
Swarm Intell (2013) 7:173–199
DOI 10.1007/s11721-013-0078-7

Task partitioning in a robot swarm: a study on the effect
of communication

Giovanni Pini · Matteo Gagliolo · Arne Brutschy ·
Marco Dorigo · Mauro Birattari

Accepted: 23 February 2013 / Received: 10 November 2012 / Published online: 20 March 2013
© Springer Science+Business Media New York 2013

Abstract Task partitioning consists in dividing a task into sub-tasks that can be tackled sep-
arately. Partitioning a task might have both positive and negative effects: On the one hand,
partitioning might reduce physical interference between workers, enhance exploitation of
specialization, and increase efficiency. On the other hand, partitioning may introduce over-
heads due to coordination requirements. As a result, whether partitioning is advantageous or
not has to be evaluated on a case-by-case basis. In this paper we consider the case in which
a swarm of robots must decide whether to complete a given task as an unpartitioned task,
or utilize task partitioning and tackle it as a sequence of two sub-tasks. We show that the
problem of selecting between the two options can be formulated as a multi-armed bandit
problem and tackled with algorithms that have been proposed in the reinforcement learning
literature. Additionally, we study the implications of using explicit communication between
the robots to tackle the studied task partitioning problem. We consider a foraging scenario
as a testbed and we perform simulation-based experiments to evaluate the behavior of the
system. The results confirm that existing multi-armed bandit algorithms can be employed in
the context of task partitioning. The use of communication can result in better performance,
but in may also hinder the flexibility of the system.

Keywords Task partitioning · Foraging · Swarm robotics · Self-organization · Social
learning

G. Pini (�) · A. Brutschy · M. Dorigo · M. Birattari
IRIDIA, Université Libre de Bruxelles, Bruxelles, Belgium
e-mail: gpini@ulb.ac.be

A. Brutschy
e-mail: arne.brutschy@ulb.ac.be

M. Dorigo
e-mail: mdorigo@ulb.ac.be

M. Birattari
e-mail: mbiro@ulb.ac.be

M. Gagliolo
GERME and MLG, Université Libre de Bruxelles, Bruxelles, Belgium
e-mail: mgagliol@ulb.ac.be

mailto:gpini@ulb.ac.be
mailto:arne.brutschy@ulb.ac.be
mailto:mdorigo@ulb.ac.be
mailto:mbiro@ulb.ac.be
mailto:mgagliol@ulb.ac.be


174 Swarm Intell (2013) 7:173–199

1 Introduction

In this work, we present a study on task partitioning in a swarm robotics context. The term
task partitioning comes from biology and it refers to situations in which a given task is di-
vided into two or more sub-tasks that can be tackled separately (Jeanne 1986). The main
body of research on the topic has been carried out in the field of entomology. Many stud-
ies have been published that report examples of task partitioning for the organization of
work in colonies of ants, bees, and wasps (Ratnieks and Anderson 1999). Task partitioning
has been mostly observed in activities that involve the transportation of material such as
foraging (Fowler and Robinson 1979), nest excavation (Anderson and Ratnieks 2000), and
waste removal (Hart and Ratnieks 2001). However, examples of task partitioning have been
observed in other activities, such as hunting (Theraulaz et al. 2002).

The fact that several instances of task partitioning can be observed in different species of
animals indicates that partitioning a task into sub-tasks is an advantageous way of organiz-
ing work. Indeed the benefits that insects draw from task partitioning are many. In certain
situations, task partitioning enhances the exploitation of specialization, either morpholog-
ical or behavioral. For example, in the seed-harvesting ant Messor bouvieri small workers
transfer harvested seeds to larger workers, that transport them to the nest (Arnan et al. 2011).
Task partitioning allows each category of workers to perform the activity for which they are
best suited: smaller workers are better (i.e., faster) at finding seeds, while larger workers are
better at transporting them.

Task partitioning can also increase the efficiency in performing a task. For example,
Fowler and Robinson (1979) described the foraging strategy employed by the leaf-cutting
ant Atta sexdens: some workers climb a tree and cut leaves that are dropped to the ground.
There, other ants collect the leaves and transport them to the nest. In this case, partitioning
the foraging task reduces the energy requirements for the swarm since only a few ants need
to climb the tree and they do it only once.

Finally, task partitioning allows for the separation of individuals working on different
sub-tasks. In some situations, the separation of workers may be beneficial. Think for ex-
ample of the Atta cephalotes ant: the nest of this ant has an internal garbage heap, which
is managed by garbage heap workers confined in the heap location. Waste management is
carried out using task partitioning: garbage is delivered to the entrance of the heap, where it
is collected by garbage heap workers and stored in the heap. This behavior allows the ants
to isolate garbage heap workers, which are potentially contaminated by pathogens, from the
rest of the colony (Hart and Ratnieks 2001).

Task partitioning requires the individuals to coordinate their work, and therefore entails
overhead costs. For example, honeybee foragers transfer nectar loads to receivers located
near the nest entrance. In order to transfer nectar, a forager and a receiver must search for
each other, introducing a delay in foraging (Anderson and Ratnieks 1999). Task partitioning
can also entail inefficiency in terms of material losses. Returning to the example of the
foraging activity of the Atta sexdens ant, mentioned previously, Hubbell et al. (1980) pointed
out that many of the leaves dropped to the ground are lost and therefore they cannot be
utilized by the swarm.

In this paper, we present a research work in the context of swarm robotics, a branch of
robotics that studies the implementation and control of large groups of autonomous robots,
often by using solutions inspired by nature, in particular by social insect colonies. Robot
swarms can obtain the same benefit as social insects from task partitioning: better exploita-
tion of specialization, increased efficiency, and physical separation of the robots. Analo-
gously to social insects, task partitioning also entails costs due to overheads, which can



Swarm Intell (2013) 7:173–199 175

hinder these benefits. Task partitioning should therefore be used only when the benefits
overcome the costs.

We concentrate here on what we call the task partitioning problem: selecting between
partitioning a given task into sub-tasks or performing it as a single piece of work. We study
the task partitioning problem in a foraging scenario. In our previous research, we proposed
distributed methods that enable a robot swarm to tackle the task partitioning problem au-
tonomously (Frison et al. 2010; Pini et al. 2011). Recently, we have shown that the task
partitioning problem can be formulated as a multi-armed bandit problem and tackled with
existing algorithms proposed in the reinforcement learning literature (Pini et al. 2012a). This
article further extends our previous work by introducing a social component: the robots ex-
plicitly communicate with each other. We perform simulation-based experiments to study
the effect of communication. The results suggest that communication affects the system
in a different way, depending on the algorithm being employed by the robots to take de-
cisions. In some cases, communication enhances the performance of the swarm while in
others the increased inflow of information can overwhelm the decision process of the robots
and renders the behavior of the swarm inflexible with respect to changing environmental
conditions.

This article is organized as follows. In Sect. 2, we review related work. In Sect. 3, we
present the task partitioning problem studied in this paper and illustrate the approach we
use to tackle it. In Sect. 4, we describe the tools that we used to carry out the experiments.
In Sect. 5, we describe the simulation-based experiments that we carried out to study the
system and comment on the results obtained. In Sect. 6, we summarize the contributions of
this work and propose directions for further research.

2 Related work

As mentioned in the introduction, research on the topic of task partitioning has been carried
out mainly by entomologists. For a review of task partitioning in social insects, we refer the
reader to the work of Ratnieks and Anderson (1999). In Sect. 2.1, we focus instead on the
related work on task partitioning in swarm robotics.

The research presented in this article utilizes concepts and ideas that come from rein-
forcement learning. The literature on the topic is vast and its review is beyond the scope of
this work. In Sect. 2.2, we mention the related research work that is the most relevant to our
study.

2.1 Task partitioning in swarm robotics

In the domain of swarm robotics, task partitioning has been used mainly in foraging sce-
narios as a mean for reducing physical interference between robots. Physical interference
results from the fact that robots share the same space at the same time. Interference has
a strong negative impact on the performance and the scalability of a robotics system (Ler-
man and Galstyan 2002). Task partitioning can mitigate interference in foraging through
a physical separation of robots.

The first authors that used task partitioning to reduce physical interference in robotics
were Drogoul and Ferber (1992). They studied a foraging scenario and reported the forma-
tion of “traffic jams” in the environment. The authors showed that allowing the robots to
pass objects one to another leads to the formation of a chain, along which objects are passed
till they reach the nest. This reduces interference and increases the foraging performance of
the swarm.



176 Swarm Intell (2013) 7:173–199

Østergaard et al. (2001) studied the benefits of task partitioning in a setup in which the
robots perform foraging in a maze. The authors concluded that task partitioning is beneficial
in cluttered environments, in which the width of the corridors is such that it is hard for two
robots traveling in opposite directions to pass at the same time.

Fontan and Matarić (1996) divided the environment in which the robots perform foraging
into non-overlapping working areas, each assigned to one robot. Each robot transports pucks
found in its working area to an adjacent working area, in the direction of the nest. A puck
eventually reaches the nest by crossing several working areas. As the range in which each
robot operates is limited, physical interference is diminished and foraging performance is
enhanced. Goldberg and Matarić (2002) used the same setting to study the design of robust
behavior-based controllers. The authors observed that a solution based on task partitioning
reduces interference.

Pini et al. (2009) also divided the environment in working areas and showed that task
partitioning reduces competition for accessing a shared resource (the nest where the foraged
objects are stored). In the work of Pini et al., differently from the one of Fontan and Matarić
(1996), the working areas are not exclusive, nor a priori assigned: each robot selects its
working area autonomously.

Shell and Matarić (2006) introduced a further novelty with respect to the work of Fontan
and Matarić (1996). In the work of Fontan and Matarić (1996), the position of working areas
are given with respect to a global coordinate system and are fixed in time; on the other hand,
in the work of Shell and Matarić (2006), the position of the working areas are given in the
local coordinate system of the associated robot and drift in time. Indeed, given that robots
estimate the position of working areas using odometry, working areas drift in time due to
estimation errors. Each robot transports the pucks that it finds in its working area towards
the nest, without leaving its working area. The robot drops the pucks at the boundary of its
working area, where they are eventually collected by another robot. The authors showed that
the higher the density of robots, the smaller the optimal size of the working area.

Lein and Vaughan (2008, 2009) further extended the work of Shell and Matarić (2006).
The first extension consists in the implementation of a simple algorithm that each robot
employs to dynamically regulate the size of its working area, on the basis of the perceived
interference (Lein and Vaughan 2008). The second extension is a mechanism that the robots
use to relocate their working areas towards zones in which there is a high puck density (Lein
and Vaughan 2009).

Pini et al. (2012b) studied the case in which a robot swarm forages objects from an
initially unknown location in the environment. Each robot uses odometry to estimate its po-
sition relatively to the location where an object was found. The authors showed that task
partitioning reduces the negative impact of odometry errors and improves the foraging per-
formance. Additionally the authors used the implemented system to study the costs deriving
from the direct transfer of foraged objects from robot to robot. Together with the works of
Fontan and Matarić (1996) and Goldberg and Matarić (2002), the work of Pini et al. (2012b)
is the only work on the topic of task partitioning that includes experiments performed with
real robots.

The same experimental setup, proposed in the work of Pini et al. (2012b), was employed
in the work of Pini et al. (2013). There, the authors proposed a methodology that allows
a robot swarm to autonomously partition tasks into sub-tasks. Each robot autonomously
decides the amount of work that it should contribute with the sub-task that it performs. The
decision is made on the basis of cost estimates that the robot computes while performing the
sub-tasks.

In this article, the task partitioning problem that we study consists in selecting whether to
employ task partitioning or not. In a previous research work, we proposed a simple method to



Swarm Intell (2013) 7:173–199 177

let a swarm of robots tackle autonomously the task partitioning problem (Frison et al. 2010).
In follow up work, we extended the method so that the costs of performing the given task and
each of the sub-tasks are taken into account by the robots when taking decisions (Pini et al.
2011). The research presented in this article further extends a previous study, in which we
have shown that the task partitioning problem can be seen as a multi-armed bandit problem
and can be tackled with existing algorithms proposed in the reinforcement learning litera-
ture (Pini et al. 2012a). We extend the work by adding a social element to the studied system:
the robots are allowed to exchange information with each other and they use the received
information to integrate their knowledge of the environment.

2.2 Multi-agent reinforcement learning

In the artificial intelligence community, the problem of multi-agent learning (Weiss 1999;
Shoham et al. 2007) is receiving a growing attention. In this context, also simple forms
of social learning are being considered, where agents can communicate with each other,
in order to improve the overall performance of the group. Most existing multi-agent
learning approaches are based on reinforcement learning (Sutton and Barto 1998; Buso-
niu et al. 2008): the agents are allowed to interact with each other and with the envi-
ronment, choosing actions sequentially according to some policy, which is learned on-
line. The only feedback available to guide learning is a (possibly delayed) reward sig-
nal. Only limited work in multi-agent learning deals with some form of social learn-
ing (see Panait and Luke 2005, for a review). In the work of Whitehead (1991), agents
interact only with a common environment, and can exchange learning episodes, in the
form of (state, action, next state) triplets. Tan (1993) allowed for interactions between
agents, as well as for some forms of communication, such as sharing observed reward
values and learned policies. In the work of Nunes and Oliveira (2008), each agent broad-
casts the reward obtained during the last learning episode, and poorly performing agents
can query the best ones for advice. Reinforcement learning in a stateless environment
corresponds to what is called the multi-armed bandit problem (Sutton and Barto 1998;
Cesa-Bianchi and Lugosi 2006): in a sequence of trials, the player chooses one of the arms
of a multi-armed bandit and receives the corresponding reward. The aim of the agent is to
minimize its regret of not having played the remaining arms, whose reward is not observed.
Schlag (1998) studied social learning in a group of agents, all playing against the same multi-
armed bandit. They focused on social learning strategies in which each agent observes the
last pulled arm, and the corresponding reward, for itself and another individual, randomly
selected.

3 Problem and methodology description

In this section, we present the task partitioning problem studied in this work and illustrate
the approach we employ to tackle this problem. In Sect. 3.1, we describe in detail the task
partitioning problem and introduce the terminology used in the rest of the paper. In Sect. 3.2,
we provide an abstract description of the foraging scenario studied in this work and frame the
task partitioning problem in the context of foraging. In Sect. 3.3, we illustrate the approach
we use to tackle the task partitioning problem and present algorithms that we compare in
our study.



178 Swarm Intell (2013) 7:173–199

Fig. 1 Representation of the task partitioning problem considered in this study. A given task can be either
completed as a whole, unpartitioned task (top) or partitioned into a sequence of two sub-tasks ϕ1 and ϕ2
connected by an interface I (bottom). Depending on the chosen option, the cost for performing the given task
is different. If the given task is performed as an unpartitioned task, it entails a cost cNP for its completion.
If task partitioning is used, the cost for the completion of the given task is the sum of the costs cϕ1 and cϕ2
required for completing the sub-tasks. These costs include possible interfacing costs Π1 and Π2, required to
access I . In general, cNP differs from the sum of cϕ1 and cϕ2 , rendering task partitioning advantageous or
not

3.1 The task partitioning problem

In this work, we tackle the problem represented in Fig. 1. A given task can be partitioned into
the sequence of two sub-tasks ϕ1 and ϕ2, that interface with each other by means of an inter-
face I . The interface allows to store the output of the sub-task ϕ1, that can be subsequently
used as input for ϕ2. In this context, we tackle what we refer to as the task partitioning prob-
lem: selecting whether to perform the given task as overall, unpartitioned task (Fig. 1, top),
or to employ task partitioning and execute the two sub-tasks separately (Fig. 1, bottom).
Notice that we do not tackle the problem of defining what the sub-tasks ϕ1 and ϕ2 are. We
consider the sub-tasks as defined a-priori and we tackle the problem of selecting whether
to execute the given task with or without partitioning it into sub-tasks. For an example of a
swarm that autonomously defines sub-tasks of a given task, we refer the reader to the study
of Pini et al. (2013).

An example of the situation depicted in Fig. 1 is the leaf foraging activity of the Atta
ant, described in the work of Fowler and Robinson (1979). In that case, the task consists
in harvesting a leaf from a tree and transporting it to the nest. Ants partition this task into
two sub-tasks. A group of ants cut leaves from the tree and drop them to the ground (sub-
task ϕ1). There, the leaves are collected by a second group of ants and transported to the nest
(sub-task ϕ2). The ground underneath the tree is the interface I , where the output of the first
sub-task (a leaf that has been cut) is temporarily stored before it is used as the input of the
sub-task that follows. In principle, the ants could perform the same task without partitioning
it into sub-tasks by repeatedly climbing the tree to collect leaves.

Returning to the problem represented in Fig. 1, we use the term strategy to indicate the
way the given task is performed. We indicate with partition strategy the case in which the
given task is performed as two separate sub-tasks and with non-partition strategy the case
in which the given task is performed as one unpartitioned task. Each strategy entails a cost;
the way costs are measured depends on the specific context; examples are: energy, time, and
resources needed for executing tasks and sub-tasks. Notice that, in general, the costs of the
two strategies are different (i.e., cNP �= cϕ1 + cϕ2 ). The cost cNP of the non-partition strategy



Swarm Intell (2013) 7:173–199 179

may include a component deriving from competition in accessing a shared resource, such as
space (Pini et al. 2009). On the one hand, the partition strategy can be used to reduce costs
of this nature, by distributing individuals across sub-tasks. On the other hand the partition
strategy usually entails overhead costs such as interfacing costs (Π1 and Π2). Which of the
two strategies is the most advantageous depends on the context and on the nature of the costs
involved.

In the case of leaf foraging in the Atta ant, the ants perform foraging using the partition
strategy. The result, compared to the use of the non-partition strategy, is that the total energy
spent by the swarm is lower due to the fact that the ants do not need to repeatedly climb the
tree trunk. However, the partition strategy is costly in terms of foraging efficiency: many of
the leaves that are dropped to the ground by an ant are not found by any other ant (Fowler
and Robinson 1979).

3.2 The foraging scenario

Foraging consists in the repetition of an object transportation task: collecting an object from
the environment and delivering it to a predefined location. Figure 2 represents our experi-
mental environment, in which the robots forage for objects. We consider the case in which
the objects are located in a unique place in the environment, referred to as the source. The
objects that are collected from the source must be delivered by the robots to the nest. We
assume that the source never depletes and that the robots know a priori the locations of the
source and the nest. Source and nest are located in two separate areas, which are connected
by a path referred to as the corridor. The corridor allows the robots to reach the source
from the nest and the other way around. The two areas are separated by the cache, which
cannot be crossed by the robots, but that can be used to transfer objects from one area to the
other.

The foraging scenario illustrated in Fig. 2 is an instance of the task partitioning problem
presented in Fig. 1. Performing the transportation task as one unpartitioned task corresponds
to utilizing the corridor: a robot directly HARVESTS an object from the source and STORES it
in the nest. The cache corresponds to the interface I and it allows the robots to partition the
transportation task into a sequence of two sub-tasks: a robot DROPS in the cache an object

Fig. 2 Representation of the environment in which foraging is performed. The robots collect objects from the
source, and deposit them in the nest. The areas containing the source and the nest are connected by a corridor,
which can be utilized by the robots to reach one area from the other. The corridor allows the robots to perform
transportation without employing task partitioning: a robot directly HARVESTS an object from the source and
STORES it in the nest. The cache can be used to transfer objects from an area to the other and it allows the
robots to partition transportation: an object is first DROPPED in the cache by a robot and subsequently it is
PICKED UP by another robot on the other side. The robots decide whether to use the cache or the corridor
in two cases, represented as question marks: after taking an object form the source (left-hand side) and after
depositing an object in the nest (right-hand side)



180 Swarm Intell (2013) 7:173–199

that it collected from the source; the same object is subsequently PICKED UP by a second
robot on the other side of the cache and delivered to the nest. Dropping an object in the
cache corresponds to the sub-task labeled with ϕ1 in Fig. 1; picking up an object from the
cache to the sub-task labeled with ϕ2. In the foraging context, we measure costs as time for
completing the transportation task. The cost cNP of the non-partitioning strategy depends
on the length of the corridor, which defines the time required to navigate through it. The
overhead cost of the partitioning strategy depends on the time required to use the cache on
both its sides. The use of the cache imposes an interfacing time Π , which is required to
drop or pick up an object from the cache: depending on the value of Π and the length of the
corridor, task partitioning can be more or less advantageous.

The robots decide whether to use the cache or the corridor (i.e., whether to partition
object transportation or not) in two occasions, represented with a question mark in Fig. 2.
After taking an object from the source, a robot must decide whether to traverse the corridor
and directly store the object in the nest or to use the cache to drop the object. After delivering
an object to the nest, a robot must decide whether to traverse the corridor and harvest the
following one from the source or to reach the cache to pick up an object there. As each robot
takes decisions autonomously, there is not, in general, a unique decision made by all the
robots: some robots may employ the cache while others may employ the corridor.

The robots can abandon the decision to use the cache to pick up or drop an object (details
are given in Sect. 3.3.2). This protects the swarm against deadlocks, which may occur if all
the robots try to pick up objects at the same time, and the cache is empty or, dually, if all the
robots try to drop objects at the same time and the cache is full.

3.3 The approach

In this section we describe the approach we employ for tackling the task partitioning prob-
lem presented in Sect. 3.1. In our approach, each robot associates a cost to the possible
actions and uses these costs to select which action to perform. In Sect. 3.3.1, we describe
how the robots compute the cost estimates. In Sect. 3.3.2, we describe the abandon mecha-
nism that prevents potential deadlocks in the system. In Sect. 3.3.3, we present algorithms
that the robots can employ to select which action to perform. In Sect. 3.3.4, we illustrate
how the robots communicate with each other and use the information received.

3.3.1 Computation of the cost estimates

As mentioned above, the robots use cost estimates to select the action they should perform.
In the foraging scenario studied here, possible actions are: (i) HARVEST an object from the
source, (ii) STORE an object in the nest, (iii) DROP an object in the cache, and (iv) PICK

UP an object from the cache. Robots aim at maximizing the number of objects delivered
to the nest in a given time, which is equivalent to minimizing the time needed to deliver
each object. Therefore, in this study costs are expressed as time. Each robot computes four
cost (time) estimates t̂i , each corresponding to the robot’s estimate of the duration of the
(sub-)task i. The estimates t̂i are computed as a recency-weighted average of the observed
costs:

t̂i ← (1 − α)t̂i + αtM, (1)

where α ∈ (0,1] is a weight factor and tM is the measured time required to perform the
corresponding action i.1 We decided to use a recency-weighted average since it gives more

1In the experiments, α is set to 0.5, refer to Sect. 5 for details.



Swarm Intell (2013) 7:173–199 181

weight to recent observations, resulting in a more reactive behavior in non-stationary envi-
ronments compared to a simple average (Sutton and Barto 1998).

Each robot initializes the estimates t̂i with a random value (refer to Sect. 5 for details).
The way tM is measured depends on the estimate being updated. In all the cases, tM measures
the time taken between two sub-sequent decisions, made by the robot (see question marks
in Fig. 2). When the robot estimates the time t̂H for HARVESTING an object from the source,
tM measures the time from the moment an object was deposited in the nest to the moment
the following object is harvested from the source, after navigating through the corridor.
In case the estimate being updated is the time t̂S required to STORE an object in the nest,
tM measures the time from the moment the robot takes an object from the source to the
moment it deposits it in the nest, after navigating through the corridor. The estimate t̂P of
the time required to PICK UP an object from the cache is updated with the time tM measured
from the moment an object is deposited in the nest, to the moment the next object, picked up
from the cache, is deposited in the nest. Analogously, a robot updates its estimate t̂D of the
time required to DROP an object in the cache with the time tM measured from the moment an
object is taken from the source to the moment the following object is taken from the source,
after the first has been dropped in the cache.

3.3.2 Abandon mechanism

The abandon mechanism allows a robot to cancel the decision of using the cache. Aban-
doning is based upon a timeout mechanism: the robot measures the time tM spent trying to
access the cache and abandons the decision (i.e., it takes the corridor) if tM is greater than
a certain threshold. In our previous work, we proposed different methods to compute this
threshold (see Pini et al. 2012a). We report here the two methods that are utilized in the
experiments presented in this work.2

The first method consists in computing two thresholds, τP and τD . The threshold τP is
used when a robot is trying to pick up an object from the cache, τD when a robot is trying to
drop an object in the cache. The two thresholds are computed as follows:

τP = 3t̂P , τD = 3 ˆtD. (2)

The second method uses a single threshold τ , that is derived using a formula analogous to
Eq. 1. Each time a robot utilizes the cache to pick up or to drop an object, the measured time
tM required to use the cache updates a value t̃ :

t̃ = (1 − α)t̃ + αtM, (3)

α is the same weight factor used in Eq. 1 for computing the estimates t̂i . t̃ is initialized to
the average of t̂P and t̂D . The timeout threshold τ is then computed as

τ = 3t̃ . (4)

Notice that, in case a robot abandons the decision of using the cache, its current value tM
updates the estimates t̂P or t̂D using Eq. 1 (and t̃ in case the timeout threshold is computed
using Eq. 3).

2In our previous work, we selected for each algorithm one method for computing the threshold. In this study
we use for each algorithm the corresponding method that was selected in the previous work (refer to Sect. 5).



182 Swarm Intell (2013) 7:173–199

3.3.3 Studied algorithms

In this work, we study three algorithms that the robots can use to take decisions on the basis
of the cost estimates. These algorithms are compared to a set of four reference algorithms,
in which the decisions do not depend on the value of the estimates. In the following we
describe each algorithm in detail.

The AdHoc algorithm The AdHoc algorithm was originally proposed in one of our pre-
vious works (Pini et al. 2011). A robot employing the AdHoc algorithm selects actions
stochastically. After collecting an object from the source, a robot DROPS it in the cache with
a probability P defined as

P =
{

[1 + e−S((t̂H +t̂S )/(t̂P +t̂D)−1)]−1, if t̂H + t̂S > (t̂P + t̂D),

[1 + e−S(1−(t̂P +t̂D)/(t̂H +t̂S ))]−1, if t̂H + t̂S ≤ (t̂P + t̂D),
(5)

where S is a parameter that regulates the degree of exploration of the algorithm. Exploration
consists in sampling less-advantageous solutions in order to detect variations in the envi-
ronment that possibly made these solutions more advantageous. In the case of the AdHoc
algorithm, the lower the value of S, the higher the exploration. In other words, the lower the
value of S, the higher the ratio between t̂H + t̂S (i.e., the estimated cost of using the corridor)
and t̂P + t̂D (i.e., the estimated cost of using the cache) must be in order to obtain a given
partition probability P . After delivering an object to the nest, a robot PICKS UP the next
one from the cache with the same probability P . Therefore, a robot employing the AdHoc
algorithm partitions the transportation task with a probability P and performs transportation
as one unpartitioned task with a probability 1 − P .

The ε-Greedy algorithm The ε-Greedy (Sutton and Barto 1998) is a simple stochastic al-
gorithm that has been applied in many contexts. The robots employing the ε-Greedy select
with a probability 1 − ε the action i with the lowest associated cost t̂i and with probabil-
ity ε a random action. ε is the only parameter of the algorithm and defines the degree of
exploration: the higher ε, the higher the exploration.

The UCB algorithm The UCB is a heuristic adaptation of the UCB1 policy presented in
the work of Auer et al. (2002), that in turn was derived from the index-based policy proposed
by Agrawal (1995). UCB1 is characterized by a rapid convergence because it was originally
designed for stationary problems (Auer et al. 2002). The robots employing the UCB algo-
rithm deterministically select the action to perform. For example, after depositing an object
in the nest, a robot PICKS UP the following one from the cache if:

t̂P − γ

√
2 ln(nP + nH )

nP

< t̂H − γ

√
2 ln(nP + nH )

nH

, (6)

otherwise the robot uses the corridor to HARVEST an object from the source. nP and nH

are, respectively, the number of times the robot used the cache to PICK UP an object and the
number of times the robot HARVESTED an object from the source (i.e., going through the
corridor). γ is a parameter that allows tuning the degree of exploration: higher values of γ

correspond to a higher exploration. A formula analogous to Eq. 6 is used by the robots to
decide whether to DROP and object in the cache or STORE it in the nest.



Swarm Intell (2013) 7:173–199 183

The Exp3 algorithm Exp3 (Cesa-Bianchi and Lugosi 2006) is a well-known MAB solver
designed to keep bounds on regret in a variety of settings, including the pessimistic adver-
sarial setting, where the problem is designed to be deceptive for the player. Using Exp3 the
robots stochastically select between the cache and the corridor. After taking the ith object
from the source, a robot DROPS it in the cache with a probability PD,i defined as

PD,i = (1 − γ )
e−ηLD,i

e−ηLD,i + e−ηLS,i
+ γ

2
, (7)

where LD,i = ∑i−1
j=1 lD,j and the values lD,j are computed as

lD,j =
{

t̃MD,j

PD,j
if the j th object was dropped in the cache,

0 if the j th object was stored in the nest via the corridor,
(8)

LS,i is computed in an analogous fashion, substituting D for DROP with S for STORE.
t̃MD,j in Eq. 8 is analogous to tM in Eq. 1: it is the measured time required to drop the j th
object in the cache. In this case the measure is normalized, using a maximum and minimum
values set a priori (refer to Sect. 5 for details).

The parameter γ in Eq. 7 is computed as

γ = C

(
4 ln 2

nD + nH

)1/3

, (9)

and the parameter η as

η = 1

C

(
ln 2

2(nD + nH )

)2/3

. (10)

In Eqs. 9 and 10, nD and nH are the total number of times the robot DROPPED an object in
the cache and the number of times the robot STORED an object in the nest (i.e., traversing
the corridor), respectively. In other words, nD + nH is the total number of decisions that
the robot made concerning where to deposit an object taken from the source (also refer to
Fig. 2), therefore corresponding to the value of i in Eq. 7.3 C is a constant value, computed
as

C = (
√

e − 2)2/3. (11)

Analogous formulas define the probability PP,i of PICKING UP an object from the cache
after the robot deposited its ith object in the nest (substitute DROP with PICK UP and STORE

with HARVEST in all the formulas).

The reference algorithms The reference algorithms are used as a yardstick to evaluate the
algorithms presented above. The first reference algorithm is the never-partition algorithm,
which consists in always using the corridor to harvest and store objects. Analogously, the
always-partition algorithm consists in always using the cache, to pick up and drop objects. In
case the robots use the always-partition algorithm, they are prevented from abandoning (see
Sect. 3.3.2). The third reference algorithm is the random algorithm. Using this algorithm,
the robots select the actions to perform stochastically with equal probability. Finally, the

3Notice that γ and η are not constants, due to their dependency on nD + nH .



184 Swarm Intell (2013) 7:173–199

informed algorithm consists in always selecting the cache or the corridor on the basis of
an external oracle information provided to the robots. The performance of the informed
algorithm is therefore an upper bound for the performance of the studied algorithms. Notice
that both the random and the informed algorithms allow the robots to abandon the decision
of using the cache.

3.3.4 Communication

The robots are equipped with a communication device that allows them to exchange infor-
mation. Each robot communicates the time tA associated to the last action A it performed.
The robots integrate their own cost estimates with the information received. Each robot uses
received information as if it were its own observation—i.e., as if the robot itself performed
the action A and measured the time tA. Equation 1 is utilized to update the estimate using
the information received (A identifies the index i and tA replaces tM ).

The communication device of the robots imposes many limitations. First, the commu-
nication range is limited to roughly 0.75 m, and robots can only exchange messages when
they are in line of sight. Second, a robot can receive one message per control step at most.
Third, each message has a payload limited to 16 bits.

Communication is implemented as explained in the following. As mentioned, a robot
communicates the measured time tA associated to the last performed action A. The first 2 of
the 16 payload bits are used to identify the action A: HARVEST, STORE, DROP, or PICK UP.
The remaining 14 bits directly express the value tA, measured in control cycles.4 Each robot
broadcasts a message every control cycle.

At most one message per control cycle can be received by a robot. To avoid using the
same piece of information more than once, each robot memorizes the last 10 received mes-
sages (i.e., 16-bits numbers). Each time a robot receives a new message, it checks it against
the contents of the buffer. If the same message is already present, the robot discards it; oth-
erwise, the received information integrates the cost estimates of the robot, and the message
is inserted in the buffer. The message buffer is managed using a FIFO5 policy: if a new
message must be added to the buffer and the buffer is full, the oldest message in the buffer
is discarded. Notice that, in principle, it is possible that two different robots send the same
message (i.e., they performed the same action A and measured the same time tA). A robot
receiving a message from both robots would therefore discard the second message received,
assuming that the two messages came from the same sender.

4 Experimental setup

In this section, we present the tools that we employed to carry out the experiments described
in Sect. 5. All the experiments presented in this work have been carried out in simulation.
In Sect. 4.1 we describe the e-puck, which is the robot that we simulate in the experiments.
In the same section we present the TAM, a device that is used in the experiments to abstract
object handling. In Sect. 4.2, we illustrate the environment in which the robots perform
foraging. In Sect. 4.3, we describe ARGoS, which is the simulator employed to carry out
our study.

4Each control cycle lasts 0.1 seconds.
5Acronym for first in, first out.



Swarm Intell (2013) 7:173–199 185

Fig. 3 An e-puck entering a TAM: picture (left) and schematic representation (right)

4.1 Robots and objects

In this work, we perform foraging experiments using a simulation of the e-puck.6 The e-puck
is a small wheeled robot that has been developed by Mondada et al. (2009) as an open tool for
university students. Each e-puck features a minimal set of sensors and actuators that allow
the robot to navigate and interact with other robots. The e-puck has a modular structure that
permits to add extension boards that enhance the basic capabilities of the robot. In this work,
we employ the infrared ground sensors board and the infrared range and bearing board (for
the latter refer to Gutiérrez et al. 2009). The infrared range and bearing board allows line of
sight communication between the e-pucks.

The e-puck does not have the capability of grasping and manipulating objects. To over-
come this limitation, in the experiment we simulate a device developed by Brutschy et al.
(2010), the TAM (acronym for task abstraction module).

Figure 3 reports a picture of an actual TAM (left) and a schematic representation of an
e-puck entering a TAM (right). Each TAM is a small booth that can be entered by one e-puck
at a time. The TAM features two RGB LEDs that can be perceived by the e-puck by means
of the front camera. The TAM is also equipped with an infrared barrier that can detect the
presence of a robot inside the TAM. The user can program the TAM and define its behavior,
that is, the way LEDs are actuated on the basis of the event detected (e.g., a robot entering
or exiting the TAM).

In this work, we use TAMs to abstract object handling. In the experiments, a TAM whose
LEDs are green represents an object that can be collected by an e-puck by entering that
TAM. Conversely, a TAM whose LEDs are blue represents a location where an object can
be deposited. In both cases, the TAM temporarily turns the LEDs to red when a robot is
inside. This serves as an acknowledgement mechanism for the robot, to confirm its presence
inside the TAM. The robots themselves keep track of whether they are carrying objects or
not and behave accordingly.

In the foraging experiments, the source, the nest, and the cache are implemented with
arrays of TAMs. The TAMs at the source are always green, to represent an object source
that never depletes. The TAMs at the nest are always blue, to represent unlimited storage
space at the nest. The cache is implemented using an array of paired TAMs: the opening of
one TAM is oriented towards the source and the opening of the other towards the nest.

6http://www.e-puck.org.

http://www.e-puck.org


186 Swarm Intell (2013) 7:173–199

Fig. 4 Implementation of a cache slot using two paired TAMs. The source (not represented) is located on the
left-hand side, the nest (not represented) on the right-hand side. Robots carrying an object are marked with
a black arrow, robots not carrying an object with a white arrow. (a) Initial configuration: the cache slot is
empty, a robot can enter the TAM oriented towards the source (lit up in blue) to drop an object. (b) An object
has been deposited by a robot; the TAM oriented towards the source turns the LEDs off and the paired TAM
turns on the LEDs in green. (c) The object is available at the TAM oriented towards the nest and another
robot enters the TAM to pick up the object. (d) When this robot leaves with the object, the two TAMs return
to their initial configuration

Figure 4 depicts the behavior of two paired TAMs that implement a slot in the cache.7

In the figure, a robot carrying an object is marked with a black arrow, a robot without an
object with a white arrow. Figure 4(a) shows an e-puck carrying an object that enters an
empty cache slot. The cache TAM facing the source (left-hand side) is blue, the paired TAM
facing the nest is off. In Fig. 4(b) the robot is leaving the TAM, after depositing the object
previously carried. The object becomes available on the other side of the cache slot: the
TAM facing the nest (right-hand side) is now green and therefore an object can be picked
up there. The paired TAM facing the source side is switched off, to avoid additional objects
to be delivered there. In Fig. 4(c) a second robot enters the cache slot on the nest side, to
pick up the object. When the robot leaves the TAM with the object (Fig. 4(d)), the cache slot
returns to its initial configuration: an object can be dropped again in the cache at the source
side. A video that illustrates the behavior of the cache can be found in Pini et al. (2012c).
The interfacing time Π is implemented as a delay between the two phases represented in
Fig. 4(a) and (b). After the robot entered the TAM oriented towards the nest, the TAM
turns its LEDs to red (not shown in figure) to acknowledge the robot presence, the LEDs
do not turn off (i.e., the robot cannot leave the TAM) until a time equal to Π has passed.
Analogously, the transition between the phases represented in Fig. 4(c) and (d), requires
a time Π .

4.2 Implementation of the foraging environment

The environment in which we carry out the experiments is represented in Fig. 5. It is a 1.8 m
by 4.4 m rectangular arena surrounded by walls. The source and the nest are implemented

7The TAMs can communicate via WiFi. The behavior of a cache slot, that is, the coordination between two
paired TAMs, can be easily implemented in the real-world by interfacing the TAMs with a PC.



Swarm Intell (2013) 7:173–199 187

Fig. 5 The environment in
which the robots perform
foraging. The source, the nest,
and the cache are implemented
using arrays of TAMs. Different
areas in the arena are marked
with a specific ground color, that
can be recognized by the robots.
A row composed of three light
sources (each marked with “L”)
is used by the robots as a
directional clue for navigation

using four TAMs organized in arrays. The cache consists of two arrays of four TAMs each,
one facing the source and one facing the nest. A row of three light sources, located at the
bottom of the arena, is used by the robots as a directional cue for navigation. The robots
estimate the direction of the lights using the eight on-board ambient light sensors. The di-
rectional information allows the robots to traverse the corridor and to estimate their heading
with respect to source, cache, and nest, which is necessary to navigate towards the TAMs.
The color of the ground, different for every location in the arena, is recognized by the robots
by means of the infrared ground sensors. This information is used by the robots to determine
their location in the arena. While navigating the environment, the robots perform obstacle
avoidance using the eight infrared proximity sensors as bumpers.

4.3 ARGoS

All the experiments presented in this paper have been carried out using ARGoS, a physics-
based simulation software developed within the Swarmanoid8 project (Dorigo et al. 2013).
ARGoS allows the real-time simulation of thousands of robots and can be customized by

8http://www.swarmanoid.org.

http://www.swarmanoid.org


188 Swarm Intell (2013) 7:173–199

the user (Pinciroli et al. 2012). In the experiments presented in this work, the e-puck and the
TAM are simulated using the 2D-dynamics physics engine available in ARGoS. The sim-
ulation proceeds at discrete steps. At each simulation step, a uniformly distributed random
value between −5 % and 5 % of the reading is added to the ambient light, proximity, and
ground sensor readings. The maximum communication distance of the simulated range and
bearing board is set to 0.75 m; each robot has a 30 % probability per control step of not
receiving any message (even the ones that were sent within communication range).

5 Experiments and results

We carry out all the simulation-based experiments with a swarm of 20 e-pucks. At the be-
ginning of each experimental run, 10 robots are placed in the area containing the source and
10 in the area containing the nest. The initial position and orientation of each robot are se-
lected randomly. We chose this initial configuration because the always-partition algorithm
requires an equal number of robots to be positioned on both sides of the cache, in order to use
it optimally. To allow for a fair comparison of the algorithms, we use the same initialization
also for the other algorithms. The cost estimates are initialized stochastically: we uniformly
sample t̂P and t̂D from the interval [20,40] and t̂H and t̂S from the interval [40,80]. Each
experimental run amounts to a time of 10 simulated hours. For each experimental condition
we perform 100 runs, varying the seed of the pseudo-random number generator.

For each algorithm presented in Sect. 3.3.3, we test two versions that differ in the amount
of exploration, controlled by setting the corresponding parameter (S for the AdHoc, γ for
UCB, and ε for ε-Greedy), and in the method utilized to compute the timeout threshold,
used by the abandon mechanism. In our previous work, we carried out experiments targeted
at determining the values of the parameters of the algorithms (refer to Pini et al. 2012a, for
details). In this work, we use the values previously determined, which are summarized in
Table 1. The value of the parameter α, which is used to compute estimates according to
Eq. 1, is set to 0.5 for all the algorithms. Note that Exp3 has no parameters and therefore
there is only one version of the algorithm. We tested Exp3 with both methods to compute the
abandon threshold presented in Sect. 3.3.2. The results obtained with the two are comparable
and therefore we chose to report in the paper only the ones obtained with Eq. 2. Complete
results are available in Pini et al. (2012c). As mentioned in Sect. 3.3.3, Exp3 requires the
time measures of the robots to be normalized (Eq. 8). The values used for normalization are
12 s for the minimum and 300 s for the maximum, determined as follows. The minimum

Table 1 Selected parameters for the exploiting and exploring versions of the studied algorithms

Algorithm Version Parameter Abandon

AdHoc exploiting S = 6.0 Eq. 4

exploring S = 1.0 Eq. 4

UCB exploiting γ = 100 Eq. 4

exploring γ = 1000 Eq. 2

ε-Greedy exploiting ε = 0.01 Eq. 2

exploring ε = 0.11 Eq. 2

Exp3 does not apply None Eq. 2



Swarm Intell (2013) 7:173–199 189

corresponds to the minimum time observed by a robot to access the cache for Π = 0 s. The
maximum corresponds to the maximum time observed by a robot to travel along the corridor
(one direction only). Both values have been determined in experiments in which the robots
employ the random algorithm.

The main goal of the experiments is to determine the effect of communication on the
studied system: we compare two versions of each algorithm, with and without communica-
tion, labeled social and non-social, respectively.

The rest of this section is organized as follows. In Sect. 5.1, we present experiments
in which we study the behavior of the non-social version of the algorithms. In Sect. 5.2,
we describe experiments in which we study the social versions. In Sect. 5.3, we propose
a modification to the AdHoc and UCB algorithms, which we made to tackle an issue that
emerged in the experiments performed with the social version of the algorithms.

5.1 Non-social algorithms: experiments and results

In this section, we present the experiments carried out with the non-social version of the
studied algorithms. In a first group of experiments, we test the capability of the swarm to
decide whether to use the cache or the corridor for different values of the cache interfacing
time Π . We test two cases: in one, we set Π to 0 s, which means that the cache is preferable
over the corridor; in the other, we set Π to 160 s, which means that the corridor is preferable.

Figure 6 reports the performance of the studied algorithms, for Π = 0 s (top) and
Π = 160 s (bottom). We measure the performance of an algorithm as the total number
of objects delivered to the nest by the swarm, when that algorithm is employed. The results
confirm that, for Π = 0 s, the cache is advantageous and the best performing algorithm is
the always-partition algorithm. Dually, for Π = 160 s, the corridor is advantageous and the
never-partition algorithm is the best performing. With the exception of Exp3, the studied
algorithms perform well in both environments. The results obtained by the ε-Greedy and
UCB algorithms confirm that existing algorithms that are used in the literature for tackling
the multi-armed bandit problem can be successfully applied to the task partitioning prob-
lem. The poor performance of Exp3 can likely be ascribed to an excessive exploration due
to its pessimistic assumptions: in an adversarial setting, one can never be too careful in
exploiting.

Given that the problem is stationary (i.e., Π does not vary in time), the exploiting version
of each algorithm performs better than the corresponding exploring version. In fact, once
the robots have determined whether the cache is advantageous over the corridor or not,
they do not need to keep exploring and the exploiting version of the algorithms is more
efficient.

To test a more challenging situation for the robots, we study a non-stationary environment
in which we vary Π during the course of the experimental run. Varying the value of the cache
interfacing time allows us to model situations in which the environmental conditions change
and render task partitioning more or less advantageous.

We test two cases; in one case the interfacing time is initialized to Π = 0 s and, at time
t = 2.5 hours (i.e., one quarter of experiment), we set it to 160 s. Therefore, the cache is
initially preferable (for t < 2.5 hours). After Π changes, the cache becomes costly and the
robots should utilize the corridor. In the other, dual case, we initialize Π to 160 s and we set
its value to s at t = 2.5 hours. When the robots use the informed algorithm their behavior is
hard-coded. While Π is low, the robots always use the cache. Conversely, when Π is high,
they always traverse the corridor. As mentioned in Sect. 3.3.3, the informed algorithm is an
upper bound for the other algorithms.



190 Swarm Intell (2013) 7:173–199

Fig. 6 Performance of the studied algorithms, measured as objects delivered to the nest by the swarm. The
top plot reports the results obtained for Π = 0 s, the bottom plot for Π = 160 s

Fig. 7 Performance, measured as objects delivered to the nest by the swarm, for a sub-set of the algorithms.
The figure reports the results obtained for the experimental setup in which Π is initialized to 0 s and set to
160 s when the experimental run reaches a quarter of its duration

Figure 7 reports the performance of the two versions of each algorithm and the four
reference algorithms, for the case in which Π is changed from 0 s to 160 s. The results
reported in the figure show that the exploiting version of each algorithm performs better than
the corresponding exploring version and reaches performance levels close to the ones of the



Swarm Intell (2013) 7:173–199 191

Fig. 8 Percentage of usage of the cache in time, for the different versions of the algorithms. The plots report
the results of the experiment in which Π is initialized to 0 s. Each box reports the overall data collected
over 100 experimental runs, for the period of 30 minutes that precedes the value reported on the X axis. The
vertical dashed line marks the instant in which the value of Π is changed

informed algorithm. As in the previous case, Exp3 performs badly in the tested experimental
conditions.

Figure 8 reports the percentage of usage of the cache in time for the studied algorithms.
The plots in the same row refer to the same algorithm, from top to bottom: AdHoc, UCB,
and ε-Greedy. 9 The left-hand side column of plots reports the results of the exploiting
version of the algorithms, the right-hand side column of plots the results obtained with the
exploring version of the algorithms. Each box reports the percentage of usage of the cache
in the 30 minutes that precede the time reported on the X axis. The plots show that, in all
the cases, the robots initially identify the cache as the best choice and utilize it most of the
times. When Π changes from 0 s to 160 s, the robots switch to the corridor, which becomes
advantageous over the cache. Since in the first part of the experiment the robots mostly use
the cache, they directly perceive the variation of Π and react to the change. The difference
between the exploring and exploiting version of the algorithms is that the exploring version
samples the (perceived) less advantageous option with a higher frequency.

This results in a loss of performance, as observable in Fig. 7. Therefore, in case Π varies
from a low to a high value, the swarm does not benefit from exploration: the variation di-
rectly impacts the cost of the choice selected the most by the robots (i.e., using the cache)

9An analogous plot for Exp3 is available in Pini et al. (2012c).



192 Swarm Intell (2013) 7:173–199

Fig. 9 Percentage of usage of the cache in time, for the different versions of the algorithms. The plots report
the results of the experiment in which Π is initialized to 160 s. Each box reports the overall data collected
over 100 experimental runs, for the period of 30 minutes that precedes the value reported on the X axis. The
vertical dashed line marks the instant in which the value of Π is changed

and therefore the change can be perceived directly by the swarm. The dual case in which
Π varies from a high to a low value presents a different challenge to the robots. Figure 9
reports, analogously to Fig. 8, the percentage of usage of the cache in time, for the two ver-
sions of the studied algorithms. In this case, the initial value of Π is high and the robots
initially select the corridor more frequently than the cache. This implies that, differently
from the previous case, the variation occurring at the cache cannot be directly detected by
all the robots in the swarm. The plots on the left-hand side of Fig. 9 show that the exploiting
versions of the algorithms struggle to detect the variation of Π . The exploring versions of
the algorithms, on the other hand, allow the swarm to adapt their choice to the new value
of Π . This indicates that, in this case, exploration is beneficial.

Figure 10 confirms that indeed exploration entails benefits. In this case, the performance
of the exploring version of the algorithms is higher than the performance of the correspond-
ing exploiting versions. The results highlight that, as in the multi-armed bandit problem, also
in the task partitioning problem a tradeoff exists between exploiting the cumulated knowl-
edge and exploring the environment to detect changes and react to them. Compared to the
previous case (Fig. 7) Exp3 performs relatively better, but its performance is still far from
the one of the best algorithms.



Swarm Intell (2013) 7:173–199 193

Fig. 10 Performance of the algorithms for the case in which Π is initialized to 160 s and set to 0 s when the
experimental run reaches a quarter of its duration

Fig. 11 Performance of the studied algorithms for the case in which Π is initialized to 160 s and set to
0 s when the experimental run reaches a quarter of its duration. For each algorithm (excluding the reference
algorithms) we report the results obtained with the non-social (gray boxes) and social version (white boxes)

5.2 Social algorithms: experiments and results

In this section, we present the experiments that we carried out to test the influence of commu-
nication on the behavior of the system. We focus on the case in which the cache interfacing
time is initialized to 160 s and set to 0 s at t = 2.5 hours. We study the behavior of the social
and non-social versions of the AdHoc, ε-Greedy, and UCB algorithms.

Figure 11 reports the performance of the algorithms. Each plot reports the performance
of the four reference algorithms and the four different versions of each algorithm (explor-
ing/exploiting and social/non-social). In the plot, the gray and white boxes report the results
of the non-social and social versions of the algorithms, respectively. The data reported in the
figure show that communication affects the swarm differently, depending on the algorithm
being utilized by the robots. Communication affects positively the ε-Greedy algorithm: the
performance increases independently of the setting of the parameter ε. Communication also
improves the performance of Exp3. Conversely, communication has a strong negative effect
on the UCB algorithm, independently of the value of γ . The effect of communication on
the AdHoc algorithm depends on its version. The performance of the exploring version in-



194 Swarm Intell (2013) 7:173–199

Fig. 12 Cache usage in time, as observed in four selected experimental runs. Top: non-social version of the
AdHoc algorithm (exploiting). Bottom: social version of the AdHoc algorithm (exploiting)

creases slightly, while there is an increase in the variability of the results obtained with the
exploiting version.

To understand the effect of communication on the exploiting version of the AdHoc algo-
rithm, we study the behavior of the robots across single experimental runs. In the plots of
Fig. 12, we report the percentage of use of the cache in time, for four experimental runs. The
plots in the first row report the results obtained with the non-social version of the AdHoc
algorithm, the plots in the second row for the case in which the social version is employed.

The runs reported here are examples that allow us to illustrate general trends that we
observe in the experiments. Analogous plots for each experimental run are available in (Pini
et al. 2012c). In general, communication renders the choice made by the robots of the swarm
more uniform. This affects the system in two ways. On the one hand, as shown in Fig. 12(c)
and Fig. 12(d), the transitions are sharper. If a few robots detect that the cache became
advantageous, information spreads within the swarm and all the robots rapidly switch to
using the cache. The sooner this happens, the more the robots can exploit the benefits of



Swarm Intell (2013) 7:173–199 195

using the cache. In case the robots do not communicate (Figs. 12(a) and 12(b)), the transition
is slower, because every robot has to detect by itself that the cache became advantageous.

Besides rendering the transitions quicker, the fact that the choice made by the robots is
strongly biased towards one of the two options also entails the risk that the change occurring
at the cache goes undetected, as in the case reported in Fig. 12(d), where the robots detect
the variation of Π only at the end of the experiment.

In the case of UCB, the situation is pushed to the extreme: in all the runs, the robots con-
verge to the usage of the corridor and the cache is never sampled again. Therefore, the robots
are not able to detect that the cache became advantageous and the resulting performance of
the swarm is low (see Fig. 11). This is likely due to the fact that, as mentioned in Sect. 3.3.3,
the algorithm on which our UCB heuristic is based was originally designed for stationary
problems (Auer et al. 2002) and it is therefore characterized by a rapid convergence, which
is here further accelerated by communication.

Differently from the other algorithms, ε-Greedy algorithm does not suffer the mentioned
problem. This is because the probability of selecting the action perceived as the worst does
not change with the estimated action cost, being always ε. Therefore, the ε-Greedy draws
only benefits from the increased flow of information.

5.3 Algorithms with ε-exploration: experiments and results

To face the problems we encountered with the AdHoc and UCB algorithms, we modify the
two algorithms to include a term of ε-exploration, as in ε-Greedy: with probability 1 − ε,
the robots make a choice according to the corresponding algorithm and with probability ε

the robots choose randomly. We select the value ε = 0.01, which is the same utilized in
the exploiting version of the ε-Greedy algorithm. We refer to the modified versions of the
AdHoc and UCB algorithms as the ε-AdHoc and ε-UCB algorithms, respectively.

Figure 13 highlights the effect of ε-exploration on the performance of the different ver-
sions of the UCB (top) and AdHoc (bottom) algorithms. The top plot shows that, in general,
the UCB benefits from the ε-exploration, the only exception being the exploiting version
that uses communication.

The social version of the AdHoc algorithm also benefits from the added ε-exploration.
The performance of the ε-AdHoc (in its exploiting version) is higher than the one of the
AdHoc and the variability in the results is reduced. The ε-exploration, together with com-
munication, allows the AdHoc algorithm to have a portion of exploitation, which allows the
swarm to use efficiently the cache (or the corridor) and, at the same time, to remain flexible
with respect to changes.

6 Conclusions

Task partitioning, the process by which tasks are decomposed into sub-tasks, can be benefi-
cial for the organization of work in groups of individuals. Examples in nature demonstrate
that social insects benefit from task partitioning in terms of an increased exploitation of spe-
cialization, enhanced efficiency, and physical separation of the workers. Swarms of robots
share many similarities with colonies of social insects and can draw the very same benefits
from partitioning their tasks. Task partitioning also entails overhead costs, that are due to the
increased coordination required within the members of the swarm. Depending on the spe-
cific situation and on the costs involved, task partitioning may or may not be advantageous.
It is therefore important that a swarm properly selects whether to employ task partitioning
or not.



196 Swarm Intell (2013) 7:173–199

Fig. 13 Performance of the UCB (top) and AdHoc (bottom) algorithms, with and without ε-exploration. The
gray boxes report the data for the case in which communication is not used, the white boxes for the case in
which communication is used

In previous research works, we proposed distributed methods to tackle the task parti-
tioning problem: selecting whether to perform a given task as a whole, or perform it as
a sequence of sub-tasks. The research work presented in this article builds upon our pre-
vious research. As in the previous works, the robots take decisions individually, on the
basis of the estimated cost of task partitioning. We extend the system by adding a social
component within the swarm: the robots exchange information about the environment by
communicating explicitly. Each robot communicates the measured cost of the last action
it performed and uses the received information to integrate the cost estimates used to take
decisions.

We evaluate the system in simulation-based experiments, using a foraging scenario as
a testbed. We study three different algorithms, that the robots can utilize to solve the task
partitioning problem: an AdHoc algorithm, that we explicitly designed to tackle the task
partitioning problem and three algorithms taken from the multi-armed bandit literature,
ε-Greedy, UCB, and Exp3. We compare the algorithms in their social and non-social ver-
sions, the former using communication.

In the experiments, we compare situations that differ in terms of the cost of using task
partitioning. The results of the experiments confirm that existing algorithms for the multi-
armed bandit problem can be successfully employed in the context of swarm robotics to
perform task partitioning. We point out that, as in the multi-armed bandit problem, also in
the task partitioning problem a tradeoff exists between exploration and exploitation. The



Swarm Intell (2013) 7:173–199 197

results obtained with the social version of the algorithms indicate that communication leads
to conformism within the swarm and strongly biases the choice made by the robots. On
the one hand, this renders the swarm quicker in taking decisions, but on the other hand it
may prevent the swarm from being able to detect variations occurring in the environment.
We propose a modification to the ad hoc algorithm, in terms of built-in exploration, which
improves the capability of the algorithm to react to changes occurring in the environment.
We point out that the same modification does not improve the performance of UCB for
the exploiting version of the algorithm that uses communication. This indicates that, con-
trary to what one might expect, communication does not always lead to benefits for the
swarm.

Future research will aim at investigating more deeply the effects of communication in
the studied system as well as studying different communication strategies and ways of us-
ing the information received. For example, the robots could directly exchange information
about their internal states, rather than the last observation made in the environment. Another
option is that the robots associate a confidence level to the information they are commu-
nicating. On the reception side, a robot would then use this confidence measure to weight
the information it received. Finally, more complex communication strategies could be used
to achieve explicit coordination among the robots of the swarm. A number of works in the
literature of multi-agent systems has shown that coordination improves performance. De-
centralized coordination is a well studied research domain and many solutions proposed in
the literature can be applied. However, coordination approaches are in general much more
complex, in terms of both communication and computation. The communication strategy
used in our study, on the other hand, is minimalistic and it can be used by agents with
limited communication capabilities.

Acknowledgements The research leading to the results presented in this paper has received funding from
the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-
2013)/ERC grant agreement n◦ 246939. Giovanni Pini acknowledges support from Université Libre de Brux-
elles through the “Fonds David & Alice Van Buuren”. Arne Brutschy, Marco Dorigo, and Mauro Birattari
acknowledge support from the Belgian F.R.S.–FNRS.

References

Agrawal, R. (1995). Sample mean based index policies with O(logn) regret for the multi-armed bandit
problem. Advances in Applied Probability, 27, 1054–1078.

Anderson, C., & Ratnieks, F. L. W. (1999). Task partitioning in insect societies I: effect of colony size on
queueing delay and colony ergonomic efficiency. The American Naturalist, 154(5), 521–535.

Anderson, C., & Ratnieks, F. L. W. (2000). Task partitioning in insect societies: novel situations. Insectes
Sociaux, 47, 198–199.

Arnan, X., Ferrandiz-Rovira, M., Pladevall, C., & Rodrigo, A. (2011). Worker size-related task partitioning
in the foraging strategy of a seed-harvesting ant species. Behavioral Ecology and Sociobiology, 65(10),
1881–1890.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2), 235–256.

Brutschy, A., Pini, G., Baiboun, N., Decugnière, A., & Birattari, M. (2010). The IRIDIA-TAM: A device for
task abstraction for the E-puck robot. Technical Report TR/IRIDIA/2010-015, IRIDIA, ULB.

Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent reinforcement
learning. IEEE Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews, 38(2),
156–172.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge: Cambridge University
Press.



198 Swarm Intell (2013) 7:173–199

Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani,
M., Brambilla, M., Brutschy, A., Burnier, D., Campo, A., Christensen, A. L., Decugnière, A., Caro,
G. D., Ducatelle, F., Ferrante, E., Förster, A., Gonzales, J. M., Guzzi, J., Longchamp, V., Magnenat,
S., Mathews, N., de Oca, M. M., O’Grady, R., Pinciroli, C., Pini, G., Rétornaz, P., Roberts, J., Sperati,
V., Stirling, T., Stranieri, A., Stützle, T., Trianni, V., Tuci, E., Turgut, A. E., & Vaussard, F. (2013, in
press). Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics &
Automation Magazine.

Drogoul, A., & Ferber, J. (1992). From tom thumb to the dockers: some experiments with foraging robots. In
J.-A. Meyer, L. R. Herbert, & W. W. Stewart (Eds.), Proceedings of the second international conference
on simulation of adaptive behavior (pp. 451–459). Cambridge: MIT Press.

Fontan, M. S., & Matarić, M. J. (1996). A study of territoriality: the role of critical mass in adaptive task
division. In P. Maes, M. J. Matarić, J.-A. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats
4: proceedings of the fourth international conference of simulation of adaptive behavior (pp. 553–561).
Cambridge: MIT Press.

Fowler, H. G., & Robinson, S. W. (1979). Foraging by Atta sexdens (Formicidae: Attini): seasonal patterns,
caste and efficiency. Ecological Entomology, 4(3), 239–247.

Frison, M., Tran, N.-L., Baiboun, N., Brutschy, A., Pini, G., Roli, A., Dorigo, M., & Birattari, M. (2010). Self-
organized task partitioning in a swarm of robots. In M. Dorigo, M. Birattari, G. A. Di Caro, R. Dour-
sat, A. P. Engelbrecht, D. Floreano, L. M. Gambardella, R. Groß, E. Sahin, H. Sayama, & T. Stützle
(Eds.), LNCS: Vol. 6234. Swarm intelligence, 7th international conference, ANTS 2010 (pp. 287–298).
Berlin/Heidelberg: Springer.

Goldberg, D., & Matarić, M. J. (2002). Design and evaluation of robust behavior-based controllers for dis-
tributed multi-robot collection tasks. In T. Balch & L. E. Parker (Eds.), Robot teams: from diversity to
polymorphism (pp. 315–344). Natick: AK Peters/CRC Press.

Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., & Magdalena, L. (2009). Open
E-puck range & bearing miniaturized board for local communication in swarm robotics. In ICRA’09:
proceedings of the 2009 IEEE international conference on robotics and automation (pp. 3111–3116).
Piscataway: IEEE Press.

Hart, A. G., & Ratnieks, F. L. W. (2001). Task partitioning, division of labour and nest compartmentalisa-
tion collectively isolate hazardous waste in the leafcutting Atta cephalotes. Behavioral Ecology and
Sociobiology, 49, 387–392.

Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B., & Fowler, H. (1980). Foraging by bucket-brigade in
leaf-cutter ants. Biotropica, 12(3), 210–213.

Jeanne, R. L. (1986). The evolution of the organization of work in social insects. Monitore Zoologico Italiano,
20, 119–133).

Lein, A., & Vaughan, R. T. (2008). Adaptive multi-robot bucket brigade foraging. In S. Bullock, J. Noble,
R. Watson, & M. A. Bedau (Eds.), Artificial life XI: proceedings of the eleventh international conference
on the simulation and synthesis of living systems (pp. 337–342). Cambridge: MIT Press.

Lein, A., & Vaughan, R. T. (2009). Adapting to non-uniform resource distributions in robotic swarm forag-
ing through work-site relocation. In 2009 IEEE/RSJ international conference on intelligent robots and
systems (IROS’09) (pp. 601–606). Piscataway: IEEE Press.

Lerman, K., & Galstyan, A. (2002). Mathematical model of foraging in a group of robots: effect of interfer-
ence. Autonomous Robots, 13, 127–141.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.-C., Flore-
ano, D., & Martinoli, A. (2009). The e-puck, a robot designed for education in engineering. In Proceed-
ings of the 9th conference on autonomous robot systems and competitions (pp. 59–65). IPCB-Instituto
Politecnico de Castelo Branco.

Nunes, L., & Oliveira, E. (2008). Communication during learning in heterogeneous teams of learning agents.
Intelligent Decision Technologies, 2(3), 153–166.

Østergaard, E. H., Sukhatme, G. S., & Matarić, M. J. (2001). Emergent bucket brigading: a simple mecha-
nisms for improving performance in multi-robot constrained-space foraging tasks. In E. Andre, S. Sen,
C. Frasson, & P. M. Jörg (Eds.), AGENTS’01: proceedings of the fifth international conference on au-
tonomous agents (pp. 29–30). New York: ACM Press.

Panait, L., & Luke, S. (2005). Cooperative multi-agent learning: the state of the art. Autonomous Agents and
Multi-Agent Systems, 11(3), 387–434.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E.,
Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L. M., & Dorigo, M. (2012). ARGoS: a modular,
parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295

Pini, G., Brutschy, A., Birattari, M., & Dorigo, M. (2009). Task partitioning in swarms of robots: reducing
performance losses due to interference at shared resources. In J. A. Cetto, J. Filipe, & J.-L. Ferrier (Eds.),
LNEE: Vol. 85. Informatics in control, automation and robotics (pp. 217–228). Berlin/Heidelberg:
Springer.



Swarm Intell (2013) 7:173–199 199

Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., & Birattari, M. (2011). Task partitioning in swarms
of robots: an adaptive method for strategy selection. Swarm Intelligence, 5(3–4), 283–304.

Pini, G., Brutschy, A., Francesca, G., Dorigo, M., & Birattari, M. (2012a). Multi-armed bandit formulation of
the task partitioning problem in swarm robotics. In M. Dorigo, M. Birattari, C. Blum, A. L. Christensen,
A. P. Engelbrecht, R. Groß, & T. Stützle (Eds.), LNCS: Vol. 7461. Swarm intelligence, 8th international
conference, ANTS 2012 (pp. 109–120). Berlin/Heidelberg: Springer.

Pini, G., Brutschy, A., Scheidler, A., Dorigo, M., & Birattari, M. (2012b). Task partitioning in a robot
swarm: Retrieving objects by transferring them directly between sequential sub-tasks. Technical Re-
port TR/IRIDIA/2012-010, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

Pini, G., Gagliolo, M., Brutschy, A., Dorigo, M., & Birattari, M. (2012c). Task partitioning in a robot
swarm: a study on the effect of communication—Online supplementary material. http://iridia.
ulb.ac.be/supp/IridiaSupp2012-0015/.

Pini, G., Brutschy, A., Pinciroli, C., Dorigo, M., & Birattari, M. (2013, in press). Autonomous task partition-
ing in robot foraging: an approach based on cost estimation. Adaptive behavior.

Ratnieks, F. L. W., & Anderson, C. (1999). Task partitioning in insect societies. Insectes Sociaux, 46(2),
95–108.

Schlag, K. (1998). Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits.
Journal of Economic Theory, 78(1), 130–156.

Shell, D. J., & Matarić, M. J. (2006). On foraging strategies for large-scale multi-robot systems. In Pro-
ceedings of the 19th IEEE/RSJ international conference on intelligent robots and systems (IROS)
(pp. 2717–2723). Piscataway: IEEE Press.

Shoham, Y., Powers, R., & Grenager, T. (2007). If multi-agent learning is the answer, what is the question?
Artificial Intelligence, 171(7), 365–377.

Sutton, R., & Barto, A. (1998). Reinforcement learning, an introduction. Cambridge: MIT Press.
Tan, M. (1993). Multi-agent reinforcement learning: independent vs. cooperative agents. In Proceedings of

the tenth international conference on machine learning (pp. 330–337).
Theraulaz, G., Bonabeau, E., Solé, R. V., Schatz, B., & Deneubourg, J.-L. (2002). Task partitioning in a poner-

ine ant. Journal of Theoretical Biology, 215, 481–489.
Weiss, G. (1999). Multiagent systems: a modern approach to distributed artificial intelligence. Cambridge:

MIT Press.
Whitehead, S. D. (1991). A complexity analysis of cooperative mechanisms in reinforcement learning. In

T. L. Dean & K. McKeown (Eds.), Proceedings of the 9th national conference on artificial intelligence
(Vol. 2, pp. 607–613). Menlo Park/Cambridge: AAAI Press/MIT Press.

http://iridia.ulb.ac.be/supp/IridiaSupp2012-0015/
http://iridia.ulb.ac.be/supp/IridiaSupp2012-0015/

	Task partitioning in a robot swarm: a study on the effect of communication
	Abstract
	Introduction
	Related work
	Task partitioning in swarm robotics
	Multi-agent reinforcement learning

	Problem and methodology description
	The task partitioning problem
	The foraging scenario
	The approach
	Computation of the cost estimates
	Abandon mechanism
	Studied algorithms
	The AdHoc algorithm
	The epsilon-Greedy algorithm
	The UCB algorithm
	The Exp3 algorithm
	The reference algorithms

	Communication


	Experimental setup
	Robots and objects
	Implementation of the foraging environment
	ARGoS

	Experiments and results
	Non-social algorithms: experiments and results
	Social algorithms: experiments and results
	Algorithms with epsilon-exploration: experiments and results

	Conclusions
	Acknowledgements
	References


