding one is completed and no robot
is working on it anymore. The focus of the study is on the decision making process that
allows the robots to collectively estimate whether a sub-task is complete and the group can
start working on the following one. Lately, Scheidler et al. (2008) studied the influence of
partitioning in a task allocation system. More specifically, they studied the basic properties
of task-partitioning methods, like stability and efficiency, in a self-organized service system.

To the best of our knowledge, the few works listed here are the only ones that have been
devoted to the topic of task partitioning in swarm robotics. No work has been published
so far in which the robots autonomously decide, on the basis of the characteristics of the
environment and of the task, whether to partition a given task or not.

3 Definition of the task-partitioning problem

This work focuses on the case in which a given task can be partitioned into two sub-tasks.
These sub-tasks are sequentially interdependent, meaning that they have to be executed in
a specific order. This situation is depicted in the bottom part of Fig. 1: a given task can be
partitioned into two sub-tasks ϕ1 and ϕ2 that have to be performed in sequence. The output
of sub-task ϕ1 serves as input to sub-task ϕ2. We consider the case in which the sub-tasks

Fig. 1 Representation of the sequential task-partitioning problem. A given task can be completed either using
a non-partition or a partition strategy. When the non-partition strategy is employed, the given task is tackled as
a single, unpartitioned task, that requires a time tNP to be completed. When the partition strategy is employed,
the given task is partitioned into a sequence of two sub-tasks ϕ1 and ϕ2, that require, respectively, a time tϕ1
and tϕ2 for their completion. The two sub-tasks are linked one to the other by means of an interface I , whose
usage imposes an overhead in terms of interfacing times Π1 and Π2. In general, the time needed to perform
the sub-task ϕ1 differs from the one needed to perform ϕ2. Typically, tNP differs from the sum of tϕ1 and
tϕ2 . This makes task partitioning advantageous or not; the figure represents the case in which partitioning is
advantageous
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interface with each other in an asynchronous way: the output of ϕ1 can be stored at an
interface I , of finite storage capacity, and has then to be processed in the sub-task ϕ2.

As an example, let us consider the testbed employed in this work: foraging. Foraging
is the activity that consists in multiple (and in general parallel) repetitions of the object
retrieval task, that is harvesting an object from the environment and storing it in the nest.
Consider the case in which the object retrieval task can be partitioned into an harvest and
a store sub-tasks. The use of a cache, as described in Sect. 2, allows the transfer of objects
from the harvest to the store sub-tasks. The sequential dependency resides in the fact that,
in order to retrieve an object to the nest (thus completing once the object retrieval task), the
harvest and the store sub-tasks have to be performed once in the correct order.

Returning to Fig. 1, the given task can be performed using two different strategies. One
strategy is to tackle the given task as single, unpartitioned task. The other strategy is to em-
ploy task partitioning, and tackle each of the two sub-tasks ϕi separately. In the following,
we will refer to these strategies as the non-partition strategy and the partition strategy, re-
spectively. Each strategy entails a cost that can be measured in different ways, depending on
the context; examples are: energy, time, and resources required to perform the unpartitioned
task or the sub-tasks.

In this study we use time as the cost of a strategy. Under this definition, the cost of the
non-partition strategy is the time tNP needed to perform the unpartitioned task; the cost of the
partition strategy is the sum of the times tϕ1 and tϕ2 needed to perform the two sub-tasks ϕ1

and ϕ2. The optimal strategy is the strategy that requires the least time to complete the given
task. Notice that the time needed to perform the unpartitioned task and the sub-tasks not only
depends on the nature of the tasks themselves, but it also depends on the strategy employed.
For example, tNP can increase due to conflicts in accessing shared resources, while tϕ1 and
tϕ2 include possible overheads at the interface I (i.e., interfacing times Π1 and Π2).

In the example of foraging, the non-partition strategy could entail costs in terms of in-
terference between individuals along the path, as well as conflicts in accessing the objects
or in entering the nest. The partition strategy, by constraining the movement of individuals
within areas of the environment, can reduce these costs. On the other hand, it entails costs
in terms of overheads and delays when transferring objects between individuals. Which of
the two strategies is better depends on the characteristics of the environment.

4 The proposed method

In this work we propose an adaptive method that allows a swarm of robots to tackle the
problem depicted in Fig. 1. The method allows each robot to autonomously decide whether
to partition a given task into the sequence of two sub-tasks or not. We study different cases
in which the partition strategy can be more or less advantageous than the non-partition one.
The method does not make use of explicit communication: each robot takes its own decision
on the basis of the perceived costs of the two strategies.1 If a robot chooses to employ task
partitioning, it works only on one of the possible sub-tasks ϕi . If a robot chooses not to
employ task partitioning, it performs the given task as a single, unpartitioned task. After
completing a task, be it either the unpartitioned task or one of the two sub-tasks ϕi , a robot
decides which strategy to employ next. Note that, while for a single robot the choice of the

1The fact that the method does not employ active communication increases its applicability in contexts where
agents have none or limited communication capabilities. This is the case of this study, as we employ e-puck
robots. For more details about the robots please refer to Sect. 5.1.
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strategy is binary, at the level of the swarm there can be simultaneously some robots that
adopt the partition strategy and other robots that adopt the non-partition strategy.

In the proposed method, each robot has a probability Pp of employing task partitioning.
This probability is defined by the following sigmoid functions:

Pp =
{

[1 + e−S(t̂NP/(t̂ϕ1 +t̂ϕ2 )−1)]−1, if t̂NP > (t̂ϕ1 + t̂ϕ2),

[1 + e−S(1−(t̂ϕ1 +t̂ϕ2 )/t̂NP)]−1, if t̂NP ≤ (t̂ϕ1 + t̂ϕ2),
(1)

where S is a steepness factor, t̂NP is an estimate of the time tNP required to complete the
unpartitioned task. In other words, t̂NP is the estimated cost of the non-partition strategy.
On the other hand, t̂ϕ1 and t̂ϕ2 are estimates of the times tϕ1 and tϕ2 required to perform
each of the two sub-tasks. In other words, the sum of t̂ϕ1 and t̂ϕ2 is the estimated cost of
the partition strategy. The robots are never inactive, meaning that if a robot decides not to
employ task partitioning then it works on the unpartitioned task (with a probability Pnp =
1 −Pp). By using the functions given in (1), there is always a non-null probability of select-
ing the strategy perceived as the worst. Nonetheless, this probability decreases sharply with
the difference between the costs of the two strategies. The exploration-exploitation balance
can be regulated by varying the parameter S: the higher the value of S, the higher the amount
of exploitation.

Each estimate is computed as a weighted average of the time it takes to perform the sub-
tasks or the unpartitioned task. For the sub-task ϕi , the time estimate is updated as follows:

t̂ϕi
← (1 − α) t̂ϕi

+ α tM, (2)

where tM is the robot’s measure of the time that took the last execution of the sub-task ϕi .
α ∈ (0,1] is a weight factor that influences the responsiveness to changes: a high value of α

leads to a faster responsive behavior. An analogous formula is used for the estimate t̂NP.
The estimates t̂ depend not only on the intrinsic characteristics of the environment and of

the tasks, but also on the choices made by the other robots. Interference among robots im-
pacts on the time needed to perform the sub-tasks and the unpartitioned task, and depends
on how many robots are performing the same (sub-)task. In addition, in case the partition
strategy is employed, the time required to complete a sub-task ϕi also depends on the per-
formance of the robots working on the other sub-task. In fact, poor performance of one of
the sub-tasks reduces the throughput at the interface; this impacts negatively on the waiting
time experienced by the robots working on the other sub-task.

In the example of foraging previously mentioned in Sect. 3, each robot would keep an
estimate of the time it takes to complete the object retrieval task when performed as a single,
unpartitioned task, as well as when performed as sequence of harvest and store sub-tasks.
This information would be used by the robot to decide whether to employ task partitioning:
if the sum of the times needed to perform the two sub-tasks is less than the time needed to
perform the unpartitioned task, then the probability of employing the partition strategy is
higher than the one of employing the non-partition strategy.

As each robot has only estimates of the real costs, noise might lead to sub-optimal deci-
sions. Furthermore, the optimal choice that a robot can make can change over time as result
of the choices made by the other robots or changes in the environment. Therefore, the dif-
ferent strategies need to be sampled by the robots from time to time, in order for the system
to be reactive.

When a partition strategy is employed, a robot working on ϕ1 might be waiting for a free
store spot at the interface; analogously a robot working on ϕ2 might be waiting for input at
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the interface. When a robot finds itself in one of the two waiting situations, it can decide to
give up performing its sub-task with a probability defined as

Pgϕi
(wI ) = [

1 + eΘ(wI ,t̂ϕi
)
]−1

, (3)

where wI is the current measured time the robot has been waiting at the interface I .
Θ(wI , t̂ϕi

) is computed as

Θ(wI , t̂ϕi
) = K

(
wI − t̂ϕi

(t̂ϕ1 + t̂ϕ2)
+ O

)
, (4)

where K and O are a steepness and an offset factor, respectively, and t̂ϕi
, computed using (2),

is the estimated time required for performing sub-task ϕi . When a robot gives up performing
a sub-task ϕi , and its current waiting time wI is greater than t̂ϕi

, the value of t̂ϕi
is updated

using (2) (wI replaces tM in the formula). The probability function defined in (3) ensures
that a robot, while performing a sub-task, always has a non-nullprobability of giving up
waiting at the interface.

Returning to the example of foraging, a robot working on the store sub-task might wait
very long for an object to become available at the cache. A long waiting time means that
the performance of the rest of the swarm on the harvest sub-task is poor. In this case, the
robot should switch to perform that sub-task. Analogously, a robot working on the harvest
sub-task should switch to the store sub-task when it has been waiting too long for an empty
spot in the cache to deliver an object. The concept of giving up on a task when waiting too
long is not a novelty proposed in the work here presented. It has been adopted many times
before both in swarm robotics (Labella et al. 2006) and in collective robotics (Parker 1998).

5 Experimental framework

This section describes the experiments we employ to assess the validity of the method pre-
sented in Sect. 4. We test the method with a swarm of robots performing a single nest, single
source homogeneous foraging activity (see Winfield 2009, for a taxonomy). This activity
consists in the parallel repetition of the object retrieval task: harvesting an object from the
source and storing it in the nest. Objects can be found at the source, which is at a known
location and never depletes. The objects need to be stored in the nest, which is assumed to
have unlimited storage capacity. A way of partitioning the object retrieval task is by sepa-
rating the harvest and store sub-tasks (ϕharvest and ϕstore, respectively) and allowing material
transfer between individuals working on the two sub-tasks.

Figure 2 provides a conceptual representation of the environment. The environment is
divided into two separate areas, referred to as source area and nest area. The two areas are
separated by a temporary storage area referred to as cache in the rest of the paper. The cache
cannot be crossed by the robots. A direct path, referred to as corridor, links the source area
and the nest area and can be used by the robots to reach the source area from the nest area
and vice versa.

The problem described above is an instance of the problem described in Sect. 3 and rep-
resented in Fig. 1, with the given task being the object retrieval task. The two sub-tasks ϕ1

and ϕ2 correspond to the ϕharvest and ϕstore sub-tasks. The cache serves as the interface I be-
tween the two sub-tasks. The object retrieval task can be performed once by executing once
the ϕharvest and ϕstore sub-tasks in this order. The choice the robots face about the strategy
to be employed translates in choosing whether to use the cache or the corridor: a partition
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Fig. 2 Conceptual representation of the environment used to study the partitioning problem on a swarm of
robots performing foraging. The environment is divided into two areas (source and nest area), separated by
the cache. The robots cannot cross the cache: to reach the source area from the nest area and the other way
around the robots must take the corridor. In this case the given task is retrieving objects from the source to the
nest. This task can be performed as single, unpartitioned task or partitioned into two sub-tasks. The corridor
allows a robot to perform the object retrieval task as unpartitioned task: an object can be directly retrieved
from source to nest. The cache allows the object retrieval task to be partitioned into sub-tasks: ϕharvest consists
in harvesting objects from the source and dropping them at the cache, ϕstore in picking up objects from the
cache and storing them in the nest

strategy makes use of the cache, a non-partition strategy makes use of the corridor. Which
of the two strategies is advantageous depends on the length of the corridor and on the costs
for using the cache, most notably the interfacing times (Π1 and Π2) that the robots have
to spend at the cache for dropping or picking up an object. In the rest of the paper, we will
consider the interfacing times Π1 and Π2 to be equal, and will indicate both of them with Π .

Note that the situation here described can be generalized to all those cases where the
sub-tasks develop in physically separated areas and material can flow from one sub-task to
the following on a path that differs from the one the workers can use. An example is the leaf
foraging task performed by the Atta ants, described in Sect. 2. In this case, the two working
areas are the top of the tree and the ground. The ants can reach one area from the other by
climbing the tree—i.e., without partitioning. The trunk plays the same role as the corridor in
Fig. 2. The leaves can instead be dropped from the top of the tree to the ground—i.e., when
the foraging task is partitioned. The time spent searching the leaves defines the interfacing
time Π2, while Π1 is null in this example. Another example is a robotic warehouse that
extends on two floors, with materials that can be transferred from one floor to the other by
using a dedicated lift and the robots task being transporting items from one floor to the other.
The path the robots need to cover for reaching one floor from the other plays the role of the
corridor. The interfacing times Π1 and Π2 in this case are linked to the time it takes to load
and unload the lift and the time it takes by the lift to move from one floor to the other.

The state diagram of Fig. 3 represents the behavior of each individual. Each robot takes
its own decision on the strategy to employ. After storing an object in the nest, a robot has
to decide where to retrieve the next object. The robot has a probability Pp of trying to pick
up the object from the cache (i.e., partition the task). This choice can be abandoned with a
probability Pgϕstore that grows at each time-step (see (3)). Analogously, after harvesting an
object from the source a robot has to decide where to leave it. The robot has a probability
Pp of trying to drop the object in the cache (i.e., partition the task). Again, this choice can
be abandoned with a probability Pgϕharvest that grows at each time-step.

As mentioned in Sect. 4, the probability Pp depends on the perceived cost of the partition
strategy (see (1)). This cost is computed as the sum of the estimates t̂ϕharvest and t̂ϕstore ; the cost
of the non-partition strategy is the estimate t̂NP of the time it takes to retrieve an object to
the nest without partitioning. The estimate t̂ϕharvest is updated when a robot chooses to use the
cache for dropping an object. It is updated with the time it takes from the moment the robot
harvested an object from the source, to the moment it harvests the next one, after using the
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Fig. 3 Finite state machine describing the behavior of each robot. The black continuous arcs marked with a
label represent stochastic choices that a robot can make. Pp is the probability of employing task partitioning.
Pgϕstore and Pgϕharvest are the probabilities of giving up the store and the harvest sub-tasks, respectively (see
Sect. 4 for more details). Dashed gray arcs represent transitions when the robot does not make a choice

cache. The estimate t̂ϕstore is updated when a robot chooses to use the cache for picking up an
object. It is updated with the time it takes from the moment the robot stores an object in the
nest, to the moment the robot stores the next object, taken from the cache. t̂ϕharvest and t̂ϕstore

are also updated when the robot gives up dropping or picking up an object, respectively. The
estimate t̂NP is updated each time the robot chooses to use the corridor, either for reaching
the source or the nest. It is updated with twice the time it took to cross the corridor, including
the time to enter the source or the nest.2 t̂NP is not updated when a robot crossed the corridor
after giving up using the cache. Giving up is a consequence of selecting the partition strategy
and therefore impacts on t̂ϕharvest and t̂ϕstore .

Robots do not communicate explicitly, none of them knows what the others are doing or
has any notion of the swarm’s performance. The strategy observed at the level of the swarm
is the result of the individuals’ decisions and is a self-organized process.

5.1 Simulation

The experiments described in this article have been carried out in simulation. The simulation
framework we employed is ARGoS (Pinciroli et al. 2011), developed within the Swarmanoid
project.3 ARGoS is a discrete time, physics-based simulation environment that allows the
real-time simulation of large swarms of heterogeneous robots. The main characteristic of
ARGoS is that it allows the user to tune the level of detail of the simulation. The level
of detail can go from bi-dimensional environments governed by kinematic rules to three-
dimensional environments governed by dynamics. For the work presented in this article we
chose to employ a kinematics model of the robots in a two dimensional space.

The robots simulated in the experiments have a real counterpart: the e-puck4 robot (Mon-
dada et al. 2009). The e-puck is a small wheeled robot, developed at EPFL, Lausanne,

2The estimate t̂NP is computed this way because a robot using the non-partition strategy in one direction
could decide to change strategy on the way back.
3http://www.swarmanoid.org/.
4http://www.e-puck.org/.

http://www.swarmanoid.org/
http://www.e-puck.org/
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Switzerland. ARGoS simulates all the sensors and actuators available on the e-puck. In
the experiments presented in this paper we employed the wheel actuators, the eight infrared
proximity sensors for light and proximity detection, the VGA camera, and the ground sen-
sors.

5.2 Abstraction of objects

The e-pucks do not have the ability of grasping and transporting objects. Therefore, we had
to overcome this limitation by using an abstraction: instead of actual objects we simulated
a physical device, referred to as a booth, that has been developed and prototyped by us
(Brutschy et al. 2010). Each booth features a light barrier and two RGB LEDs. The robot
enters the booth, attracted by the LEDs that it can perceive using its RGB camera. The booth
detects the presence of a robot using the light barrier. When a robot is perceived, the booth
reacts by executing a user-defined logic. Reactions consist in changing the status of the RGB
LEDs. In the work presented in this article booths are organized into arrays that implement
the source, the nest, and the cache. Figure 4 shows a schematic representation of the cache,
which is composed of three booths on each of its two sides. In the experiments, a booth
whose LEDs are lit up in green represents an object available at the booth. On the other
hand, a booth whose LEDs are lit up in blue, represents a free spot where an object can be
dropped. With this representation, when a robot enters a booth whose LEDs are lit up in
green, we assume that the robot will pick up an object from that booth. Analogously, when
a robot transporting an object enters a booth whose LEDs are lit up in blue, we assume that
the object being carried will be dropped in that booth. In both cases the booth acknowledges
the robot presence by temporarily turning the LEDs to red, until the robot has left. The
behavior of the booths changes with their location in the environment. The nest booths are
always blue, representing an unlimited number of spots where objects can be stored. The
source booths are always green, representing the fact that objects can always be found at the
source.

Fig. 4 Representation of an
array of booths, composed of
three booths on each of the two
sides. Each booth can detect the
presence of a robot through a
light barrier, represented with the
black semicircles and the dotted
line in one of the booths. RGB
LEDs, represented with the blank
semicircles, can signal objects or
drop spots by lighting up in
different colors
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Fig. 5 The behavior of a cache implemented with two paired booths. The source (not shown) is located at
the left and the nest (not shown) is located at the right. The robots carrying an object are marked with a black
arrow, and the robots not carrying objects with a white arrow. (a) Initially the cache is empty: LEDs are blue
on the source side and off on the nest side. (b) A robot working on the harvest sub-task enters the booth to
drop an object that was harvested in the source. Once finished, the LEDs of the booth on the source side turns
off while the LEDs of the booth on the nest side turn to green to represent an available object. (c) A robot
working on the store sub-task enters the booth to pick up the object. (d) Once the robot leaves toward the nest
to store the object, the booth returns to its initial configuration. When a booth perceives the presence of the
robot, its LEDs temporarily turn to red, so that the robot realizes it is inside the booth (not shown in the above
sequence of events)

The behavior of the cache is more complex. At the beginning the cache booths facing the
source are lit up in blue, and those facing the nest have their LEDs turned off (Fig. 5a). In
this configuration the cache is empty. Once a robot has dropped an object in the cache, by
subsequently entering and exiting a free (i.e., blue) booth facing the source side, the booth
turns off so that it is no longer available to accept an object, and the corresponding booth on
the nest side turns to green (Fig. 5b). This represents an object deposited in the cache that
becomes immediately available on the nest side. A robot working on the store sub-task can
pick up this object by subsequently entering and exiting the booth on the nest side (Fig. 5c).
Once the object has been picked up, the nest side of the booth turns off and the source side
turns to blue, to signal that the booth is available again for dropping an object (Fig. 5d).5

The robots themselves keep track of whether they are carrying an object or not. A robot
without an object assumes it has picked up an object from a booth if it perceives the ac-
knowledgment (i.e., the booth’s LEDs turn to red) and if the booth’s LEDs were green
before. Conversely, a robot carrying an object assumes it has dropped an object in a booth
if it perceives the acknowledgment and the booth’s LEDs were blue before. Given the ge-
ometry of the robots and of the booths, there is no room for errors in the acknowledgment
mechanism: the booth can perceive a robot only when it is completely inside and only in
that case its LEDs turn to red and remain red until the robot has left (i.e., the robot perceived
the acknowledgment).

The only possible inconsistency happens if a robot enters a booth unintentionally. This
is not a problem for the source and nest booths: they would simply temporarily turn their

5A video illustrating the behavior of the cache can be found in the online supplementary material, see also
Pini et al. (2011b).
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Fig. 6 The environment used in
the simulation experiments. Nest
and source arrays are composed
of four booths, the cache array is
composed of three booths for
each side. The color of the
ground is used by the robots as a
clue to recognize their location in
the arena. The light source,
marked with “L”, is used by the
robots as a landmark for
navigation. A colored path in the
corridor is followed by the robots
when navigating through the
corridor

LEDs to red and then return to their default states. The cache instead is affected by such an
event, as its state could become inconsistent. The event here mentioned is very unlikely, but
still observable; all the results reported in this work are taken from the experimental runs in
which cache inconsistencies were not observed.

5.3 Environment

The environment in which the robots have to perform foraging is shown in Fig. 6. The source
booths are located at the top-left and the nest booths at the top-right corners of a 1.6 m by
2.1 m rectangular arena surrounded by walls. The cache booths are located between source
and nest. The different areas of the arena are marked with a specific ground color, which can
be perceived by the robots and used to determine their location in the arena. A light source,
located on the bottom of the arena, is used as a landmark for navigation. A colored path
marks the floor in the corridor, and is followed by the robots when moving from one area to
the other.

6 Experiments and results

To test the properties of the proposed method we run four sets of experiments. The goal
of the first set of experiments is to understand how the parameters of the proposed method
impact on the system and derive guidelines on how to assign values to them. The goal of
the second set of experiments is to assess the performance of the method. The goal of the
third set of experiments is to study the responsiveness of the method to changes in the
environment. Finally, the goal of the fourth set of experiments is to study the scalability of
the method.

Each experimental run lasts a total of 600,000 simulation steps of 0.1 s each. This
amounts to a simulated time of sixteen hours and forty minutes. In the experiments we
simulate a swarm of ten e-pucks; in the scalability experiment we study the performance of
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Table 1 Parameters space used
for the analysis of variance. The
values define a grid of points in
the parameters space; ANOVA
then performs a regression using
these points

Parameter Values

Interfacing time Π (seconds) 0, 100, 200

Weighted average factor α 0.5, 0.75, 1.0

Strategy selection steepness S 0.5, 5, 10

Give up partitioning steepness K −0.5, −1.5, −2.5

Give up partitioning offset O −1, −5, −9

swarms of various size. At the beginning of each run half of the swarm is randomly posi-
tioned in the nest area, the rest of the swarm in the source area. The speed of the robots is set
to 3.5 cm/s, a value determined while performing tests with the real robots. This relatively
low speed is due to the limited computational capabilities of the e-puck. The camera data
cannot be processed at high speeds and therefore the robots need to move slowly in order
to obtain precise movements toward a booth. To avoid bias in the robots’ behavior, the esti-
mates t̂ϕharvest , t̂ϕstore , and t̂NP are randomly initialized: t̂ϕharvest and t̂ϕstore are uniformly sampled
in [50,100], t̂NP in [100,200].

The rest of the section describes in detail each set of experiments and presents the results
obtained within each of them.

6.1 First set of experiments: ANOVA

To get an insight on the impact of each parameter of the adaptive method, we analyze the
system using a well known design of experiments method: analysis of variance (ANOVA)
(Cox and Reid 2000). Table 1 summarizes the parameters included in ANOVA and the
possible values they can assume in the analysis. For each combination of the parameters
values, we run 15 randomly seeded simulations. What follows is a summary of the results
of ANOVA. For the complete results we refer the reader to Pini et al. (2011b).

We perform four analyses, one including Π as factor, and other three fixing Π to a
value and using the remaining parameters as factors. The four analyses agree in indicating
that a high value of the weight factor α should be used, independently of the value of the
interfacing time Π . This is due to the fact that for low values of α, the swarm is not able
to quickly estimate the costs of each strategy; this leads to poor performance. The effect of
the steepness S depends on the value of Π : the higher Π , the lower S should be, and vice
versa. Therefore the value of S should be chosen depending on the specific environment.
If the value of Π is known, and it does not vary in time, S can be selected accordingly.
On the other hand, if the value of the Π is unknown or can vary significantly over time,
then S should be set to an intermediate value. An alternative, not implemented in this work,
would be to adaptively select the value of S on the basis of a measure of the value of Π . The
parameters K and O have a strong impact on the performance of the system. Unfortunately,
the results of the analyses do not recommend any particular value for these parameters. To
address this issue, ANOVA needs more data and higher order interactions should be studied
to have deeper insights concerning how to select the two parameters values.

Please note that the goal of the analysis of variance is not the optimal selection of the
parameters, but the study of the main effects each parameter has on the system. In accor-
dance with the results of ANOVA, we chose a high value for the parameter α (0.8). Since we
want our method to be able to deal with both high and low values of Π , we set S to 5.0. As
mentioned, our analysis did not provide enough information for selecting the parameters K

and O , with the exception that some combinations of the two were shown to be bad choices.
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Fig. 7 Average amount of objects retrieved per robot at the end of the experiment for different values of the
interfacing time Π . The same plot, also reporting the 95% confidence intervals (omitted for clarity here), can
be found online (see Pini et al. 2011b)

The values of K and O have been determined through trial and error, and their values have
been set to K = −0.5 and O = −1. All the results presented in the following have been
obtained with this set of parameters.

6.2 Second set of experiments: performance of the adaptive method

To assess the performance of the adaptive method, we compare it with the performance
of two reference methods, referred to as never-partition and always-partition methods. The
never-partition method always makes use of the corridor (Pp = 0), while the always-partition
method always makes use of the cache (Pp = 1) without giving up (Pgϕstore = Pgϕharvest = 0).
We tested seven different settings, each corresponding to a different value of the interfacing
time Π . The values we studied for Π are 0, 25, 50, 75, 100, 150, and 200 (values are in
seconds, simulated time). The upper bound for the value of Π was selected so that the
resulting cost for using the cache is considerably higher than the one for using the corridor.
In fact, a robot takes an average time that is roughly 400 s for traveling along the corridor,
while using the cache requires roughly 120 s when Π = 0 s.6

The graph in Fig. 7 shows the results of the second set of experiments. The graph plots
the average performance of the three methods for different values of the interfacing time
Π . As expected, each reference method performs well only for a subset of values of Π .

6The time needed for traveling along the corridor was measured using the never-partition method, the time
for using the cache using the always-partition method. In a more general case, where the robots can choose
the strategy to employ, the values can differ as they depend on how cache and corridor are employed.
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Fig. 8 Actions performed by the robots using the adaptive method, for different values of the interfacing
time Π . Each bar reports, for each value of Π , the percentage of times an action was performed. The actions
reported are: selection and actual usage of the cache (dark gray), selection of the cache and give up (light
gray), and selection of the corridor (white). The percentage of times the robots chose to employ the cache
is the sum of the values reported by the light gray and the dark gray bars. The values reported are averages
computed over 50 experimental runs

The always-partition method performs well when Π is low. In this case, the time needed for
traveling along the corridor is much higher than the one for using the cache, therefore the
corridor should be avoided and the given task should be partitioned into sub-tasks. On the
other hand, the never-partition method performs better when the cache is costly: using the
corridor is preferable for high values of Π . The adaptive method is able to perform well in
both cases, showing good performance on the whole spectrum of the parameter Π .

Figure 8 provides a summary of the strategy employed by the robots in the swarm when
using the adaptive method, for the different values of Π . Each bar reports the percentage of
times that each action was performed by the robots; the reported values are averages over
50 runs. The graph confirms that the robots select the corridor with a higher frequency for
increasing values of Π . For small values of Π , the preferred choice is the cache.

Figure 9 reports the time needed by the robots to use the corridor (tNP) and the cache
(tϕharvest and tϕstore ) employing the three different methods, when the interfacing time is 0 s
(left), 25 s (center), and 50 s (right). When Π = 0 s the always-partition method performs
better than the never-partition method (see Fig. 7). Figure 9 (left) shows that the time needed
to pick up an object from the cache (tϕstore ) is considerably lower than the one needed to cross
the corridor(tNP). This means that the objects are delivered to the nest faster by using the
cache. Despite the fact that less robots are contributing to depositing objects in the nest (half
of the swarm works on the source side), the boost in terms of speed that comes from using
the cache makes the always-partition strategy preferable to the never-partition strategy. For
increasing values of Π , the relative gain in terms of speed progressively decreases (Fig. 9,
center and right), and for Π = 50 s always using the corridor becomes more advantageous
than never using it (see performance in Fig. 7).



Swarm Intell (2011) 5:283–304 299

Fig. 9 Time needed for using the corridor and the cache for the three different methods. The graphs report
the data for Π = 0 s (left), Π = 25 s (center), and Π = 50 s (right)

Figure 9 shows that with the adaptive method the times needed to access the cache (tϕstore

and tϕharvest ) are always lower than with the always-partition method. This can be explained
by the fact that with the always-partition method all the robots try to access the cache. This
increases the competition for accessing the cache booths, and it is likely that a robot finds
the cache busy when trying to use it. For large values of Π , the time the robots have to
wait for a free cache booth is also large, as the robots using the cache spend more time
inside the booths (as result of a higher Π ). This effect can be seen on Fig. 9 in the fact
that the variance of the pick up and drop time increases with the value of Π , when using
the always-partition method. The adaptive method can reduce the competition when the
cache is not very advantageous (intermediate values of Π ) by increasing the frequency at
which the robots use the corridor (see actions reported in Fig. 8). Additionally, the robots
employing the adaptive method can benefit from the give up mechanism which prevents
them for waiting too long when the cache is not immediately available.

6.3 Third set of experiments: adaptivity to changes

We test the adaptiveness of the method in response to a sudden variation in the environmental
conditions. The effect of the variation is to modify the relative costs of the two strategies. In
order to achieve this, we change the value of the interfacing time Π when the experiment
reaches half of its duration. We consider two cases: one in which Π changes from 200 s to
0 s and another in which it changes from 0 s to 200 s. In the first case it is expected that the
corridor is used more frequently by the swarm in the initial phase and, once Π changes to
zero, the usage of the cache becomes more frequent; the other way around is expected to
happen in the second case. Figure 10 reports the results of the two experiments, showing
that by employing the method proposed in this paper the swarm is able to adapt the strategy.
The graph of Fig. 10 (top) refers to the first case described (decrease of Π ); the graph of
Fig. 10 (bottom) to the second (increase of Π ). Each graph provides a summary of the data
collected in the corresponding 50 experimental runs. In the graphs of Fig. 10, the total time
frame of the experiment has been divided into windows of 1 hour. Each point of the plot
reports, for each strategy, the percentage of usage in the time window preceding the value
indicated on the X axis. The cases in which the robots give up using the cache are counted
as usage of the corridor.
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Fig. 10 Strategy used in time when the interfacing time Π is varied from 200 s to 0 s (top) and from 0 s
to 200 s (bottom). The vertical dashed line marks the instant in which Π is changed (time t = 8 hours and
20 minutes). The total duration of the experiment is divided into windows of 1 hour, each box reports the
percentage of usage (over 50 experimental runs) of each strategy in the time window preceding the value
reported on the X axis

In both cases, at half the experiment time, one of the two strategies is employed more
frequently than the other, indicating that the swarm identifies it as the best strategy. The
results at the end of both experiments show that the swarm reacts to the change in the en-
vironmental conditions. In fact, the strategy of the swarm changes after the value of Π is
modified. The swarm converges to a new strategy more suited to the new value of Π .

6.4 Fourth set of experiments: scalability

We test the scalability of the system when using the adaptive method and the two reference
methods, for Π = 0 s and Π = 25 s. We vary the swarm size using the following values:
4, 6, 8, 10, 14, 18, 22, 26, and 30. In the following, we will refer to area coverage as the
percentage of the total area actually covered by the robots. The area coverage depends on
the size of the swarm. As the total area of the environment is roughly 2.5 m2 and the radius
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Fig. 11 Results of the scalability experiment for Π = 0 s (top) and Π = 25 s (bottom). The plots report,
for each of the three methods, the average individual performance for different area coverages (the top axis
reports the corresponding number of robots). The same plot, also reporting the 95% confidence intervals
(omitted for clarity here), can be found online (see Pini et al. 2011b)

of an e-puck is 70 mm, the area coverage varies from a minimum of 2.46%, when the swarm
is composed of four robots, to a maximum of 18.47%, when the swarm is composed of 30
robots.7 Figure 11 reports the results of the scalability experiments for Π = 0 s (top) and
Π = 25 s (bottom). The graphs report, for each of the three methods, the average number
of objects retrieved by each robot for different area coverages. The graphs show that, using
the never-partition method, the individual performance constantly decreases for increasing
swarm sizes. This is due to a growing interference, that progressively makes it harder to
navigate through the corridor. The adaptive method and the always-partition method in-
stead, have a peak in performance when the area coverage is 4.93% (eight robots), for both
the values of Π here considered. This suggests that, in the experimental setup presented in
this work, a number of eight robots is the optimal size for the swarm in order to exploit the
cache at the maximum efficiency. With more than eight robots, both the adaptive method and
the always-partition method decrease in performance, but the adaptive method does so at a
slower rate. Thus, the method shows to be more scalable. The reason for which the perfor-
mance of the adaptive method is higher than the one of the always-partition method resides
in the fact that it can balance the number of robots trying to use the cache and the corridor.
This reduces the competition for accessing the cache (thus the expected waiting time) and
increases the navigability in the corridor with respect to the never-partition method.

7The area of the arena is computed excluding the space available inside each booth.
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7 Conclusions

The work presented in this article is part of a broader research that aims at conceiving meth-
ods that allow a swarm to partition complex tasks in smaller, manageable sub-tasks. Par-
titioning tasks into sub-tasks and defining interfaces of these sub-tasks in an autonomous
way is a major challenge. Nevertheless, we are confident that task partitioning can make a
significant contribution to the future of swarm robotics. Swarms of robots can obtain bene-
fits from task partitioning in terms of reduction of interference between individuals, better
exploitation of specialization and heterogeneity, parallelism, and efficiency gains. Task par-
titioning also entails costs in terms of synchronization overheads where sub-tasks interface
with each other.

In the work presented in this paper, we focused on a task pre-partitioned into a sequence
of two sub-tasks that interface with each other in an asynchronous way. We tested different
experimental conditions, considering settings in which it is, or it is not, advantageous to use
a partition strategy. The settings are different in terms of the cost of using a partition strategy
for solving the overall task.

We proposed an adaptive method that allows a swarm of robots to decide whether to
employ task partitioning or not depending on the environmental conditions. The method is
fully distributed and relies on the individuals’ perception of the cost of employing task par-
titioning. Task partitioning at the level of the swarm is a self-organized process that results
from individual decisions. We tested the method in simulation, using foraging as testbed and
comparing the proposed method to two reference methods. The results show that with the
proposed method the swarm selects a strategy that suits the specific environment, leading
to good performance in the different cases we considered. We also performed experiments
with the aim of assessing the capability of the swarm to react to changes in the environmen-
tal conditions. The results show that the swarm is able to respond to changes and to adapt
the strategy being employed. Scalability tests show that the adaptive method performs well
across different swarm sizes.

The work presented here is a first step toward a more general method for tackling a
general task-partitioning problem, in which there are more than two sub-tasks. Short term
goals for future research will concern studying how the general N sub-tasks case can be
derived from the two sub-tasks case presented here and what modifications need to be done
to the method we proposed in this work. A straightforward approach would be to apply the
method to a series of N sub-tasks, with each robot deciding either to perform the overall
task, or one of the sub-tasks. We believe the method can be transferred to such a situation
without any modification. Nevertheless, this needs to be verified experimentally. Another
possibility would be a top-down recursive approach, where (sub-)tasks can be partitioned
at different levels of granularity, independently of each other. This would allow the swarm
to adopt “hybrid” strategies, with some parts of the overall task partitioned in atomic sub-
tasks and others in higher-level sub-tasks. We think such an approach would be extremely
powerful and flexible, but it would also require major modifications to the proposed method
for explicitly taking into account how (sub-)tasks relate to each other.

Another direction for future work is the addition of a social component to the system,
using explicit local communication within the swarm. For example, the robots could com-
municate to each other their perception of the costs associated to each strategy, and take
decisions based on the information received. The swarm might benefit from communication
in terms of a faster responsiveness and lower sensitiveness to noisy conditions. The method
proposed in this paper would require minor modifications in order to take into account the
information received and to use it to update the costs estimates.
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