
zePPeLIN:
Distributed path planning using an
overhead camera network

immediate
�

Abstract We introduce zePPeLIN, a distributed system
designed to address the challenges of path planning in
large, cluttered, dynamic environments. The objective is
to define a sequence of instructions to precisely move a
ground object (e.g., a mobile robot) from an initial to a final
configuration in an environment. zePPeLIN is based on
a set of wirelessly networked overhead cameras. While
each camera only covers a limited environment portion,
the camera set fully covers the environment through the
union of its fields of view. Path planning is performed in a
fully distributed and cooperative way, based on potential
diffusion over local Voronoi skeletons and local message
exchanging. Additionally, the control of the moving object
is fully distributed: it receives movement instructions
from each camera when it enters that camera’s field of
view. The overall task is made particularly challenging by
intrinsic errors in the overlap in cameras’ fields of view.
We study the performance of the system as a function
of these errors, as well as its scalability for the size and
density of the camera network. We also propose a few
heuristics to improve performance and computational and
communication efficiency. The reported results include
both extensive simulation experiments and validation
using a real camera network planning for a two-robot
system.

Keywords Distributed Path Planning, Cooperative
Multi-camera Network, Robot Navigation

1. Introduction

Path planning refers to the calculation of the path that an
object has to follow in moving from a starting point to a
given destination/configuration. This is a fundamental
problem in robotics, where the moving object can be
the robot itself, a part of it (e.g., its robotic arms) or
an object being carried by one or more robots. The
calculation of a plan consists of the definition of the
precise sequence of roto-translations for moving the object
without hitting obstacles, including other robots. A large
number of versions of this problem, as well as algorithms
for its solution, have been proposed in the last three
decades (e.g., see [1–3] for overviews). In this paper, we
focus on the version which is also informally referred to
as the Piano mover’s problem. In this case, the controllable
degrees of freedom of the moving object are equal to
the total degrees of freedom, meaning that the moving
object (the piano) has no dynamic constraints on its motion
(holonomic motion). The Piano mover’s problem assumes
that an agent who plans the path has as input a map
of the environment and the object’s model. However, in
many cases of practical interest, such a map needs to be
gathered on the spot, immediately before path planning,
in order to reliably include the precise deployment of the
furniture and the status of any dynamic obstacles (e.g.,
a moving robot, a closed door, a human crowd). For
instance, sensing devices such as video or depth cameras
placed in the environment can be conveniently used to
build the required map.

Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo and Gianni A. Di Caro: 
zePPeLIN: Distributed Path Planning Using an Overhead Camera Network

1

ARTICLE

Int J Adv Robot Syst, 2014, 11:119 | doi: 10.5772/58748

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
2 Dalle Molle Institute for Artificial Intelligence (IDSIA), Lugano, Switzerland
* Corresponding author E-mail: areina@ulb.ac.be

Received 14 Mar 2014; Accepted 29 May 2014

DOI: 10.5772/58748

∂ 2014 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Andreagiovanni Reina1,*, Luca Maria Gambardella2, Marco Dorigo1 and Gianni A. Di Caro2

zePPeLIN: Distributed Path Planning 
Using an Overhead Camera Network
Invited Feature Article

International Journal of Advanced Robotic Systems



Starting from this basic scenario, we specifically address
the case in which the distance between the start and end
points of the path is such that one single sensing device
is not sufficient to reliably cover and map the area in
between. In other words, we address the situation where
path planning needs to be performed over a large area.
Under this condition, a distributed collection of sensing
devices is needed. Each device can only cover a limited
portion of the environment and build a sub-map, but all
sub-maps can be merged in order to obtain a full and
consistent view of the entire area in which the object can
move. In particular, we consider the scenario in which the
sensing devices are smart cameras distributed over the area
in which the object moves. Each camera has an overhead
view of the situation on the ground, which is exploited to
build a navigation map for the moving object. We assume
that each camera is equipped with a wireless interface for
local communications and that camera deployment is such
that, altogether, the camera set can visually cover the full
area on the ground. In practice, the camera set could
be a set of fixed smart video cameras deployed by hand,
it could correspond to a set of camera-equipped flying
robots dynamically deployed over the area [4], or it could
even be associated with a more general distributed aerial
platform [5]. Regarding the object, we assume that it is
holonomic and we do not impose restrictions on its shape.

By collectively exploiting their overhead view, the
distributed camera system (hereafter referred to as
zePPeLIN (Path PLannIng Network)) can effectively build
the map of the environment and the model of the moving
object and then use this information to collaboratively
compute a detailed path. In zePPeLIN, the role of
each camera of the network is to plan the local part of
the path which is relative to its field of view, and to
communicate and coordinate with its neighbouring cameras
in order to let the system as a whole consistently compute
the global path for the object, from its origin to the
designated destination. More specifically, each camera
communicates with its neighbouring cameras to locally
merge their sub-paths and to cooperatively generate a
global path (i.e., the precise sequence of roto-translations)
for the ground moving object. During plan execution,
each robot camera visually localizes the moving object
and sends to it the required motion information as it
moves into the wireless range of the robot camera itself.
In this way, the use of the networked camera system
allows us to effectively perform path calculations over
large areas and can deal with dynamic changes in the
environment by exploiting its parallel and distributed
nature. Moreover, the system can be used to make path
calculations for multiple ground-moving objects/robots at
the same time. Possible examples of application scenarios for
the zePPeLIN system include: guiding the movements of a
fleet of ground transportation robots in large warehouses,
directing the motion of human crowds towards the escape
exits of a large building in case of emergency, supporting
and guiding a reconnaissance vehicle on the ground with
the overhead surveillance provided from a fleet of UAVs
flying in formation with overlapping views.

The description and implementation of the zePPeLIN
distributed path planning system is the central

contribution of this work. The core of the proposed
system consists of a 2D deterministic approach based on
the distributed combination of standard path planning
techniques relying on potential fields and Voronoi
skeletons. A set of heuristics is also proposed to overcome
efficacy issues related to the adopted approaches
(e.g., incurring in local minima while performing
gradient descent) and to improve the computational and
communication efficiency of the entire distributed process.

An additional - and equally important - contribution of
the paper regards the study of the robustness of the
distributed path planning process to measurement errors of
the relative positioning and alignment of the system cameras.
These errors can be seen as "intrinsic" to distributed
vision-based or, in general, map-based approaches. In fact,
since each camera can only compute the path segment for
the sub-map associated with its limited field of view, the
individual path segments need to be consistently merged,
carefully taking into account how adjacent sub-maps
overlap with each other, in order to generate a global
feasible path. However, in practice it is not always possible
to know the relative positioning and alignment of the
different cameras with high accuracy. Hence, the presence
of uncertainties about the size and the location of the
regions where the fields of view of neighbouring cameras
overlap have to be considered as inherent to the process.
These uncertainties, in turn, can determine inconsistencies
in the way the path segment locally computed by a camera
according to its sub-map is linked with the path segments
computed by its neighbouring cameras to produce the
desired global path. These inconsistencies can result in
an infeasible path in practice, which in some cases can
be dealt with by locally calculating a repairing path once
the problem arises during path execution (this is discussed
in Section 9), or can lead to a global path failure. Figure 1
shows an example of such a situation and illustrates
the disastrous consequences of the incorrect merging of
two path segments due to errors in the knowledge of
the relative positioning of neighbouring cameras (more
technical explanations are given in Section 5). This could
be a common situation when using flying robots or other
aerial platforms, due to their intrinsic dynamic instability
when hovering/floating in the air. However, also in
the case of fixed cameras positioned by hand, measuring
the precise fields of views and relative positioning of
neighbouring cameras is not a trivial task and is expected
to result in non negligible errors in practice.

When dealing with a parallel and distributed system
such as zePPeLIN, the scalability of the system needs to
be investigated. Therefore, another contribution of the
paper is the study of scalability when the number of
cameras and the area size increase, in the presence of
the above-mentioned alignment errors. To study both
scalability and robustness, we performed an extensive
set of experiments both in simulation and using real
cameras and moving robots. The results show that the
system is in general robust, even if performance degrades
for increasing levels of error, with a significant drop
in performance only for large errors. Likewise, the
scalability tests have shown good efficacy and efficiency
for increasing the number and density of cameras.

Int J Adv Robot Syst, 2014, 11:119 | doi: 10.5772/587482



Figure 1. Illustration of the possible disastrous effect of an error in the measurement of the relative position of two neighbouring cameras.
(a) The initial scenario, including the known start and destination positions, and two cameras with partially overlapping fields of view.
(b) Exchange of information from Camera 1 to Camera 2 about the potential field on the edge for the correct (top) and erroneous (bottom)
position estimation of Camera 2. (c) The virtual potential field computed by Camera 2 using the received information. (d) Following the
virtual potential field, Camera 2 computes the local sub-path. (e) The global path resulting from the merged sub-paths: (top) successful
global path computed with the correct relative position information, (bottom) the final path results in a collision due to erroneous relative
position estimations.

It is important to note that, even though in this
introduction, in the rest of the paper and in our previous
work [6, 7] we always speak of and make use of
vision-based sensors to build local maps of the ground
environment, the zePPeLIN distributed path planning
algorithm that we propose can be used with any system
of networked devices capable of locally mapping the
environment. For instance, a networked system of
Kinect-equipped or laser-equipped nodes could be used
in the zePPeLIN framework, producing equivalent (if not
better) performance than a camera-based system. This is
to say that zePPeLIN should be seen as a general system
for the distributed calculation of high resolution paths.

The rest of the article is organized as follows. In Section 2,
we discuss related work both in terms of application and
techniques. In Section 3, we define the problem and the
reference physical model used for the overhead cameras.
In Section 4, we describe the state of the art methodology
that was used to implement a centralized planner based
on a single global image. The centralized planner was
then adapted and engineered to implement the distributed
planner - the main contribution of this work - which is
described in Section 5. In Section 6, we propose a set of
heuristics for improving the performances of the system,
that is, the quality of the solution and the efficiency of the
process. Section 7 shows how the proposed system can
deal with dynamic environments using local adaptation
to changes of obstacle positions and camera failures.
We present the results of the simulation experiments
in Section 8. The experiments are designed to study
the performances of the system in relation to the main
aspects of interest: robustness, efficiency and scalability.
Moreover, we study how the various proposed heuristics
affect the performance of the system. In Section 9, we
describe the real robot experiments that we designed and
implemented to validate the simulation results. Finally,
in Section 10, we provide final remarks and point out the
directions that will be investigated in future work.

2. Related work

Path planning is a fundamental problem in mobile robotics
and, for this reason, it has been extensively studied,
mainly considering single-robot approaches or multi-robot
(or multi-camera approaches) based on a centralized
information fusion and calculation point. An overview
of the established work in this respect can be found
in [1–3]. In the scenario considered in this paper,
a centralized solution would comprise a single leading
camera merging the visual information from all networked
cameras. An notable example of the application of such a
centralized approach can be found in the Robocup Small
Size League: two overhead cameras send images of the
field to a central server, which merges the images, tracks
the position of the robots and the ball, and plans the
robots’ movements [8]. In this case, the relatively small
size of the arena to be tracked allows the process to be
totally centralized. In contrast, the proposed zePPeLIN
approach targets potentially very large areas, and as
such only relies on local and partial information. The
entire process is fully distributed and the communication
between cameras is only local. These architectural choices
are motivated by the objective of obtaining a system which
is scalable, robust to individual camera failures, and which
requires minimal communication overhead. A centralized
approach suffers from the single point of failure problem,
and in order to scale to large environments it has to
cope with efficiency issues and communication bandwidth
bottlenecks. In fact, all cameras need to reliably forward
their images to the centralized processing node, possibly
using ad hoc multi-hop routing. The fully decentralized
zePPeLIN solution does not suffer from these problems
and is therefore expected to be more general, portable and
efficient than centralized map-merging.

Another form of non-distributed approach which is an
alternative to the distributed camera system that we
propose consists of letting the ground robots build the
occupancy map of the environment by themselves and
perform self-localization and path planning. This is the
typical approach taken in SLAM studies, which are very

Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo and Gianni A. Di Caro: 
zePPeLIN: Distributed Path Planning Using an Overhead Camera Network

3



popular nowadays (e.g., see [9, 10] for examples of visual
SLAM approaches). However, while potentially more
precise, this way of proceeding requires much longer
computation and execution times than our approach
(especially in the case of large areas), and is more prone
to path errors (e.g., while performing SLAM or moving
through an area, the obstacle situation in nearby areas
could have changed). In any case, we do not consider
zePPeLIN as a replacement for SLAM, but rather as an
alternative based on different architectural assumptions.

In terms of distributed path planning, existing research
works can be roughly grouped into four main threads:
(i) on-board multi-robot path planning, (ii) path planning
assisted by a sensor network, (iii) swarm approaches, and
(iv) parallelism of computation. In the following, we
briefly discuss some of the most prominent approaches
in each of these threads of research, with a particular
emphasis on the second one, since our work falls within
it.

On-board multi-robot path planning studies propose
distributed planning and navigation algorithms to enable
a group of robots to move in an environment without
colliding with obstacles or one another. An overview of
the solutions to this type of scenario can be found in [11].
The more recent works [12–17] are based on different
assumptions and problem statements, which also makes it
relatively difficult to draw proper comparisons among the
different approaches. In [13, 15], the authors investigate
how the multi-robot system’s behaviour changes when
the noise in sensor measurements varies. In [12], the
goal is to let the robots keep a predefined formation
while they move towards a given destination. The
work in [17] exploits multi-hop information sharing in
a mobile multi-robot system for the calculation of paths
that allow the simultaneous optimization of the travelled
distance and network performance. In all these works,
the algorithm runs on-board the robot, and thus the path
is planned directly by the robot, which then implements
it. To do so, the robots need to know the map of the
environment. This information can be either given as
input or else the robots can locally sense and explore the
environment and generate a map on the fly (e.g., using a
SLAM technique). Both approaches are, however, unable
to deal robustly with large and dynamic environments.

Path planning assisted by a sensor network has been
considered in a number of works in the last decade [18–
25]. In the considered scenarios, the moving robot is not
required to be equipped with sophisticated devices and
powerful CPUs in order to perceive the environment, build
a representation of it (i.e., a map) and calculate a motion
plan. Instead, the robot is guided by a distributed sensor
network deployed within the environment. Compared
to an individual robot, the sensor network can exploit a
better and distributed point of view, can rely on a much
wider coverage of the environment, and can quickly react
to changes in the environment or in the network (even if
this happens at locations distant from the moving robot
position). In these works, the resulting path is commonly
defined as a sequence of sensors that the moving robot
has to visit. Sensors act as routers and compute only the
high-level plan (i.e., the direction towards the next sensor).

When entering the communication range of a sensor,
a robot receives the necessary instruction to proceed
with the plan. The robot is in charge of planning and
implementing the precise sequence of roto-translations in
moving towards the next sensor and while manoeuvring
between obstacles and other moving robots. The planned
path consists of a sequence of sensors. Obstacles within
the environment are usually not explicitly considered,
assuming that there is always a valid path between
two neighbouring sensors and the moving robot is able
to effectively sense the environment and compute local
motion planning. The path planning problem is, therefore,
reduced to compute the shortest path on a graph, where
the sensors are the nodes of the graph and some notion
of neighbourhood (e.g., wireless range) defines that two
nodes are connected by an arc that can be navigated by the
robots. In this same context, some works have studied the
path planning problem considering additional constraints,
such as: the avoidance of dangerous areas [20, 22],
collision-free trajectories for multi-robot systems [18], and
the presence of different terrain surfaces (which results in
different motion speeds) [24].

To the best of our knowledge, only Yao and Gupta [26]
have studied the same type of problem in considering a
distributed setting similar to our own. Their algorithm
makes use of a sensor network with complex spatial
sensing capabilities, and the generated path is detailed
with a fine resolution and takes into account the size
and the shape of the ground moving robot. This work
is the closest to ours. However, the authors do not
report any study of the impact of measurement errors
for the overlapping areas, which is one of the focuses of
our work and which is an intrinsic aspect of distributed
sensory and planning systems. More specifically, in the
Distributed Probabilistic Roadmaps algorithm proposed by
Yao and Gupta, each sensor calculates a part of the
path in the area within its sensing range and joins its
sub-path with the one of its neighbours in a shared area
of overlapping sensing. The resulting path is the sequence
of the via-points that allow it to avoid collisions with
obstacles and to safely reach the next sensor/router. In
this setting, which is equivalent to ours, any alignment error
between the local maps (it does not matter how they are
built) can easily cause the generation of sub-optimal or
even infeasible global paths, as has been pointed out in the
Introduction. However, this critical aspect was not taken
into account in [26], while we fully account for errors of
different types and extensively study how they affect the
overall performance of the system, running experiments
both in simulation and with real robots. Moreover, since
scalability and robustness are core properties of a distributed
system, we perform an extensive analysis in this respect
(see Section 8), while these issues have not been addressed
in [26]. In terms of the approach taken, an important
difference between the work in [26] and our own lies in
the fact that in [26] the solution is based on Probabilistic
Roadmaps (PRM) while our approach is deterministic, based
on the gradient descent over the potential field. Normally,
the use of probabilistic approaches is justified by the need
to deal with the exponential growth of the search space.
However, in a distributed path planning scenario, given
the relatively small size of each local map, a deterministic

Int J Adv Robot Syst, 2014, 11:119 | doi: 10.5772/587484



(and more precise) approach is computationally affordable
and seems preferable, precisely because it leverages on
a distributed architecture. The experimental results of
Section 8 support our choice, showing that zePPeLIN
is faster than the Distributed Probabilistic Roadmaps
algorithm.

Swarm robotics systems are characterized by a large
number of robots and the use of local communication and
self-organized cooperation. Works in the literature exploit
these aspects to perform swarm-level path planning (see
survey [27]). In [28], the system assumes that a dedicated
sensor network is deployed within the environment which
navigates the swarm, in a similar fashion to what happens
in the case of the works mentioned above based on the
use of external sensor networks. In [29], the algorithm
exploits the robots in the swarm to create a chain of static
landmarks to direct the navigation of the other robots
in the environment. In [30–32], the system does not
allocate any specific resource for building a dedicated
sensor network, but the swarm itself is a mobile sensor
network. While moving in the environment, each robot
acts as a landmark and communicates information about
the localization of the local neighbours and at the same
time receives information from its neighbours. In all
these works, the sensors (or the robots acting as sensors)
act as high level routers and direct the moving robots
to the next sensor communicating only the direction,
rather than planning the precise path through a cluttered
environment. The final path consists of the sequence of
sensors to be visited, which is very different from our
work where the resulting path is the precise sequence
of roto-translations to be performed to move through a
potentially highly cluttered environment.

Parallelism of computation involves distributing the
planning computation on different processors in order
to increase the overall computational speed of the
system [33, 34]. In these works, as distinct from our
own, the computing nodes have global knowledge of
the environment, and the issue is how to optimize
the division of computation. A different approach to
parallelism is taken in [16], where the authors cast a
multi-robot system as a distributed multi-computer, with
each robot calculating a (possibly different) solution based
on a rapidly-exploring random tree technique which is
shared with the other robots. Using this approach, the
algorithm is meant to exploit perfect communication and
to have a gracefully decline of performance in case of
communication errors.

3. Path planning scenario and camera network model

In zePPeLIN, we consider the following settings for the
distributed path planning of a holonomic object on the
ground. Initially, a network of cameras is deployed
within the environment where the object moves (e.g.,
using a swarm of flying robots, each equipped with a
camera). Each camera faces the ground, meaning that we
assume that each camera acquires a top view of the local
environment underneath. We assume that the deployment
is such that, altogether, the camera set covers - with
the union of all visual fields - the ground environment,
including the start and the target positions of the object.

Each camera device is equipped with an on-board wireless
communication system. The cameras are positioned so
that they are locally within range of one another and the
fields of view of two neighbouring cameras overlap. The size
of the overlapping area must be greater than or equal
to the dimensions of the moving object. This constraint
is to allow the cameras to connect sub-paths during the
distributed path planning process by exchanging the local
coordinates of the moving object. The cameras do not
change their position for the entire planning process.

We assume that the cameras are equipped with a
relative (or global) positioning system which allows them
to estimate, with some uncertainty, the relative positions
of neighbouring cameras in terms of angle and distance.
For instance, this information could be derived through
the use of GPS or the use of an on-board range
and bearing system such as the one described in [35].
The relative positioning information is used to estimate
the overlapping area between the fields of view of
neighbouring cameras and, in turn, to locally connect the
sub-paths calculated by each camera (see Section 5).

Unfortunately, an error in the estimate of the relative
positions of two cameras results in an erroneous
estimation of their overlapping fields of view (see Figure 3,
as explained in Section 5), which can potentially have
a disastrous effect on the quality and feasibility of the
calculated paths. Therefore, we study how the error in
mutual positioning affects the performance of the system,
also in relation to the number of cameras participating
in the planning process. We consider this uncertainty
to be an intrinsic issue of any vision-based distributed
path planning and, as such, we consider it as an internal
parameter of the problem. That is, we do not propose ways
to reduce it, for instance by means of sophisticated position
calibration techniques; rather, we empirically study to
what extent this parameter impacts upon the feasibility
and quality of the planned paths. In the simulation
experiments of Section 8, the error in relative position and
orientation is independently generated for each camera
from two independent zero-mean Gaussian distributions
with configurable standard deviation. In this way, we
model error estimates in a rather general and, at the same
time, realistic way, avoiding making assumptions that
would be specific to the hardware in use.

Since the focus of this work is on distributed path planning
calculation, we make simplifying assumptions for some
aspects of the scenario that are not strictly related to path
calculations. In particular, we assume that the start and
target configurations are given as input. Moreover, we
assume that the moving object can be moved by a system
that can interpret instructions given by the zePPeLIN
system (e.g., through a wireless system or a speaker).
For instance, it might be a single ground robot, a set of
assembled ground robots or even humans (e.g., carrying
a piano). In the real robot experiments of Section 9, the
moving object that follows the camera instructions is a
two-robot system connected together in a rigid structure,
and we consider an indoor scenario where the cameras are
fixed to the ceiling.

Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo and Gianni A. Di Caro: 
zePPeLIN: Distributed Path Planning Using an Overhead Camera Network

5



4. Path planning using a single environment map

In this section, we describe a centralized version of the
path planner that we propose: we consider the case
in which there is only one camera that has the entire
environment and the moving object included within its
field of view. The distributed path planning algorithm
described in Section 5 is based on this centralized
algorithm, but it extends it with various components
aimed at effectively addressing the unique challenges
of a distributed environment, in which multiple camera
nodes have to tightly interact and cooperate with each
other. The core contribution of this work precisely
consists of the architecture and the algorithmic parts of
the distributed planner, while the design of the centralized
planner is mostly based on well-established techniques
and approaches for deterministic 2D path planning [1–3].

The choice of a deterministic planner, which is reflected
in the distributed version, is related to the limited size
of the 2D local map, and in turn the search space,
that each camera node individually has to deal with.
In the case of very large search spaces, a probabilistic
approach would have been preferred. The validity
of our choice is confirmed by the results reported in
Section 8, showing that it allows the generation of optimal
sub-paths at the camera level without compromising the
global performance. Moreover, the computational results
show that, in terms of time, zePPeLIN outperforms the
mentioned method for distributed path planning from Yao
and Gupta [26], which is based on a probabilistic planning
algorithm.

In the rest of this section, we describe the techniques,
methods and algorithms used for implementing the
centralized path planner.

4.1. Occupancy map of the environment

The ground environment where the object moves is
modelled as a plane discretized in a uniform 2D grid of
squared cells making-up the occupancy map. Each cell
of the occupancy map is labelled as either a free cell or
an occluded cell. The former are those cells that are free
from obstacles, meaning that the path of the moving object
can pass through the area of the free cells. The set of
free cells is termed the free space. The occluded cells are
those cells which are occupied, or partially occupied, by
an obstacle. Having an overhead view of the environment,
the classification of the cells as free or occupied cells
is performed through a 2D isometric projection of the
3D obstacles on the ground. This might result in the
inconsistent classification of some cells, depending upon
how accurate the machine vision algorithm used for the
occupancy map is. For instance, the projection of a
"table-like" object may result in an occluded area, while
there could in fact be space for passing under it (depending
upon the 3D geometry of the moving object).

4.2. Potential field: calculation and diffusion

The centralized path planning method we use is the
numerical potential field technique [1]. First, a virtual
potential field is computed over the occupancy map,

then the path of the moving object is calculated by
descending the gradient of the potential field. The
potential field defines a force that attracts the object
towards the destination and at the same time repels the
object away from obstacles. In our algorithm, the potential
field is a scalar function that defines, for each cell, the
attraction/repulsion intensity value. The function has a
global minimum at the destination point and a maximum
value on the obstacles. In all other cells, the function
decreases in the direction of the destination, such that
the planner can direct the object to the goal following
the direction indicated by the gradient descent. A 3D
illustration of the potential field is provided in Figure 2.
The potential field is computed in three phases, described
below: (i) the calculation of the skeleton, (ii) the diffusion of
the potential field over the skeleton, and (iii) the diffusion
over the remaining free cells.

(i) Voronoi skeleton. The skeleton corresponds to the Voronoi
diagram on the 2D occupancy map [36] (i.e., the set of
points where the distance to the two closest obstacles is the
same [2]). Since the planner operates on a discrete map, the
skeleton is the subset of the free cells where the number
of cells from the two closest occluded cells is the same.
Once a skeleton has been calculated, the destination cell
is connected to the skeleton by a shortest line path (i.e., the
set of cells on the shortest line from the destination cell to
the skeleton’s closest cell).

(ii) Diffusion over the skeleton. Once the skeleton is
computed for the entire map, a potential field value is
assigned to each cell of the skeleton. This operation is
based on a diffusion process. The diffusion starts from
the destination cell, to which a zero value of potential is
assigned. A zero value means that there is no potential
force when the object lies on the destination cell. Next, the
potential value is assigned to the neighbouring cells of the
set of the last cells to which a value has been assigned (after
the first step, only the destination cell belongs to this set).
The new potential value assigned to the neighbouring cells
is the potential value of the previous cells incremented by
one. The process is iterated until the potential is diffused
over all the cells of the skeleton.

(iii) Diffusion over the free space. After the skeleton cells
have been assigned a potential value, the potential field
is computed over the remaining free cells. The diffusion
process is similar to the previous process. However,
in this case diffusion begins from the skeleton cells and
increases towards the obstacles. The increment at the first
diffusion step can be greater than one so as to increase
the importance of the skeleton with respect to the other
free cells. A greater difference between two adjacent cells
results in a higher attraction force from the higher potential
cell to the lower potential cell. Therefore, increasing the
difference from the skeleton to other free cells favours
paths that overlap the skeleton (i.e., paths safer with
respect to collisions). In our algorithm, to favour paths
overlapping the skeleton we use three as the incrementing
value from the skeleton. The process iterates until the
potential field is diffused over the entirety of the free space
connected to the destination. The potential field of the
occluded cells is fixed to the maximum value. This means
that a high repulsive force is applied to the cells occupied

Int J Adv Robot Syst, 2014, 11:119 | doi: 10.5772/587486



by obstacles (see Figure 2 for a graphical illustration of the
process).

4.3. Path calculation based on the potential field

The last phase of the planning algorithm consists of the
actual calculation of the path. It is computed following the
gradient in the descending direction of the potential field.
The process begins from the starting position of the object
and follows the decreasing value of the potential field,
computed using the A∗ algorithm [37]. In order to apply
A∗, the 2D map is seen as a graph where the cells represent
the nodes and where there is an edge between two nodes
when two cells are adjacent (i.e., we use Minkowski’s
Taxicab Geometry [38]). The A∗ algorithm finds the
least-cost path from a given initial cell to the destination
cell. It uses a distance-plus-cost heuristic function f (x)
that is computed on every cell x visited by the algorithm:

f (x) = g(x) + h(x) (1)

where g(x) is the path cost function and h(x) is the estimate
function. In our case, g(x) represents the distance from the
starting cell to the current cell x. h(x) is a heuristic estimate
of the number of steps from cell x to the destination, which
is derived from the value of the potential field.

Since we consider moving objects that can have any
arbitrary shape and which can occupy more than one cell,
the value of the functions g and h for the generic extended
object (i.e., whose object size is greater than the cell size)
needs to be calculated based on the individual values
associated with the spanned cells. This is realized by using
the notion of control points introduced below.

4.4. Path calculation for extended objects: use of control points

At each instant, the object is in a precise configuration,
corresponding to the spatial position and orientation of
the object and extending over multiple cells. In order to
calculate appropriate g and h values for the object, this
is described by a set of control points [2]. An example
is shown in Figure 2. A configuration c consists of the
coordinates of the control points and the associated g(c)
and h(c) values of Equation (1). The value of g(c) is the
cost of all the unit movements from the start configuration
to c. A unit movement can be either a translation or a
rotation. A translation involves one cell in one of the
cardinal directions (N, E, S and W, equivalent to up, right,
down and left) and has a cost equal to 0.5. A rotation of
θ degrees can have the pivot centred on any of the control
points or on the centre of mass of the control points, with
θ as a configurable parameter. The cost of a unit rotation is
proportional to the number of traversed cells (in particular,
it is the average number of cells traversed by all the control
points). Therefore, an object with N control points has
[4 + 2 ∗ (N + 1)] possible unit movements and neighbour
configurations. The h(c) function is defined as the average
over the potential value of all the control points. To
fully describe a configuration, an additional set of points
is used, namely the collision points. These points lie on
all the cells occupied by the moving object’s perimeter
(see Figure 2). These points are not used to calculate the
function h(c) but are instead used to check for collisions

Figure 2. Graphical representation of the potential field (left) and
the moving object (right). The environment is discretized in a 2D
matrix of cells. The height and the saturation of the cells represent
the potential field value. Obstacles are represented by high brown
cells, and the skeleton by the dark green graph. The moving object
(the L-shaped green area) is represented by a set of control points
(blue squares) and a set of collision points (purple squares).

with obstacles. In the case where a configuration has one
(or more) collision points colliding with an obstacle, the
configuration is not considered by the algorithm, being
thus infeasible.

5. The distributed path planner

The centralized planner described in the previous section
is the basic building block of the zePPeLIN distributed
path planner: it is used by each individual camera for
planning limited to its local map. The distributed planner
takes into consideration the whole set of local plans and
defines ways for their effective merging and coordination.
The distributed algorithm is based on local sensing (the
camera’s limited field of view), local communication
between neighbouring cameras, and partial knowledge
of the overall status of the planning process (i.e., no
omniscient leader or centralized controller exists).

The distributed algorithm presented in this section only
executes the path calculation, and it terminates when a
valid path is found. The implementation of the path, that
is, the actual navigation in the environment of the moving
object, is described in Section 9.

The zePPeLIN distributed path planning algorithm is
composed of three phases, described in detail below:
(1) neighbour mapping, (2) potential field diffusion, and (3)
path calculation. The zePPeLIN pseudo-code algorithm
that is executed at a generic camera node is given in
Algorithm 5.1.

5.1. Phase 1: Neighbour mapping at the individual nodes

During this first phase, each camera estimates the
overlapping area of its field of view with that of its
neighbours. A camera n calculates the overlapping area
between its field of view and that of its neighbour m in
the following way (and repeats the same process for all its
neighbours). First, n collects two pieces of information:
(i) the relative position and orientation of m, and (ii) the
size of m’s field of view, received from m via wireless
communication.

Next, with these two pieces of information, it is able to
calculate the projection of the field of view of m on its local
2D map.1 Using the projection of the field of view of m,

1 As a simplifying assumption, we consider that all the cameras are placed
at the same height, thereby avoiding, in this way, issues related to fields
of view of different sizes.

Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo and Gianni A. Di Caro: 
zePPeLIN: Distributed Path Planning Using an Overhead Camera Network

7



Figure 3. Illustration of how two neighbouring camera nodes
m and n define their overlapping region and assign shared and
open edges. δ is the relative position (in x, y coordinates) of the
camera node m in the reference system of n and α is the relative
orientation of m with respect to the orientation of n. Using the
δ and α estimates, node n builds a projection of the field of view
of node m. In this way, node n defines the overlapping region
(striped region), the shared edges (solid bold lines) and the open
edges (dashed bold lines). δ and α are affected by the ε and ξ errors,
respectively. As discussed in Section 1, this results in an erroneous
estimation of the overlapping area, which can potentially have a
negative effect on the calculated path.

n calculates the overlapping area, the open edges and the
shared edges. The open edges are the edges of n’s field of
view that lie inside m’s field of view. The shared edges
are the edges of m’s field of view that lie in n’s field of
view. A graphical representation of this process is shown
in Figure 3. In the figure, only two cameras are shown
for ease of comprehension; in practice, more than two
cameras’ fields of view can overlap.

5.2. Phase 2: Potential field diffusion across maps

The calculation of the potential field is the second phase
of the distributed path planning process. It is based on a
diffusion process. Since each camera only sees a limited
part of the environment, and since the entire environment
map is segmented across the networked system, the
cameras need to engage in a cooperative diffusion of the
potential field. The process is fully distributed: starting
from the cameras at the goal location, each camera first
computes the potential over its local map; next, it sends the
potential field values of its shared edges to its neighbours
in order to allow them to continue with the potential field
diffusion. From an operational point of view, the process
is implemented as follows.

Each camera calculates the local skeleton that corresponds
to the Voronoi diagram on its 2D occupancy map (see
Section 4). The environment’s skeleton resulting from the
sum of all local skeletons differs from the one which would
be calculated in a centralized way using a single global
map. Any differences are due to the fact that, during
the calculation of the skeleton, the frontiers of a (local)
map need to be considered as obstacles. Therefore, at the
corners of each map the local skeleton exhibits bifurcations
that do not see any counterpart in the centralized skeleton
(see Figure 4). Differences in the skeleton turn into
differences in the resulting path. This effect can be
clearly observed from the results of the experiments with
perfect alignment between cameras (see Section 8): the
paths planned with the distributed process and the paths

Figure 4. Comparison between the skeleton calculated in a
centralized way using a single global map (left) and the sum of
two local skeletons (right)

planned by the centralized planner have different lengths.
An example of the paths generated by the global, single
map planner and by zePPeLIN’s distributed planner is
shown in Figure 5.

Once the skeleton is generated, camera nodes cooperatively
diffuse the potential, whereby the value of the potential
field of each cell represents the number of steps from the
destination to the current cell. The cameras that have the
goal configuration in their field of view begin the process.
They first diffuse the potential field on their local map. The
diffusion starting point is the centre of mass of the control
points of the goal configuration. Once the diffusion in the
local map is completed, they send to their neighbours the
value of the potential field on the shared edges. In this way,
a camera device that receives this information can continue
the diffusion, beginning from the values of the received
edge cells. Upon receipt, a camera copies the received
values in the cells of its local map and then executes
the diffusion process on its local map starting from these
received points. Each camera updates the potential value
of a cell only if the new potential value is lower than the
best value it had calculated thus far (i.e., if a lower number
of cells in the direction of the destination is found). This
process is iteratively executed in a distributed way among
all the cameras in the network. At the end of the diffusion
process, the potential field in the overlapping areas of
neighbouring cameras will be similar but not necessarily
the same.

Cameras that have the final destination configuration within
their field of view behave in a slightly different way
compared to the others. In fact, they need to precisely
calculate the path that defines both the final position
and orientation of the object. For this, the use of the
information regarding the centre of mass of the control
points is not sufficient to guarantee the correct final
orientation. Therefore, these cameras calculate C different
potential fields, one for each of the C control points.
Each potential field is then diffused using as the final
destination point one of the control points. During path
calculation, these cameras compute the h(c) value by
averaging the potential field values of all the control
points. However, differently from the other cameras, for
each control point the value which is used is that of the
corresponding potential field. In this way, during Phase 3
(see below), the cameras which have the final destination
in their view map can define the set of roto-translations of
the object while also taking into consideration its desired
final orientation. Since only these cameras need to use
multiple potential fields, this does not have a major impact
in terms of computation and communication costs, yet it is
able to guarantee the correctness of the path.

Int J Adv Robot Syst, 2014, 11:119 | doi: 10.5772/587488



It is also important to remark that, in order to minimize the
communication overhead, cameras exchange only the value
of the skeleton cells lying on the shared edges. In this way,
communication messages only contain the values of a few
cells, resulting in a low number of small packets of just a
few bytes.

Figure 5. Final paths calculated by the global planner (left) and
by the zePPeLIN system (right) in the same environment

5.3. Phase 3: Path calculation from start to destination

The third phase of the process consists in the actual
calculation of the path, (i.e., the definition of the sequence
of roto-translations that connect the start and the final
configurations). Each camera calculates the part of the
path which is relative to its local map and then sends a
message to one of its neighbours to let it continue the
planning. The process is implemented in the following
way.

As in the previous phase, the camera of the node that sees
the moving object (i.e., the start configuration, hereafter
indicated with s) begins the third phase. Camera s
calculates on its local map the partial path of the object,
ending on an open edge. Next, s randomly selects one
of the neighbours with which it shares the open edge.
Since each camera knows the projections of its neighbours’
fields of view (see the neighbour mapping of Phase
1), s can translate the coordinates of the moving object
from its frame of reference to the neighbour’s frame of
reference. Finally, s sends these object coordinates to the
neighbour, which then begins the local planning using as a
starting configuration the object positioned at the received
coordinates.

The process iterates among all the cameras until one
of the cameras calculates the partial path that reaches
the final configuration. When this occurs, the camera
broadcasts to all its neighbours a success message, which
is flooded in a multi-hop fashion to all the other cameras
in the network. In this case, the camera network has
cooperatively found a path that connects the start and the
end configuration positions. The information about the
complete path is not stored in any specific camera, but
instead it is fully distributed across the network: each
camera has knowledge of only the partial path relative
to its field of view. Once the path has been defined, the
camera s triggers path execution by communicating to the
object the local information which is necessary for path
navigation.

During the phase of path calculation, the camera can be
in two possible states. In one state, it performs the actual
calculation of the partial path within its field of view; in the
other state, it waits for a message from its neighbouring
cameras. There are four possible messages that a camera

m can receive from a neighbour n, which are listed below
together with the actions that the reception of one of these
messages triggers:

• Start Path: This message contains the coordinates of
the control points of the moving object in m’s frame
of reference. After receiving from neighbour n a Start
Path message, m starts the path calculation using the
received coordinates as a start configuration. These
coordinates represent the final configuration of the
partial path as calculated by n.

• Local Failure: This message is sent in response to a Start
Path message when one of the following two possible
situations occurs: (i) n has not found a valid path in
its field of view, or (ii) the start configuration that has
been included in the Start Path message is not-valid.
A configuration c is defined as not-valid when one or
more of the following conditions hold: (i) c lies over an
obstacle, (ii) c has already been evaluated by n during
a previous path calculation, and (iii) c can be connected
to a previous partial path calculated by n. The first
operation that a camera n performs after receiving a
Start Path message consists in checking whether one of
these conditions is satisfied. In case the configuration
c is not valid, then n replies to m with a Local Failure
message. After receiving this message, m sends a new
Start Path message to a different neighbour lying on
the same open edge on which the configuration c is
positioned. If no alternative neighbours are present,
camera m resumes the local path calculation from the
status at which it was before sending the configuration
c.
Throughout this process, whenever a camera fails to
find a local path, the system implements a backtracking
strategy: the control is given back to the previous node,
which searches for alternative solutions.

• Goal Found: This message notifies the successful
completion of the path planning process. The camera
that calculates the final part of the path (reaching
the final configuration) locally broadcasts to all its
neighbours the Goal Found message, which is then
flooded into the camera network through multi-hop
message relay.

• Global Failure: This message notifies a camera of a
system-level failure of the path planning process. The
system issues a Global Failure message when all the
configurations have been explored but the camera
network is unable to find - in a distributed fashion - any
path that can feasibly connect the assigned start and
end configurations. This means that a feasible solution
does not exist given the characteristics of the calculated
potential field and the selected search parameters (e.g.,
cell discretization and minimal rotation angle). A
Global Failure message is generated, first of all, by the
start camera, according to the following process. When
a camera explores all the configurations within its field
of view but has found no path that reaches the goal or
else exits from an open edge, the camera asserts a local
failure, as described above, and sends to the previous
camera in the path a Local Failure message. Since
its first selection for path continuation was aborted,
it is possible that this camera may now also incur

Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo and Gianni A. Di Caro: 
zePPeLIN: Distributed Path Planning Using an Overhead Camera Network

9



an analogous local failure while trying to find an
alternative path continuation. This potential sequence
of local failures can cause the system to backtrack from
camera to camera along the path built thus far, until
it reaches the first camera of the sequence, the one
that started the planning phase and which sees the
start position. At this point, no further backtracking is
possible. Therefore, if the start camera also fails locally,
this means that the entire planning process has failed.
In this case, the Global Failure message is generated
by the start camera and flooded in a multi-hop fashion
throughout the camera network.

5.3.1. Sequential vs. parallel path calculation

With the described architecture, the path calculation phase
is executed sequentially, with the control passing from
camera to camera. A small variation of the architecture
would, however, permit the utilization of parallel execution
(in a similar fashion to the way in which parallelism is
realized in [26]). Each camera can pre-calculate and store
P local possible paths, each associated with a different,
randomly-selected starting configuration. Later on, when
a camera receives the Start Path message with the actual
start configuration c, it can connect c to the closest
among the start configurations of the P paths. Such local
connections would be similar to the repairing path executed
during the navigation phase (see Section 9). In this way,
the cameras could exploit parallel execution, though at a
cost of potentially producing less accurate solutions due
to the potential sub-optimality of connecting c considering
only the P available paths. Since the time to execute the
sequential path calculation was, in general, quite short for
the considered experimental settings (see Section 8), we
did not study the effective computational gain that could
be obtained with the described parallel implementation,
leaving this for future work.

6. Heuristics for improving efficacy and efficiency

In the following two subsections, we describe a set
of heuristics that we designed to address the issue of
getting trapped in local minima during the path search
process, as well as issues related to the computational and
communication efficiency of the system, with the aim of
improving its overall scalability.

6.1. Heuristics to avoid local minima

During potential diffusion, the single-map path planner
presented in Section 4 can potentially become trapped in
local minima. This is due to the fact that potential diffusion
does not explicitly consider the dimensions of the moving
object, while during path calculation the object dimension
is taken into consideration. Therefore, when the shortest
route towards the final configuration includes a narrow
passage, the potential field can diffuse through the passage
and assign low potential values to the corresponding area.
During the path calculation phase, the search algorithm
explores the solution space by expanding the search tree
towards those areas with assigned low values for the
potential field. In this way, the exploration process is
naturally attracted in the direction of the narrow passage

and tries to establish a path through it. However, while
the skeleton and the potential field might be able to pass
through the narrow passage, the moving object itself has
a shape and dimensions which might prevent its crossing.
If this is the case, the process becomes stuck in exploring
an area that has low potential values but which is, at
the same time, too narrow to allow the moving object to
pass through. In other words, the search process becomes
trapped in a local minimum. The algorithm deals with
this issue by locally backtracking and exploring different
alternative paths.

However, getting stuck in local minima and backtracking
can have a significant negative impact on computational
efficiency. Therefore, we propose two heuristics for
minimizing the probability that this happens: (i) skeleton
pruning, and (ii) narrow passage detection. The two heuristics
can be implemented independently of each other and also
act during different phases of the process. The illustration
of the effect of the two heuristics, in comparison to the
path resulting without the application of the heuristics, is
shown in Figure 6. In Figure 6c, only the smallest passages
are blocked by the skeleton pruning, while some wider
local minima are not detected. Alternatively, in Figure
6d, the narrow passage detection is able to find the most
computationally expensive local minima, but also in this
case the resulting path is affected by one undetected local
minimum. Instead, in Figure 6e, both the heuristics are
active and the resulting path is very close to that calculated
by the centralized planner.

6.1.1. Skeleton pruning

The aim of this heuristic is to prune the skeleton
during potential field diffusion in order to block passages
narrower than a predefined safety width wsp. In the
experiments, we set wsp to the width of the smallest
dimension of the moving object. However, since width is
not the only parameter defining whether or not an object
can cross a passage (e.g., it depends also on the object’s
shape), the heuristic does not guarantee the removal of all
local minima (see Figure 7). On the other hand, setting
wsp higher than the smallest object dimension (or, more
generally, too high) might result in the pruning of the
majority of (or all) feasible paths.

6.1.2. Narrow passage detection

This heuristic is executed during path calculation, when a
camera detects a local minimum due to the presence of
a narrow passage. A narrow passage is detected when
the following conditions, each one indicating an anomaly
related to the presence of a narrow passage, are all verified.
Let x be the last visited configuration and b be the visited
configuration with the lowest value of h(.). The heuristic
checks the conditions described below.

• [h(x) > (h(b) + M)]: the search algorithm is
exploring configurations with a h value which is
significantly higher than the lowest h value associated
with the configurations visited thus far (M=10 in the
experiments). As a result, the search algorithm is
not exploring configurations which reduce the distance
from the destination, which means that the local

Int J Adv Robot Syst, 2014, 11:119 | doi: 10.5772/5874810



Algorithm 5.1 zePPeLIN pseudo-code: local path planning and navigation algorithm executed at a generic camera node

1: M ← CalculateOccupancyMap() {/* Detect obstacles and build local map */}
2: for all n ∈ Neighbours do
3: CommunicateMyFoVSize(n)
4: f ovn ← GetNeighbourFoVSize(n)
5: δn ← DetectNeighbourPosition(n)
6: αn ← DetectNeighbourOrientation(n)
7: o ← OverlappingArea(n, δn , αn , f ovn)
8: end for
9: CalculateSkeleton(M)

10: if (isVisible(Destination)) then { {/* Camera with final configuration in the FoV */}
11: Di f f usePotential(M, Destination) {/* Potential field diffusion with Destination as starting point */}
12: SendPotentialFieldMessageToNeighbours(M, N) {/* Send the potential field on the shared edges */}
13: end if
14: while potnew ← NewPotentialFieldMessagesReceived() do { /* Received updated potential field values potnew from the neighbours */}
15: Di f f use potential(M, potnew) {/* Potential field diffusion with potnew as starting points */}
16: SendPotentialFieldMessageToNeighbours(M, N)
17: end while
18: while true do
19: WaitForMessageFromNeighbours()
20: i ← ReadMessage(ni) {/* ni is the sender of message i */}
21: switch (i)
22: case StartMessage:
23: si ← ReadMessageContent(i) {/* si = starting configuration received with message i */}
24: if (isValidStart(si)) then
25: if (P ← CalculateLocalPath(si , M, o)) then { {/* The algorithm has found a local path P */}
26: if (P[lastPosition] = Destination) then
27: LocalBroadcastGoalFound(N)
28: go to: 56
29: else
30: sj , nj ← Identi f yNextNeighbourInPath(P, N) {/* sj = last position of path P converted in the reference system of neighbour nj */}
31: SendStartPathMessage(sj , nj)
32: end if
33: PATHS ← StoreLocalPathIn f o(P, ni , nj , openset) {/* openset = current status of the search */}
34: else
35: if (isTheStartPositionVisible() AND isEmpty(PATHS)) then
36: LocalBroadcastGlobalFailure(N)
37: exit
38: else
39: SendLocalFailureMessage(ni)
40: end if
41: end if
42: else
43: SendLocalFailureMessage(ni)
44: end if
45: case LocalFailure:
46: openset ← RestorePlanningStatus(PATHS[lastPosition])
47: go to: 25
48: case GoalFound:
49: RelayMessage(i, N)
50: go to: 56
51: case GlobalFailure:
52: RelayMessage(i, N)
53: exit
54: end switch
55: end while
56: k ← 1
57: if (isTheStartPositionVisible()) then
58: go to: 62
59: end if
60: while NavigationCompleted do
61: WaitForContinueNavigationMessage()
62: NavigateTheRobot(PATHS[k])
63: SendLocalNavigationControlMessages(PATHS[k].next)
64: k ← k + 1
65: end while

planner has started backtracking. This is possibly due
to the presence of a narrow passage.

• [∀cx /∈ skeleton]: all the control points cx of the
current configuration x are on cells that are not skeleton
cells. While the skeleton is able to pass through the
narrow passage, the moving object has a shape and
dimensions that might prevent its passage. Normally,
the algorithm tends to calculate paths that follow the
skeleton. However, if the last visited configuration x is

not on the skeleton, it is sign of anomaly, indicating a
possible local minimum.

• [dist(x, b) > size(O)]: the Euclidean distance dist(x, b)
between x and b is greater than the size size(O) of the
largest dimension of the moving object O. This check
aims to detect whether or not the search algorithm has
started to perform backtracking. That is, it detects if
the algorithm is exploring different alternative paths
that are distant from configuration b, which is so far
the closest to the destination.

{

Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo and Gianni A. Di Caro: 
zePPeLIN: Distributed Path Planning Using an Overhead Camera Network

11



(a) (b) (c)

(d) (e)

Figure 6. Comparison of paths in grid of 4×3 cameras. (a) Global planner. (b) zePPeLIN planner without heuristics. (c) Planner using
skeleton pruning (with the parameter wsp set as the smallest dimension of the object). (d) Planner using narrow passage detection. (e)
Planner using all the heuristics.

Figure 7. Width is not the only parameter defining whether
or not an object can cross a passage. In the two figures, the
narrow passages of the two similar scenarios have the same width.
However, the object with L shape can pass through the passage of
the right figure, while this cannot be said for that of the left figure.

• [∃ cbI /∈ freeSpace]: there exists a control point cbI of
the configuration bI that collides with some obstacle
(i.e., it is not in the freeSpace set). Configuration bI

is calculated by starting from b and performing a
one-step translation in the direction of the descent of
the potential (i.e. in the direction in which the potential
decreases). This means that the algorithm has stopped
visiting configurations with a lower h value because
an obstacle is occluding the way. In other words, it is
likely that a narrow passage lies in the direction of the
shortest path.

Since each of the above criteria is a strong indicator of the
possible presence of a narrow passage, when all the criteria
are met together the camera node can robustly assess the
presence of a narrow passage. It deals with this evidence
by placing a virtual obstacle over the cells belonging to the
passage. This way of proceeding has a potentially high
cost, since the access to a part of the environment gets cut
out by the virtual obstacle. This is the reason why all the
above conditions are required to be met before stating the

presence of a narrow passage, thus aiming to minimize the
probability of the issuing of a false positive.

The centre centernp of the passage is identified as the cell
of bI with the lowest potential value. The algorithm places
a virtual obstacle on centernp and on all the cells within the
range of size(O)/2 cells from centernp. Next, it triggers a
new distributed potential field diffusion step that avoids -
in this way - the passage and, therefore, being trapped in
the associated local minimum.

6.2. Heuristics to improve efficiency

The following two heuristics, blocked cells and loop
avoidance, aim, respectively, to reduce communications and
improve path quality.

6.2.1. Blocked cells

The goal of this heuristic is to reduce communications
between neighbours and to improve the speed of path
calculation. When a camera n is unable to find a local
solution (i.e., when it has visited all possible configurations
that are reachable from the starting point but no feasible
solution exists), it sends a Local Failure message to the
previous camera m in the path (see Section 5). Camera m
then resumes path calculation from the last state reached
before sending its path information to n. When m resumes
its local path calculation, the search algorithm will explore
different, new configurations, selecting the best ones with
respect to the value of g(x). It is, however, possible that
these new selected configurations are close in position to
the configuration that was sent before, and which caused
the generation of the Local Failure message from n. That

Int J Adv Robot Syst, 2014, 11:119 | doi: 10.5772/5874812



is, the algorithm might try to connect m’s local path to
the same neighbour camera n, each time sending a Start
Message with a slightly different configuration attached. If
n has no feasible exit configurations, this repeated process
will result in the continual generation of local failures
at n, consequently wasting time and generating multiple
messages between the two camera nodes.

The blocked cells heuristic aims to avoid such situations.
The camera m that receives a Local Failure message from a
neighbour n labels the cells relative to the communicated
(failed) configuration as blocked cells. In its future attempts,
m does not try to send further Start Path messages with
configurations lying on the blocked cells. In this way,
after the first few attempts, camera m can rapidly focus on
totally different new areas, possibly considering different
neighbours to proceed with path construction. The
adoption of the heuristic has the drawback that feasible
paths might be removed from the search process following
a local failure.

6.2.2. Loop avoidance

If (n1, n2, . . . , nk) is the sequence of cameras associated
with the computed path and n = ni = nj, then for any
1 ≤ i, j ≤ k, i �= j, a loop is said to be present in the path
if the two configurations entering n at steps i and j can
be connected together within n’s local area. In this case,
the sub-path between ni and nj can be safely removed.
From an operational point of view, this is performed in the
following way. Given a path, a camera n checks whether or
not a loop is present by controlling its local components of
the path. That is, camera n checks whether the entering
configurations of its two local paths can be connected
together within the area within n’s field of view. If this
is the case, a loop is detected and n sends a loop message to
its previous camera m in the path. After receiving the loop
message, m deletes its local path and forwards the loop
message to its preceding camera. This process is iterated
until the loop message again reaches camera n, such that
the loop is completely removed from the path. In order
to avoid the re-creation of the loop, n perturbs its local
potential field in the area where the previous local path
ended. In particular, n increases the potential field value of
that area up to 80% of the maximum value (i.e., the value
assigned to obstacles) so that the search algorithm will
not generate the same local path and will instead explore
different configurations in new unexplored areas. Finally,
n resumes the path planning process.

7. Adaptation to changes in the environment

An important advantage of our distributed system in
comparison to single robot or centralized multi-camera
systems is that it can effectively cope with dynamic
environments. The system can locally and quickly detect
and adapt to a change in the environment that might
happen at any place and any time (e.g., changes in
obstacles’ positions or the appearance/disappearance of
an obstacle). For instance, a planning system based on
maps built by a single moving object/robot (e.g., using
SLAM techniques) could not effectively cope with these
situations, since the sensory range would necessarily

be locally limited. On the other hand, a centralized
system using multiple cameras, even in the presence
of a small change, would correct the Voronoi skeleton,
repeat the potential field diffusion and restart the path
planning, comprising a set of operations that deal with
the problem but which, taken altogether, might require
considerable resources and time. In contrast, in our
distributed architecture, the system can effectively reduce
re-initialization costs and time by re-planning only a
limited part of the path through a process of local adaptation
to changes.

In a dynamic environment, in case a change blocks the
current path, the camera n that controls the area where
the change has occurred tries to locally plan an alternative
path by generating a new local potential field, with the
constraint of maintaining fixed the original entrance and
exit configurations. If the camera n succeeds in finding
an alternative path, it can safely use the new local path
without the need for informing its neighbours of the
local change. Otherwise, n notifies the destination node
(through multi-hop wireless communication) to trigger a
new potential field diffusion process. The destination
node decides either to repair the path (from n to the
destination) or to recalculate the entire path (using as a
start configuration the current position of the navigating
object). The decision as to either alternative is taken in
relation to the position of n in the sequence of nodes
along the path (e.g., a local repair is issued when n is
close to the final destination). In this case, if the repair
process happens while the object is already performing
path navigation, it can continue the navigation towards
n, such that when it arrives at n a new path continuation
towards the final destination will already be available.

7.1. Fault tolerance

Another possible change that can occur in the environment
involves the failure of one or more cameras (e.g.,
electrical failure, battery depletion). The zePPeLIN’s
fully distributed architecture can guarantee good levels
of fault tolerance. In fact, in case a camera included in
the path fails and stops working, neighbouring cameras
can rapidly detect the problem (the cameras keep sending
short keep-alive messages to each other) and trigger a
repair process similar to that described in the previous
section. In this way, the network is able to find a new
feasible path - if one exists - even in case of multiple camera
failures. This capability is also observed in the experiments
of Subsection 8.5 where, for large errors in relative camera
positioning, systems with a higher density of cameras (i.e.,
a greater number of cameras in the same environment)
exhibit a better ability to find feasible solutions compared
to systems with lower densities. In these cases, when
some cameras fail in practice (due to the large error) other
cameras can take their place in the process.

8. Experimental results in simulation

We studied the properties of the system through an
extensive set of simulation experiments. The experiments
have been designed with the objective of studying the
following characteristics of the system: (i) the robustness

Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo and Gianni A. Di Caro: 
zePPeLIN: Distributed Path Planning Using an Overhead Camera Network

13



to the alignment errors (i.e., incorrect estimations of
neighbours’ relative position and orientation), (ii) the
effect of the heuristics on performance, (iii) scalability
in large environments (keeping the density of cameras
constant), and (iv) scalability for an increasing density of
cameras (keeping the environment size constant), which
corresponds to scalability of resources.

8.1. Performance metrics

The two main performance metrics we used for the
system’s evaluation were the success ratio and the relative
path length.

The success ratio is the percentage of successful runs
over the total number of executed runs. The success
of a run is determined with a post-evaluation of the
resulting final path. As we described in the previous
sections, due to alignment errors the final path might
be composed of disconnected sub-paths (Figure 3). The
evaluation of a path consists in locally connecting its
sub-paths to one another and in verifying its feasibility.
This is done by running the planning algorithm with
the starting and final configurations being, respectively,
the last and the first configurations of two consecutive
sub-paths. This evaluation permits us to verify whether or
not a solution has disconnected sub-paths that can feasibly
be reconnected during the navigation phase. If this is
not the case, the disconnection results in an infeasible
path and, therefore, in a global failure. The reconnection
attempt is performed in a confined subregion, which is
bounded by the field of view of the two cameras that have
calculated the two sub-paths, and by a circular region with
a radius proportional to the degree of alignment error (i.e.,
higher error, higher radius). This spatial constriction aims
to find a local reconnection path which only includes a few
roto-translations (i.e., a very short sub-path) as opposed
to the definition of a completely new and alternative
path which connects the two disconnected sub-paths with
a large sequence of movements and a long trajectory.
According to this validation procedure, a path calculated
by zePPeLIN is classified as success, invalid or failure.
Success means that the system has found a solution and
that all the sub-paths can feasibly be connected. Invalid
means that the system has found a solution but that the
sub-paths cannot be connected. Failure means that the
system has failed to find a potentially valid solution.

While the success rate in producing feasible paths is the
first metric to assess the effectiveness of the zePPeLIN
system, the length of the feasible paths also needs to be
considered in order to assess its performance. Therefore,
we considered as an additional metric the ratio between
the length of the calculated path (including reconnection
paths) and the length of the shortest path. The shortest
path is calculated on the global map by a centralized
planner, without any Voronoi skeleton. That is, the
algorithm does not try to stay as far as possible from the
obstacles. In this case, we do not care to calculate a safe
path which maintains a safe distance from the obstacles;
rather, the objective is to have the shortest possible path to
be used as a baseline reference. In the result plots showing
the relative path lengths, we also indicate the length of
the path calculated by the centralized global planner with an

algorithm identical to that used in the distributed planner
(i.e., using the Voronoi skeleton), but using a single global
map, as described in Section 4.

8.2. General experimental setup

The experiments in simulation were run with a dedicated
multi-process simulator developed for this study. The
input for one simulation experiment is a set of three
files including: an environment description, the camera
network formation, and parametric properties. The
environment description also includes the start and final
configurations of the moving object. All individual
camera processes communicate with each other and
collaboratively plan the path.

The experiments have been run on a machine with two
AMD Opteron 6128 (eight cores each, 2 GHz, 2x12 MB
L2/L3 cache) and 16 GB RAM. The discretization of the
environment for the purpose of defining unit movements
amounts to 15 cells per metre (i.e., cells with a size of
6.7 cm). As a unitary rotation, we used θ = 15◦. The
moving object has an "L" shape with two segments of the
same length equal to 50 cm. During the planning process,
the object is modelled by three control points, as shown in
Figure 2. Aiming to be realistic, the characteristics for the
field of view of the cameras, for wireless communications
and for relative positioning errors, are derived from those
of the flying robotic platform described in [35].

The simulation experiments are based on automatically
generated maps, which differ in the placement of the
obstacles. The maps are generated by placing a rectangular
obstacle with a probability of 0.5 every square metre.
Obstacle placement is performed by randomly selecting a
position, orientation and size (sampled between 20 cm and
1 m). The start and the final configurations are kept fixed
for all the maps, respectively, in the top-left corner and in
the bottom-right corner.

In all the result plots, the performance of the system
is evaluated against different levels of error. Since the
error is stochastically generated, we execute multiple runs
for every error level in order to improve the statistical
significance of the results. For each error level, we run 10
to 20 runs, depending upon the experiment.

In Figure 9, 10 and 11, the results are presented with
box plots; the bottom and top of the box are the lower
and upper quartiles (i.e., the interquartile range, IQR) and
the band near the middle of the box is the median. The
whiskers represent the lowest datum still within 1.5 IQR
of the lower quartile, and the highest datum still within 1.5
IQR of the upper quartile. Any data not included between
the whiskers is plotted as an outlier with a small circle.

8.3. Robustness to relative position errors

In this section, we present the results of simulation
experiments designed to study the variation of the
performance as a function of different levels of alignment
error. The errors of the relative position and orientation
between cameras are modelled as two independent
zero-mean Gaussian distributions with configurable
standard deviation. We vary the standard deviation of the

Int J Adv Robot Syst, 2014, 11:119 | doi: 10.5772/5874814



0.
70

0.
80

0.
90

1.
00

Orientation error [degrees]

S
uc

ce
ss

 ra
te

0 2 5 10

No heuristics
With Heuristics 0.

70
0.

80
0.

90
1.

00
Orientation error [degrees]

S
uc

ce
ss

 ra
te

0 2 5 10

Blocked Cells
Loop Avoidance
Skeleton Pruning
Narrow Passage Detection

(a) (b)

0.
70

0.
80

0.
90

1.
00

Position error [m]

S
uc

ce
ss

 ra
te

0.00 0.05 0.10 0.15 0.20

No heuristics
With Heuristics 0.

70
0.

80
0.

90
1.

00

Position error [m]

S
uc

ce
ss

 ra
te

0.00 0.05 0.10 0.15 0.20

Blocked Cells
Loop Avoidance
Skeleton Pruning
Narrow Passage Detection

(c) (d)

Figure 8. Success rate of the system with respect to alignment
errors: comparison of different planners. (a) Planners with and
without heuristics, varying the error in the relative orientation.
(b) Planners with the four heuristics active independently, varying
the error in the relative orientation. (c) Planners with and without
heuristics, varying the error in the relative position. (d) Planners
with the four heuristics active independently, varying the error in
the relative position.

error on one measure while keeping the error for the other
measure fixed to zero. In Figures 8 and 9, plots (a) and
(b) show the results for increasing angle errors, with the
position error set to zero. The results for the reverse setup
are shown in plots (c) and (d).

8.3.1. Experimental setup

For the experiments of Figures 8 and 9, we used 18
different maps of size 12×7 m2 covered by a sensor
network of 25 cameras, which were deployed in the
environment in a grid formation of 5×5. Each camera has
a field of view of 3×2 m2 of the ground, and the network
has a topology such that each camera’s field of view has a
rectangular overlapping area with the neighbour’s field of
view with a width equal to 75 cm.

8.3.2. Robustness to alignment errors

Figure 8 shows that the success rate decreases with an
increase in the alignment error. This is due to the
fact that erroneous information about the overlapping
area prevents the connection of partial paths during the
planning phase.

Figure 9 shows the results for the relative path length
metric. In addition, in this case the performance decreases
for a high level of alignment error: the length of the final
path is longer and thus less efficient (in terms of time
and energy consumption). This is partially due to the
connection paths, since the final path is the sum of the
calculated sub-paths and the connection paths. When the

1.
2

1.
4

1.
6

1.
8

Orientation error [degrees]

R
el

at
iv

e 
pa

th
 le

ng
th

0 2 5 10

N H N H N H N H

G

●

●

●

N − No heuristics
H − With Heuristics
G − Global Planner

1.
2

1.
4

1.
6

1.
8

Orientation error [degrees]

R
el

at
iv

e 
pa

th
 le

ng
th

0 2 5 10

BLSN BLSN BLSN BLSN

G

●

●

●

●

B − Blocked Cells
L − Loop Avoidance
S − Skeleton Pruning
N − Narrow Passage Detection

(a) (b)

1.
2

1.
4

1.
6

1.
8

Position error [m]
R

el
at

iv
e 

pa
th

 le
ng

th
0.00 0.05 0.10 0.15 0.20

N H N H N H N H N H

G

●

●

●

N − No heuristics
H − With Heuristics
G − Global Planner

1.
2

1.
4

1.
6

1.
8

Position error [m]

R
el

at
iv

e 
pa

th
 le

ng
th

0.00 0.05 0.10 0.15 0.20

BLSN BLSN BLSN BLSN BLSN

G

●

●

●

●

B − Blocked Cells
L − Loop Avoidance
S − Skeleton Pruning
N − Narrow Passage Detection

(c) (d)

Figure 9. Relative path length for various levels of alignment
error: comparison of different planners. (a) Planners with and
without heuristics, varying the error in the relative orientation.
(b) Planners with the four heuristics active independently, varying
the error in the relative orientation. (c) Planners with and without
heuristics, varying the error in the relative position. (d) Planners
with the four heuristics active independently, varying the error in
the relative position.

error is high, the possible disconnection between paths
is larger and, consequently, the connection paths are also
longer. This increases the length of the final path.

8.3.3. Impact of the heuristics

The results for robustness in Figures 8 and 9 are reported
for the different planners that we propose. More
specifically, we show the results of the planner with and
without heuristics (on the left side) and the planners
with each of the heuristics active independently (on the
right side). The planner indicated in the figure as the
’planner with heuristics’ included three heuristics: blocked
cells, narrow passage detection and loop avoidance. We
excluded skeleton pruning because of its low success ratio
performance.

A first consideration is the positive effect of the heuristics
on the quality of the solutions. The planner with heuristics
is able to calculate on average shorter paths than the
planner without heuristics (Figure 9a) and 9c).

However, this beneficial effect has the disadvantage of
a reduction in the success rate (Figure 8). With the
increase of the error level, the success rate decreases
more rapidly for the planner with heuristics than for that
without heuristics. As described in Section 6, when the
planner gets stuck in a local minimum, it executes a
backtracking strategy which is costly in terms of resources.
The planning process in a local minima-free scenario
does not get stuck and rapidly finds a solution. The
heuristics reduce the effect of local minima and improve

Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo and Gianni A. Di Caro: 
zePPeLIN: Distributed Path Planning Using an Overhead Camera Network

15



the efficiency of the process (time and messages) and the
solution (path length). However, as a drawback they
reduce the solution space and feasible paths might be
removed from the search process. The effect of each
heuristic is discussed in separate paragraphs below.

The skeleton pruning heuristic aims to remove the local
minima. It acts during the phase of skeleton generation:
it closes all the passages narrower than the object
size. However, the object has an L shape and it can
thus overcome narrow passages with tight manoeuvres
between the obstacles. Therefore, in some environments
this heuristic closes valid paths towards the destination.
In this way, it does prevents the algorithm from finding
a valid solution. For this reason, the skeleton pruning
heuristic noticeably reduces the success rate (Figure 8b
and 8d). As an advantage, this heuristics lets the
planner operate in a scenario free of local minima so
that the process can rapidly converge on the solution
without getting trapped. The effect is a more efficient
planning process which avoids backtracking, produces
shorter paths (Figure 9b and 9d), has a quicker execution
(Table 1), and generates a lower number of messages (Table
2).

The narrow passage detection heuristic is designed to remove
local minima and their negative effects. It acts during the
path calculation phase and aims to block a passage only
when the planner has realized that it is effectively not
feasible. This heuristic improves efficacy in terms of path
quality (Figure 9b and 9d), efficiency and execution time
(Table 1), producing at the same time a lower reduction in
the success ratio in comparison to skeleton pruning (the
other heuristic for local minima). A side-effect of this
heuristic is the higher number of messages it generates
(Table 2). This is due to the fact that, when a camera detects
a local minimum, it triggers a new potential field diffusion
phase for the entire network.

The blocked cells heuristic aims to reduce the exchange of
messages between neighbours. Table 2 shows that the
heuristic succeeds in this purpose. However, and similar
to the other heuristics, it has a lower success rate.

The loop avoidance heuristic aims to remove loops in the
final resulting paths (see Section 6). In other words, it aims
to improve the quality of the resulting paths. Its effect is
visible in the plots of Figure 9b and 9d: when the loop
avoidance heuristic is active, the system can calculate the
paths with the shortest length.

8.4. Scalability to environment size

In this subsection, we present the results of simulation
experiments designed to study how the system scales its
performance when the environment size increases. We
consider environments whose size is, respectively, two and
three times larger than the size of a baseline environment.

8.4.1. Experimental setup

The experiments were run considering 30 different maps
with the following sizes: 10 maps of 12×7 m2 (=84 m2),
10 maps of 12×14 m2 (=168 m2), and 10 maps 12×21 m2

(=252 m2). Since the environment size increases, the

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Orientation error [degrees]

S
uc

ce
ss

 ra
te

0 2 5 10

Normal
200% Size
300% Size

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Position error [m]

S
uc

ce
ss

 ra
te

0.00 0.05 0.10 0.15 0.20

Normal
200% Size
300% Size

(a) (b)

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Orientation error [degrees]
R

el
at

iv
e 

pa
th

 le
ng

th
0 2 5 10

ND T ND T ND T ND T

●

●

●

N − Normal
D − 200% Size
T − 300% Size 1.

0
1.

2
1.

4
1.

6
1.

8
2.

0
2.

2

Position error [m]

R
el

at
iv

e 
pa

th
 le

ng
th

0.00 0.05 0.10 0.15 0.20

N D T N D T N D T N D T N D T

●

●

●

N − Normal
D − 200% Size
T − 300% Size

(c) (d)

Figure 10. Scalability for environments of increasing size. (a)
Success rate varying the error in the relative orientation. (b)
Success rate varying the error in the relative position. (c) Relative
path length varying the error in the relative orientation. (d)
Relative path length varying the error in the relative position.

camera network must be increased correspondingly to
cover the entire area. In order to maintain a minimum
overlapping area of the fields of view of 75 cm, the network
scales to 5×11 cameras for environments of twice the size,
and to 5×17 cameras for those of three-times the size.

8.4.2. Results for efficacy and efficiency

Figure 10 shows the success ratio and the relative
path length for different environment sizes. Both the
effectiveness (success ratio) and the efficiency (relative
path length) remain constant for larger environments.
These results are an indicator of scalability for increasing
environment size. The success rate values oscillate within
the range between 100% and 93%. The plots in Figure 10a
and 10b are jagged due to the strong heterogeneity of the
scenarios and the random generation of errors. However,
it is worth noticing that the percentage of success also
remains above 93% for high levels of error.

The box plots in Figure 10c and 10d show the results in
terms of relative path lengths. Moreover, for this metric the
results confirm the scalability of the approach. While for
environments of 84 m2 and 252 m2 the relative path length
values are very similar, for an environment of 168 m2 the
values are slightly higher (about 5%-10% more) and with
higher variance. As discussed above, this difference is due
to the strong heterogeneity of the scenarios, which were
randomly generated.

Figure 11 shows the efficiency of the system in terms of
the communication overhead. We study how the number
of messages changes by scaling-up the environment and
the network. In order to perform a fair comparison of
the efficiency performance in the different environments,

Int J Adv Robot Syst, 2014, 11:119 | doi: 10.5772/5874816



Position Err. Orient. Err. Normal BC LA SkP NPD All Heur.
0 0 6.79 8.08 6.91 2.91 2.89 2.52
0 2 6.49 9.95 5.81 3.27 4.79 4.33
0 5 9.61 14.29 7.47 2.74 6.23 5.34
0 10 12.30 15.96 7.89 4.08 8.92 9.23

0.05 0 6.27 7.04 4.95 1.86 4.97 4.50
0.1 0 6.61 9.85 5.84 1.94 5.90 7.25

0.15 0 15.91 12.37 11.66 4.73 9.45 15.29
0.2 0 10.45 16.63 11.60 3.08 6.63 11.42

Table 1. Normal: without heuristics. BC: Blocked cells. LA : Loop avoidance. SkP: Skeleton pruning. NPD: Narrow passage detection.
All Heuristics: BC + LA + NPD. This table shows the execution time (in seconds) of the planners with and without heuristics with
various levels of error. The value is the median of the distribution.

Position Err. Orient. Err. Normal BC LA SkP NPD All Heur.
0 0 88.38 85.36 85.48 83.16 97.18 86.52
0 2 86.36 85.00 85.22 84.82 160.58 87.64
0 5 86.86 85.04 85.28 85.44 131.28 89.44
0 10 88.52 85.26 86.08 85.88 164.90 167.36

0.05 0 86.88 85.54 85.72 85.08 90.84 89.88
0.1 0 87.44 86.02 86.30 85.50 138.76 171.06

0.15 0 91.28 86.00 87.12 87.50 168.08 171.00
0.2 0 89.92 86.16 87.08 86.80 145.68 174.54

Table 2. Number of messages per camera for the planners with and without heuristics with various levels of error. The reported value is
the median of the distribution. Normal: without heuristics; BC: Blocked cells; LA : Loop avoidance; SkP: Skeleton pruning; NPD: Narrow
passage detection; All Heuristics: BC + LA + NPD.

the reported values are normalized with respect to the
average number of neighbours (which is different for the
different topologies). In fact, the cameras on the edges of
the network have a lower number of neighbours than the
cameras in the middle. In our scenario, cameras on the
corner have two neighbours, cameras on the edge have
three and cameras in the middle have four. To make the
performance measure as independent as possible from this
effect, the values for the number of exchanged messages
are calculated as follows:

Messages =
1

kN

N

∑
n

pn, (2)

where pn is the number of messages received by camera
n, N is the total number of cameras, and k is the average
number of neighbours in the network (e.g., in the case of a
network 5×5, k = 3.2).

For the correct interpretation of the data, it is necessary to
describe how, in our system, a camera identifies that the
phase of potential field diffusion is concluded. This has
been implemented with a simple message-repetition protocol.
While a camera is waiting for new potential field messages
from its neighbours, periodically (every δt seconds) it
communicates to them the most up-to-date values that it
holds for the potential field. Therefore, each node waiting
for updated potential field values in turn continues to
receive potential field messages. If the same message is
repeatedly received M times, this indicates that during
the last Mδt seconds no changes happened regarding the
calculation of the potential field. Therefore, the camera
node can safely consider the received information to be
definitive and conclude the potential diffusion phase. In
our experiments, to establish a good trade-off between
bandwidth consumption and safety in assessing the
convergence for the potential field calculation, we set M

20
30

40
50

60
70

80

Orientation error [degrees]

M
es

sa
ge

s 
/ c

am
er

a

0 2 5 10
ND T ND T ND T ND T

●

●

●

N − Normal
D − 200% Size
T − 300% Size

20
30

40
50

60
70

80

Position error [m]

M
es

sa
ge

s 
/ c

am
er

a

0.00 0.05 0.10 0.15 0.20
N D T N D T N D T N D T N D T

●

●

●

N − Normal
D − 200% Size
T − 300% Size

(a) (b)

Figure 11. Scalability for environments of increasing size:
efficiency measures. (a) Messages per camera varying the error
in the relative orientation. (b) Messages per camera varying the
error in the relative position.

to 21 and δt to 0.01s. If bandwidth is a major issue (it was
not in our robot implementation), the message-repetition
protocol could be safely substituted with an alternative
mechanism based on an explicit time threshold. It is worth
pointing out that, in slower diffusion processes, a larger
number of repeated messages is exchanged. Analogously,
when the network size increases, the diffusion process
obviously takes more time and the number of the (often
repeated) messages increases. The number of messages
communicated during the other phases is very limited
compared to the selected M, and remains practically
constant for all the studied scenarios within the range of
3 to 10 messages per camera.

8.5. Scalability of resources

The set of experiments in this subsection shows how the
performance of the system varies when increasing the
number of cameras while maintaining constant the size of
the environment.

Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo and Gianni A. Di Caro: 
zePPeLIN: Distributed Path Planning Using an Overhead Camera Network

17



0.
70

0.
80

0.
90

1.
00

Orientation error [degrees]

S
uc

ce
ss

 ra
te

0 10 20 30

25 cameras
50 cameras
75 cameras

0.
70

0.
80

0.
90

1.
00

Position error [m]

S
uc

ce
ss

 ra
te

0.0 0.2 0.3 0.4

25 cameras
50 cameras
75 cameras

(a) (b)

Figure 12. Scalability for higher numbers of cameras keeping
the environment size constant. (a) Success rate varying the error
in relative orientation. (b) Success rate varying the error in relative
position.

8.5.1. Experimental setup

The experimental setup is the same as in Subsection 8.3.
We ran experiments over 10 maps, and for every map
we increased the density of the camera network. The
initial network was composed of a grid of 5×5 cameras,
which is the minimum number to fully cover the entire
environment. We then increased the density by adding, in
a first test case, 25 cameras (+100% = double density), and
in a second test case 50 cameras (+200% = triple density).
In both cases, the cameras were assigned with a randomly
selected position and orientation. For each of the three
setups, we ran experiments varying the level of error in
position and orientation and executed 10 runs for each
error level. This means that every point in the plots of
Figure 12 corresponds to the average of 10 · 10 = 100 runs.

8.5.2. Effect of varying the number of camera nodes

For high levels of error, the performance of zePPeLIN
decreases: Figure 12 shows the success rate as a function
of alignment errors. These errors, in some cases, prevent
connections between sub-paths in the overlapping area;
therefore, for high levels of errors the process more often
fails to find a valid path. This negative effect can be
reduced by increasing the number of cameras in the sensor
network (Figure 12). With the standard sensor network
formation 5 × 5, the overlapping area has a width of
75 cm and the moving object has a length of 50 cm. This
formation has a limited margin of error, which allows the
system to cope effectively only with low levels of error
(success rate over 95% (first dot of plots in Figure 12). A
more dense network has wider overlapping areas, which
is a characteristic that allows the system to effectively plan
valid paths more often (and even for high levels of error).

The system improves its performances in response to
an increase in the resources within the system (i.e., the
number of cameras in the sensor network). In zePPeLIN,
the increase in resources is eased by a distributed, scalable
and flexible architecture, which is designed to allow the
user to add new cameras without any need to modify,
update or setup the algorithm.

9. Real robot experiments

We completed the experimental evaluation of zePPeLIN
with a set of experiments with real cameras and ground

Figure 13. Scenario for real robot experiments. (Top) An
example arena. The moving object has to move in the arena
while avoiding collisions with the red obstacles. (Bottom) The
moving object which follows camera instructions, and which is
implemented as a set of two e-puck robots interconnected by a
rigid structure.

robots. In these experiments, zePPeLIN executes all the
planning and navigation phases: at first, it detects the
moving robot’s position, then it calculates the path from
the current position to the given destination, and finally
it provides the instruction to navigate the ground robots
in the environment. The setup adopted for the real world
experiments and the results are described in the remainder
of this section.

9.1. Environment

The ground robot moves in an area of 33 m2, where
the grey floor is occluded by red obstacles. This colour
configuration has been selected to ease the obstacle
detection, since it is not the main focus of the work. A
sample image of the arena is shown in Figure 13 (top).

9.2. Camera network

The camera network is implemented with a set of four
cameras, fixed at the ceiling, pointing to the ground
and connected to different computers. Each camera is
controlled by an independent process, which cooperates
and communicates wirelessly with the other processes via
UDP sockets. The cameras are placed at a height of 3 m and
have a field of view of 4.56×3.06 metres, with an image
resolution of 640×480. In our experimental setup we
used normal cameras that cannot autonomously estimate
their relative position with respect to their neighbouring
cameras. To overcome this issue, for each camera an input
configuration file specifies the IP addresses and the relative
positions of its neighbours. The cameras are deployed
in a rectangular formation, such that each camera has
an overlapping field of view with two neighbouring
cameras. All the cameras have the same orientation,
relative distances of 3 m (with the neighbour on the x
axis) and 2.38 m (with the neighbour on the y axis), and
a communication range limited to 3.5 m. The error on the

Int J Adv Robot Syst, 2014, 11:119 | doi: 10.5772/5874818



measures of the relative distances and orientation is of the
order of 0.1 m and 10◦ respectively.

9.3. Moving robot

The holonomic object moving on the ground is
implemented by connecting two non-holonomic robots,
the e-puck 2 [39], through a rigid structure, as shown in
Figure 13 (Bottom). Each robot can freely rotate in place,
while straight movements are constrained by the rigid
structure and must be executed by coordination between
the two robots. In this way, the two robots form an object
with a relatively large shape which is able to rotate and
move in any direction. This implementation choice allows
us to generate objects with any kind of custom shape by
simply adding more e-pucks to the structure. Here, we
report the results for only two robots; however, we aim
to employ this design for further tests with larger objects
of different shapes. As discussed in Section 4, the path
planning algorithm models a moving object by using
control points. In this case, the control points correspond to
the centre of the two e-pucks. Each of the two e-pucks has
a coloured patch applied to its top in order to allow the
cameras to track their positions and orientations through
a custom tracking software.

9.4. Path planning process

Each camera is controlled by an independent process.
Through a graphical interface, the user connects to
a desired camera and specifies the final position
and orientation of the object. The camera system
autonomously detects the obstacles and the current
position of the moving robot in the environment. With
this information, the system calculates the path from
the start to the final configuration in a distributed way,
where each camera operates only on its local field
of view. The resulting path is the ordered sequence
of local configurations (i.e., an ordered sequence of
roto-translations), where each camera holds the sequence
relative to its field of view.

9.5. Navigation in the environment

Once the path is defined, the system begins the navigation
phase. The navigation control process cs connected to the
camera s that has the moving robot in its field of view
starts the navigation phase. Using the camera, process
cs tracks the current position of the two e-pucks and
sends to them, via Bluetooth, two independent messages
containing information about the relative movement to
be performed (which can be either a rotation in place
or a translation). Each e-puck, when it completes the
required movement, sends a notification message back to
cs. Iteratively, using the current position of the two robots
and the next configuration to be reached - as specified by
the locally planned path - the control process calculates
and sends the relative movement that each robot has
to perform next. In this way, the camera-robot system
operates in a closed loop, such that it is able to correct
possible path implementation errors.

2 The e-puck is a low-cost, general-purpose robot, built for educational
purposes. It has a diameter of 7cm and limited sensory capabilities.

When process cs navigates the robots to the final position
of its local path ps, it communicates with the navigation
control process cn of the next camera n in the path in order
to allow it to take control and continue robot navigation.
It might be the case that the e-puck system completely
enters the field of view of n before the execution of path
ps is completed (e.g., because of small errors in navigation
or because of a relatively large overlap between the fields
of view). When this happens, since process cn has better
information than cs regarding its local environment, it is
appropriate that n takes control. Therefore, n tries to plan
a local path pconn which connects the current position of
the robots to the closest point of the calculated path pn.
If a connection is found, this means that n can locally
navigate the robots to a configuration in pn and continue
the navigation on pn as expected. In this case, the process
n sends a messages to process cs requesting the control.
Upon receipt of this message, cs interrupts the navigation
and hands the control to cn.

The process described for cameras s and n is then iterated
between all the cameras involved in the planned path
until the moving robots reach the desired destination. A
few sample videos showing path calculation and path
navigation are available at the supplementary page [40].

9.6. Experimental results

We performed experiments on 20 different maps: in 14 of
them, the environment is relatively well structured, with
the obstacles placed to form straight walls (see Figure 14a)
for an example), while in the remaining six the obstacles
are deployed completely randomly (see Figure 14b for
a sample scenario). In all the experiments, the system
has been able to calculate valid paths no longer than
150% of the optimal shortest path and 115% of the path
calculated by the global planner. Figures 14a and 14b
show the composite screenshot of the four fields of view.
The planning time is relatively low - for example, the
planning time for the paths shown in Figures 14a and 14b
is, respectively, 4.6 s and 7.2 s.

From the mentioned sample videos, it is possible to
appreciate that the robots implementing the instructions
received from the overhead camera are able to follow
the calculated path with good precision. The system is
able to effectively correct local actuation errors through
the continuous tracking of the robots’ position and
the recalculation of the next relative movements to be
communicated.

Through simulations, we have exhaustively tested the
systems for different scenarios and error levels. By the
real system implementation, we completed the process
by adding, after path planning, the path actuation
by distributed navigation. This set of experiments
successfully verified the applicability of the proposed
approach. It is important to note that the path planning
process did not present noticeable differences in moving
from simulation to the real world, both as regards
implementation issues and the observed results. For the
scenario considered, the main challenges for a real system
implementation concern sensing and actuation errors.
When performing path planning, sensing errors might

Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo and Gianni A. Di Caro: 
zePPeLIN: Distributed Path Planning Using an Overhead Camera Network

19



(a) Structured environment (b) Randomly displaced obstacles

Figure 14. Composite screenshot of the four fields of view of the four cameras in two different experimental setups. The planned path
(in red, the control points, and in white the stylized object) is shown. In this example, the information about the final path is segmented
into three partial paths distributed among the cameras. The bright spots are the reflection of the ceiling light.

affect the computation of the navigable areas in the local
maps and the relative alignments between cameras. The
former error has been removed in practice by exclusively
using red boxes over a grey floor as obstacles: this setup
allowed each camera to compute an error-free occlusion
map. Instead, alignment errors have been estimated
in a more or less accurate way (resulting in the values
reported in Section 9.2), and have affected the performance
accordingly.

10. Conclusions and future work

We have proposed zePPeLIN, a novel system for
distributed path planning in large, cluttered, dynamic
areas. The system is based on a fully distributed
architecture in which a network of cameras is deployed in
the environment. Each camera only has a partial, overhead
view of the ground environment where the object needs
to move from the initial to the final configuration.
The camera system solves the path planning problem
cooperatively, through local calculations of a potential
field and a Voronoi skeleton, and wireless message
exchanges. A number of heuristics have been proposed
to enhance the system’s efficiency and effectiveness.
The system also has a built-in component to deal with
dynamic changes (e.g., the appearance/disappearance of
an obstacle or the failure of a camera).

In simulation, we performed an extensive analysis of the
system’s performance and the heuristics. We validated
the system through a series of experiments using real
camera devices and moving robots. Compared to systems
with a single camera or using centralized computation,
our fully distributed approach is more scalable, flexible
and robust. However, it introduces efficiency issues and
sensory errors. In particular, we studied the impact on
performance of the alignment errors between the fields of
view of neighbouring cameras - a type of error which we
consider to be inherent to any distributed system of local,
partially overlapping maps.

The experimental results show that, as expected, the
system performance degrades when the alignment error
increases. However, the drop in performance becomes
significant only for very large errors. Errors of distance
and angle result in slightly different performance drops,
with angle errors having a larger impact in this respect.
In general, the heuristics improve the quality (path
length) and efficiency (computation time, communication
overhead) of the system but, at the same time, reduce the
success rate in finding feasible paths. The system shows
relatively good scalability in terms of the number and
density of cameras.

In principle, the zePPeLIN distributed algorithm can be
used with any networked system of devices, so long
as the devices are capable of building a local map of
the environment in their ’field of view’ (e.g., a Kinect).
In future work, we intend to implement zePPeLIN
with a network of different devices instead of cameras.
Moreover, we intend to extend the system by adding
general mechanisms to manage - and possibly reduce - the
overlapping errors. Additional tests will consider larger
environments and the inclusion of dynamic obstacles (e.g.,
humans or moving robots).

11. Acknowledgements

This work was partially supported by the European
Union through the ERC Advanced Grant "E-SWARM:
Engineering Swarm Intelligence Systems" (contract
246939), and was partially supported by the Swiss
National Science Foundation (SNSF) through the
National Centre of Competence in Research (NCCR)
Robotics. Marco Dorigo acknowledges support from the
F.R.S.-FNRS of Belgium’s French Community, of which he
is a Research Director.

Int J Adv Robot Syst, 2014, 11:119 | doi: 10.5772/5874820



12. References

[1] J.-C. Latombe. Robot Motion Planning. Kluwer
Academic, Norwell, MA, USA, 1991.

[2] H. Choset, K. Lynch, S. Hutchinson, G. Kantor,
W. Burgard, L. Kavraki, and S. Thrun. Principles of
Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, Cambridge, MA, 2005.

[3] S. M. LaValle. Planning Algorithms. Cambridge
University Press, Cambridge, U.K., 2006.

[4] M. Onosato, S. Tadokoro, H. Nakanishi, K. Nonami,
K. Kawabata, Y. Hada, H. Asama, F. Takemura,
K. Maeda, K. Miura, and A. Yamashita. Disaster
information gathering aerial robot systems. In Rescue
Robotics, pages 33–55. Springer, London, 2009.

[5] A. Mohammed, A. Mehmood, F.-N. Pavlidou,
and M. Mohorcic. The role of High-Altitude
Platforms (HAPs) in the global wireless connectivity.
Proceedings of the IEEE, 99(11):1939–1953, 2011.

[6] A. Reina, G. A. Di Caro, F. Ducatelle, and L. M.
Gambardella. A distributed approach to holonomic
path planning. In Workshop on Motion Planning: From
Theory to Practice, at Robotics: Science and Systems
(RSS), 2010.

[7] A. Reina, G. A. Di Caro, F. Ducatelle, and L. M.
Gambardella. Distributed motion planning for
ground objects using a network of robotic ceiling
cameras. In Proceedings of 12th Conference Towards
Autonomous Robotic Systems (TAROS), pages 137–148.
Springer, Berlin, 2011.

[8] S. Zickler, T. Laue, O. Birbach, M. Wongphati, and
M. Veloso. SSL-Vision: The shared vision system for
the RoboCup Small Size League. In RoboCup 2009:
Robot Soccer World Cup XIII, volume 5949 of LNCS,
pages 425–436. Springer, Berlin, 2010.

[9] N. Karlsson, E. Di Bernardo, J. Ostrowski,
L. Goncalves, P. Pirjanian, and M. E. Munich.
The vSLAM algorithm for robust localization and
mapping. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages
24–29. IEEE Computer Society Press, Los Alamitos,
CA, 2005.

[10] A. Gil, O. Mozos, M. Ballesta, and O. Reinoso. A
comparative evaluation of interest point detectors
and local descriptors for visual slam. Machine Vision
and Applications, 21(6):905–920, 2010.

[11] L. E. Parker. Path planning and motion coordination
in multiple mobile robot teams. In Encyclopedia
of Complexity and System Science, pages 5783–5800.
Springer, 2009.

[12] G. A. Pereira, A. K. Das, V. Kumar, and M. Campos.
Decentralized motion planning for multiple robots
subject to sensing and communication constraints.
In Proceedings of the 2nd International Workshop on
Multi-Robot Systems, volume 2 of Multi-Robot Systems:
From Swarms to Intelligent Automata, pages 267–278.
Springer, Berlin, 2003.

[13] A. Fridman, S. Weber, V. Kumar, and M. Kam.
Distributed path planning for connectivity under
uncertainty by ant colony optimization. In Proceedings
of the American Control Conference, pages 1952–1958.

IEEE Computer Society Press, Los Alamitos, CA,
2008.

[14] S. Bhattacharya, M. Likhachev, and V. Kumar.
Multi-agent path planning with multiple tasks
and distance constraints. In Proceedings of IEEE
International Conference on Robotics and Automation
(ICRA), pages 953–959. IEEE Computer Society Press,
Los Alamitos, CA, 2010.

[15] Y. Mostofi. Decentralized communication-aware
motion planning in mobile networks: An
information-gain approach. Journal of Intelligent
and Robotic Systems, 56(1-2):233–256, 2009.

[16] M. Otte and N. Correll. Any-Com multi-robot
path-planning: Maximizing collaboration for variable
bandwidth. In Distributed Autonomous Robotic
Systems, volume 83 of Springer Tracts in Advanced
Robotics, pages 161–173. Springer, Berlin, 2013.

[17] G. A. Di Caro, E. Feo, and L. M. Gambardella. Use
of time-dependent spatial maps of communication
quality for network-aware multi-robot path planning.
In Proceedings of the 8th International Workshop
on Wireless Sensor, Actuator and Robot Networks
(WiSARN), Benidorm, Spain, June 22–27, 2014.

[18] R. Luna and K. E. Bekris. Network-guided
multi-robot path planning in discrete representations.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’10), pages 4596–4602. IEEE
Computer Society Press, Los Alamitos, CA, 2010.

[19] M. Batalin, M. Hattig, and G. Sukhatme. Mobile robot
navigation using a sensor network. In Proceedings
of the IEEE International Conference on Robotics and
Automation (ICRA), pages 636–642. IEEE Computer
Society Press, Los Alamitos, CA, 2004.

[20] Q. Li and D. Rus. Navigation protocols in sensor
networks. ACM Transactions on Sensor Networks,
1:3–35, 2005.

[21] P. Corke, R. Peterson, and D. Rus. Localization
and navigation assisted by cooperating networked
sensors and robots. The International Journal of Robotics
Research, 24(9):771–786, 2005.

[22] C. Buragohain, D. Agrawal, and S. Suri. Distributed
navigation algorithms for sensor networks. In
Proceedings of IEEE INFOCOM, pages 1–10. IEEE
Computer Society Press, Los Alamitos, CA, 2006.

[23] K. O’Hara, V. Bigio, S. Whitt, D. Walker, and T. Balch.
Evaluation of a large scale pervasive embedded
network for robot path planning. In Proceedings
of the IEEE International Conference on Robotics and
Automation (ICRA), pages 2072–2077. IEEE Computer
Society Press, Los Alamitos, CA, 2006.

[24] C. M. Vigorito. Distributed path planning for mobile
robots using a swarm of interacting reinforcement
learners. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems
(AAMAS), pages 777–784. IFAAMAS, 2007.

[25] F. Ducatelle, G. A. Di Caro, C. Pinciroli, and L. M.
Gambardella. Self-organised cooperation between
robotic swarms. Swarm Intelligence, 5(2):73–96, 2011.

[26] Z. Yao and K. Gupta. Distributed roadmaps for robot
navigation in sensor networks. IEEE Transactions on
Robotics, 27(5):997–1004, 2011.

Andreagiovanni Reina, Luca Maria Gambardella, Marco Dorigo and Gianni A. Di Caro: 
zePPeLIN: Distributed Path Planning Using an Overhead Camera Network

21



[27] A. Reina and V. Trianni. Deployment and
redeployment of wireless sensor networks: a
swarm robotics perspective. In N. Mitton and
D. Simplot-Ryl, editors, Wireless Sensor and Robot
Networks, pages 143–162. World Scientific, Singapore,
2014.

[28] D. Payton, M. Daily, R. Estowski, M. Howard, and
C. Lee. Pheromone robotics. Autonomous Robots,
11(3):319–324, 2001.

[29] S. Nouyan, A. Campo, and M. Dorigo. Path formation
in a robot swarm. Swarm Intelligence, 2(1):1–23, 2008.

[30] Á. Gutiérrez, A. Campo, F. Monasterio-Huelin,
L. Magdalena, and M. Dorigo. Collective
decision-making based on social odometry. Neural
Computing and Applications, 19(6):807–823, 2010.

[31] A. Campo, Á. Gutiérrez, S. Nouyan, C. Pinciroli,
V. Longchamp, S. Garnier, and M. Dorigo. Artificial
pheromone for path selection by a foraging swarm of
robots. Biological Cybernetics, 103(5):339–352, 2010.

[32] F. Ducatelle, G. A. Di Caro, C. Pinciroli, F. Mondada,
and L. M. Gambardella. Communication assisted
navigation in robotic swarms: self-organization
and cooperation. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 4981–4988. IEEE Computer
Society Press, Los Alamitos, CA, 2011.

[33] D. Henrich. Fast motion planning by parallel
processing – Review. Journal of Intelligent and Robotic
Systems, 20:45–69, 1997.

[34] B. Taati, M. Greenspan, and K. Gupta. A dynamic
load-balancing parallel search for enumerative robot
path planning. Journal of Intelligent and Robotic
Systems, 47:55–85, 2006.

[35] J. Roberts, T. Stirling, J.-C. Zufferey, and D. Floreano.
2.5D infrared range and bearing system for collective
robotics. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 3659–3664. IEEE Press, Piscataway, NJ, 2009.

[36] O. Takahashi and R.J. Shilling. Motion planning in
a plane using generalized Voronoi diagrams. IEEE
Transactions on Robotics and Automation, 5(2):143–150,
1989.

[37] P. Hart, N. Nilsson, and B. Raphael. A formal basis for
the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

[38] A. C. Thompson. Minkowski Geometry. Cambridge
University Press, New York, 1996.

[39] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci,
A. Klaptocz, S. Magnenat, J.-C. Zufferey, D. Floreano,
and A. Martinoli. The e-puck, a robot designed
for education in engineering. In Proceedings of
the 9th Conference on Autonomous Robot Systems and
Competitions, volume 1, pages 59–65. IPCB: Instituto
Politecnico de Castelo Branco, Portugal, 2009.

[40] Supplementary page. http://iridia.ulb.ac.be/
supp/IridiaSupp2012-013/index.html, Accessed
on 14 March 2014.

Int J Adv Robot Syst, 2014, 11:119 | doi: 10.5772/5874822


