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SWARMORPH: Morphogenesis with
Self-Assembling Robots

Rehan O’Grady, Anders Lyhne Christensen, Marco Dorigo

1.1 Introduction

Distributed robotic systems are often considered particularly appropriate for inhos-
pitable and rapidly changing environments. Future teams of distributed robots oper-
ating in space, in search and rescue conditions, or even inside the human body, will
need to work together to overcome the physical limitations of individual robots. For
these systems to display efficient physical cooperation, it is a prerequisite that they
are able to form larger composite robotic entities with morphologies appropriate to
the tasks and environmental conditions encountered.

In this chapter, we describe work done towards arriving at a distributed robotic
system whose constituent robots can connect to one another when necessary to form
morphologies of sizes and shapes appropriate for solving the tasks they encounter.
Our work is based around the concept of a self-assembling robotic system. Multi-
robot self-assembling systems are made up of independent autonomous mobile
agents. These agents are capable of forming physical connections with each other
without external direction. Robots in such systems can operate individually to carry
out simple tasks in parallel. However, they can also work together to achieve more
complex goals through cooperation. Physical cooperation through self-assembly al-
lows the system to overcome the fundamental physical limitations of individual
robots such as power, size or reach. Figure 1.1 shows how a multi-robot system
can use self-assembly to form appropriate composite robotic entities to solve two
different tasks: pushing a heavy object and crossing a gap. In Fig. 1.1(left), 5 robots
have assembled into a line in order to cross a gap, while in Fig. 1.1(right), 8 robots
have assembled into a shovel shape in order to push a heavy bucket.

To date, self-assembling systems have displayed little active control over the mor-
phology of the composite robotic entity formed through the self-assembly process.
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Fig. 1.1 Two examples of robotic entities self-assembled into morphologies appropriate for the
task. Left: A connected robotic entity crosses a gap. A line formation is well-suited to this task,
since it allows the entity to stretch further and minimizes the number of robots suspended over the
gap. Right: Robots physically connected in a shovel shape to push a heavy object.

In the majority of existing multi-robot self-assembling systems, the geometry of the
self-assembled entity is either predefined by the physical characteristics of the con-
nection mechanism or is stochastic. In Sect. 1.2, we discuss related work and the
state of the art in more detail.

In this chapter, we detail progress towards giving robots the capacity to assem-
ble into appropriate morphologies and to operate as a single entity when physically
connected to one another. Our approach relies on directed morphology growth: a
new morphology is started by a single robot, the seed. The seed can invite physical
connections from other robots. As new robots connect to the seed, they can con-
tinue to extend the morphology in particular directions by inviting other robots to
physically connect to them at specified locations. In this way, a morphology with a
specific global structure is grown. In order to coordinate when physically connected,
the robots use visual point-to-point notifications. The control we use is completely
distributed — all the robots remain individually autonomous even when physically
connected to other robots. There is no central coordination mechanism or global
sharing of information.

The structure of the remainder of this chapter is as follows: In Sect. 1.3, we
present the robotic hardware that we use — the swarm-bot platform. In Sect. 1.4, we
go on to describe the low-level control logic that allows us to specify the connection
angle between two robots, thus enabling the higher level morphology generation
mechanisms. In Sect. 1.5, we describe a simple distributed morphology generation
mechanism that is capable of generating a wide range of simple repeating morpholo-
gies without the use of any robotic IDs, blueprints or symbolic communication. In
Sect. 1.6, we show how the addition of symbolic communication can increase the
range of possible morphologies, and present a dedicated scripting language in which
we embed our morphology generation logic. In Sect. 1.7, we show how our sys-
tem can use morphology generation to solve real-world tasks by forming dedicated
morphologies when the robots encounter particular tasks. Finally, in Sect. 1.8, we
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discuss ongoing work towards creating a genuinely adaptive system, which could
adaptively form new morphologies appropriate to previously unseen tasks.

1.2 Related Work

There is a large body of scientific literature on the distributed creation and control of
robotic morphologies using inter-connectible components. Some research directly
investigates morphology control techniques. However, this type of research has of-
ten been conducted on simulated robotic platforms with no physical counterpart.
By contrast, considerations of morphological flexibility have resulted in the devel-
opment of two types of real-world robotic system: self-reconfigurable systems and
self-assembling systems. However, in both of these types of real-world system, the
existing research has focused almost exclusively on the hardware, rather than on the
autonomous control required to generate specific morphologies. We describe mor-
phology control research in Sect. 1.2.1, and related hardware research in Sect. 1.2.2.

The research presented in this chapter represents an effort to bridge the gap be-
tween the abstract morphology control research that is hard to apply to today’s real
world robotic systems that have the potential for morphological flexibility, but lack
the behavioural control required to generate morphologies autonomously.

1.2.1 Morphology Control Algorithms

The SWARMORPH approach that we present in this chapter is unique because it can
autonomously create arbitrary morphologies, while still operating within the restric-
tions imposed by a physically embodied robotic system. Indeed, we demonstrate all
of our algorithms on real robots.

Much of the research in morphology control investigates high-level abstract prop-
erties of morphology control mechanisms, without considering the physical con-
straints inherent in embodied robotic systems. Klavins et al. [24], for example, tack-
led the problem of defining a class of graph grammars that can be used to model and
direct distributed robotic self-assembly. They show how a grammar can be synthe-
sized that generates a desired, pre-specified target morphology.

Other studies use simulations of idealised robots that could not be directly re-
alised in the real world. Jones and Matarić’s Transition Rule Set compiler [21],
for example, takes as input the desired morphology and outputs a set of rules.
The approach proved scalable and capable of producing a large class of structures
in a simulated 2D lattice world populated by simulated unit square agents. But-
ler et al. [7] have studied generic decentralised algorithms for lattice-based self-
reconfigurable robots. The algorithms are inspired by cellular automata and control
is based on geometric rules. Støy and Nagpal [39, 38] demonstrated algorithms for
self-reconfiguration and directed growth of simulated cubic units based on gradi-
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ents and cellular automata. Shen et al. [37] have demonstrated a bio-inspired con-
trol method based on virtual hormone for controlling swarms of robots. The virtual
hormone can be propagated through the swarm causing the robots to generate pat-
terns and/or to reconfigure. The authors show results from experiments in simulation
and discuss how virtual hormone could be propagated in real-world scenarios either
through radio or through infrared communication.

Some simulation based studies have tried to take into account physical con-
straints. Bojinov et al. [3] have shown how a simulated modular robot (Proteo)
can self-reconfigure into useful and emergent morphologies when the individual
modules use local sensing and local control rules. Mytilinaios et al. [28] used
the Molecube platform to investigate the application of evolutionary algorithms
to design self-replicating morphologies in a 2-D simulation environment. Rus and
Vona [33, 34] proposed a centralised control algorithm to allow a robotic system
composed of Crystalline Atom units to reconfigure its shape. Although a physical
prototype of a Crystalline Atom unit has been built, the results with the proposed
control algorithm were obtained analytically and in simulation.

Direct real-world morphology control research is scarce. Examples include
Zykov et al.’s use of a physical instantiation of the Molecube system [52] to demon-
strate the self-replication of a 4-module entity provided with an ordered supply of
additional modules. The system executed a predetermined sequence of actions, suc-
cessful connections being confirmed through explicit communication. Although au-
tonomous, the demonstration consisted of a specific sequence of actions — the au-
thors were not trying to generate a generic morphology control mechanism. White et
al. [40] used a scripting language to specify structures for an externally propelled
self-assembling system. However, unlike SWARMORPH, their system relied on
unique IDs and predefined locations for individual components. Research by Yu
and Nagpal [50, 49] is a rare example of a modular system that exhibits a mor-
phological response to different environmental contingencies, and whose control
has been tested on a real-world platform. However, their work is based on a self-
reconfigurable platform made of pre-assembled modules, and therefore does not
consider the problem of morphology control through self-assembly.

1.2.2 Real-world self-reconfigurable and self-assembling systems

Self-reconfigurable systems are made up of interlocking modules that can adjust
their configuration by changing the angle of connection between modules, or by
changing the global topology of connections [45]. Individual modules in such sys-
tems tend to be incapable of independent motion. Notable examples include CE-
BOT [16, 23], PolyBot [42, 43, 44, 46, 47, 51], CONRO [9, 8, 31], Millibot Train
system [6], M-TRAN [27, 48, 22], SuperBot [36, 35] and Molecubes [28].

Self-assembling systems are made up of independent robotic components that
can autonomously form physical connections with one another [18]. The indi-
vidual robots can be either externally propelled or self-propelled. Externally pro-
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Fig. 1.2 Left: The s-bot. Centre Top: The s-bot connection mechanism. Centre bottom: The s-
bot traction system. Right: Two s-bots connected and a third s-bot approaching to connect to the
morphology.

pelled systems rely on energy from the environment in order to move. Such
systems include Penrose and Penrose’s wooden mechanical analogue for self-
replication [32], Hosokawa et al.’s self-assembling hexagons [20], Breivik et al.’s
template-replicating polymers [4], White et al.’s 2D/3D systems with passively
moving modules [41, 40], Bishop et al.’s system of air-table suspended triangular
modules [2].

Self-propelled self-assembling robotic systems are made up of independent au-
tonomous mobile components that are capable of forming physical connections with
each other without external direction. Several architectures have been proposed,
which have been implemented with varying degrees of success [5, 14, 16, 17, 19].
However, none of the existing systems display any meaningful control over the mor-
phology of the connected entity formed through the self-assembly process.

1.3 The Swarm-Bot Robotic Platform

For our experiments, we use the swarm-bot robotic platform [26]. This platform
is made up of multiple mobile autonomous robots called s-bots (see Fig. 1.2) that
can form physical connections with each other. The entity formed by two or more
connected s-bots is called a swarm-bot. The s-bot is 12cm high without its camera
turret, and has a diameter of 12cm without its connection mechanism. Thanks to
its traction system that combines tracks and wheels, the s-bot has good mobility on
uneven terrain whilst still retaining the ability to rotate on the spot efficiently. The
main s-bot body houses most of its sensory and processing systems and can rotate
with respect to the chassis by means of a motorised axis.
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Physical connections between s-bots are established by a gripper-based connec-
tion mechanism. Each s-bot is surrounded by a transparent ring that can be grasped
by other s-bots. An optical light barrier inside the s-bot gripper indicates when an-
other s-bot’s ring (or another object) is between the jaws of the gripper. S-bots ad-
vertise their location by means of eight sets of RGB coloured LEDs (Light Emitting
Diodes) distributed around the inside of their transparent ring. These LEDs can also
provide indications of the s-bot’s internal state to other nearby s-bots.

The s-bot has an omni-directional camera that, depending on light conditions,
can detect other s-bots’ LEDs up to about 50cm away or an external light source
up to about 400cm away depending on ambient light conditions. The s-bot has 15
infrared proximity sensors distributed around its body that allow for the detection
of obstacles. Ground facing proximity sensors under the tracks allow the s-bot to
detect whether or not it is over a hole.

1.4 Low-Level Robotic Control — Directional Self-Assembly

In this section, we present a low-level robotic control algorithm we developed to
control the orientation of inter-robot connections formed during autonomous self-
assembly. We term this mechanism directional self-assembly. We go on to present
experiments conducted to analyse the precision and timing characteristics of the
directional self-assembly mechanism. All of the higher level morphology creation
logic that we present in subsequent sections relies on directional self-assembly.

Directional self-assembly between two s-bots is initiated by a stationary s-bot
signalling that it is ready to be grasped at a particular point on its body. The signal
used is a particular configuration of illuminated LEDs that we term a connection
slot. Any other s-bot in the arena may see the signal and attempt to grasp the sig-
nalling s-bot.

The left-hand side and right-hand side of a connection slot are indicated by four
illuminated green LEDs and four illuminated blue LEDs, respectively (see Fig. 1.3).
Each s-bot has 8 LED locations. A green LED, a blue LED and a red LED are
located at each LED location. A connection slot can be opened between any two
neighbouring LED locations, except between the two front LED locations, where
the gripper is mounted. Thus, an s-bot that is connected to a morphology can extend
the local structure using one of seven different connection slots. An s-bot can only
open one connection slot at a time as a connection slot requires the use of all eight
LED locations.

We refer to an s-bot that is displaying an open connection slot as an extending
s-bot. We refer to an s-bot that is not yet part of the connected structure as a free
s-bot when it is searching for a connection slot and as an attaching s-bot when
it is attempting to grip an extending s-bot. We refer to an s-bot that has formed
a successful connection and thus become part of the morphology as a connected
s-bot.
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Fig. 1.3 Left: Based on an extending s-bot’s illuminated connection slot LEDs, an attaching s-bot
calculates the approach point (A), grip point (G) and approach vector

−→
AG. Inset: The motion of an

attaching s-bot as it navigates to and grips a connection slot. Right: The 8 possible connection slots
that an s-bot can open. Only seven connection slots can be used for extending the morphology. The
eighth connection slot (F) indicates a grip point that is already occupied by the gripper of the s-bot
displaying the connection slot. This connection slot is used for signalling instead (see Sect. 1.5).

Free s-bots approach connection slots with a particular trajectory to ensure a
consistent angle of connection. To achieve this, free s-bots use the illuminated LEDs
of an extending s-bot’s open connection slot to calculate an approach vector (see
Fig. 1.3). The head of the approach vector is called the grip point and indicates the
point on the extending s-bot’s body which the attaching s-bot should grip. The tail of
the approach vector is called the approach point, and is 13cm away from the body
of the extending s-bot.

Based on the approach vector calculation, we use a five phase strategy to let free
s-bots find and grip a connection slot. Phase 1: the free s-bot directly approaches the
extending s-bot until it is within 35cm of the grip point. Phase 2: the s-bot circles
around the extending s-bot until it is within +/- 20◦ of the approach vector. Phase 3:
the s-bot navigates to the approach point at the start of the approach vector. Phase
4: the s-bot rotates to face the connection slot. Phase 5: the s-bot approaches the
connection slot and attempts to grip the extending s-bot. The trajectory of a free
s-bot approaching and gripping a connection slot is shown in Fig. 1.3 (inset).

1.4.1 Experimental Results: Precision

We conducted experiments to measure the precision of the directional self-assembly
mechanism. In each of our experimental trials, a stationary extending s-bot dis-
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played an open connection slot, to which a single free s-bot attached. We conducted
96 trials, varying the starting position and orientation of the free s-bot, while keep-
ing that of the extending s-bot fixed. The extending s-bot also always opened the
same connection slot — connection slot B directly behind it (see Fig. 1.3). We used
12 possible starting positions and eight possible starting orientations for the free s-
bot. The starting positions for the free s-bot were evenly distributed around a circle
of radius 35cm centred on the extending s-bot.

In all 96 trials, the free s-bot successfully connected to the extending s-bot. In
2 of the 96 trials, the grip failed on the first attempt, and the free s-bot retreated
to try another angle. The angular precision of the free s-bot’s connection in these
trials is shown in Fig. 1.4 (left). Note that the mean angular misalignment is very
close to zero. A misalignment of zero indicates the ideal angle of connection which
is normal to the curve of the extending s-bots’s body. The positional precision of
the free s-bot’s connection is shown in Fig. 1.4 (right). The positional precision of a
connection is measured by the lateral displacement between the grip point specified
by the connection slot and the point at which the attaching s-bot grips. The visible
bias towards the right of the centre line is due to a hardware asymmetry in the
distribution of the s-bot LEDs.

−30 −20 −10 0 10 20 30 40−40

Connection Misalignment (degrees)

Connection Lateral Displacement (cm)

5.004.003.002.001.000.00−1.00−2.00−3.00−4.00−5.00

Centre line of extending s−bot

Fig. 1.4 Precision of the connection slot mechanism. Left: Angular precision, measured by the
mismatch between the alignment of the attaching s-bot and the alignment of the extending s-bot.
Right: Positional precision, measured by the lateral displacement of attaching s-bot’s grip from
extending s-bot’s centre line. (Reprinted from [29].)

1.5 Periodically Repeating Morphologies

In this section, we present our first approach to self-organised morphological
growth. We use a fully decentralised system in which robots that join a growing
morphology use local morphology extension rules to determine how to extend the
morphology appropriately. The rules we use are based only on local communication
of internal state. This communication is restricted to the detection of connection
slots (or absence thereof) being displayed by nearby robots within range of the cam-
era. Thus the amount of information communicated is highly limited. In addition,
the rules are purely reactive, i.e., they do not rely on any form of stored historical
state information. As a result, the class of morphologies we can form using this tech-
nique is limited to periodically repeating morphologies.1Nonetheless, we show that
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we can form a wide range of morphologies using a limited set of morphology exten-
sion rules. By using decision making based on local sensing, we can also increase
the period of repetition to generate more complex morphologies.

We first present the morphology extension rules that we developed, and show
how they can be combined to make different morphologies. We present a series
of experiments with real robots in which we grow four example morphologies. Fi-
nally, we present some simulation-based experiments to test the scalability of the
approach.

1.5.1 Methodology

Morphologies are started by a single robot, the seed. When an s-bot attaches to the
seed or to another already attached robot, it can itself invite connections from other
non-attached robots. The robots choose a particular connection slot to open based
on a simple set of rules that depend only on locally sensed data. Each morphology
is defined by a single set of rules that is shared by all of the robots except for the
seed robot that has its own set of rules.

During morphology growth, all free robots search for connection slots. When a
robot connects to a connection slot, the newly attached robot uses its LEDs to signal
its successful attachment to the robot displaying the connection slot. Both robots
are then free to open new connection slots based on the local morphology extension
rules specific to the morphology being formed.

Line Circle Rectangle Star

T-shape Arrow Butterfly Snake

Fig. 1.5 Examples of different morphologies that can be made using SWARMORPH. These mor-
phologies have been generated in simulation.

1 By contrast, the approach we present in Sec. 1.6 incorporates the possibility of the exchange
of symbolic information between connected s-bots. The resulting system can generate arbitrary
morphologies.
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Different morphology extension rule sequences result in different morphologies.
By creating an appropriate rule set, and then by defining different sequences of rules,
we can generate a large number of different morphologies. Figure 1.5 shows some
of the morphologies we can generate using SWARMORPH.

1.5.2 Morphology Extension Rules

In this section, we present the morphology extension rules that we have developed.
We show how the rules can be combined to create different classes of periodically
repeating morphologies.

Linear Morphologies — Rule: Extend

The simplest morphologies are those in which every newly attached robot opens
the same predefined connection slot. Examples of such morphologies are the line
and circle morphologies in Fig. 1.5. Such morphologies are based on a single rule,
that controls the opening of a particular connection slot: the Extend rule. This rule
uses directional self-assembly to extend the structure by opening a given connection
slot. The rule takes as a parameter the connection slot that should be opened.

The morphology extension rules for line morphology growth and the correspond-
ing morphology growth pattern are shown in Fig. 1.6.

Extend( B ) Extend( B )

Other extending s−bots:Seed s−bot:

321

Fig. 1.6 Left and middle: Line Morphology extension rules. Right: Line morphology growth. (1):
An attaching s-bot approaches the seed’s open connection slot. (2): The newly connected robot
opens connection slot B, and another attaching s-bot approaches. (3): The newly connected s-bot
again opens connection slot B and the growth pattern repeats itself.

Branching Morphologies — Rules: Send HS Sig, Wait HS Sig

More complex morphologies require a single s-bot to extend the local structure
in more than one direction. To do this, the extending s-bot must know when a con-
nection slot has been filled, so that it can then open the next connection slot. The
s-bot hardware does not include any dedicated sensors to detect when it has been
gripped by another s-bot. To compensate, we designed a signalling mechanism —
the handshake. The handshake signal is composed of two morphology extension
rules, one executed by the sender of the handshake, and one executed by the receiver
of the handshake (see Fig. 1.7). The Send HS Sig rule allows an attaching s-bot
to communicate to an extending s-bot that it has successfully attached to the extend-
ing s-bot’s open connection slot. The signal takes the form of opening connection
slot F. The Wait HS Sig rule tells the extending s-bot to wait until it detects the
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handshake signal before executing subsequent morphology-specific extension rules.
The handshake is shown in Fig. 1.7.

1 2 3 4 5

Fig. 1.7 Handshake rules: Send HS Sig, Wait HS Sig. (1): The extending s-bot is execut-
ing the Wait HS Sig rule. (2): The attaching s-bot successfully grips the extending s-bot. (3):
The newly connected s-bot executes the Send HS Sig rule (4): The extending s-bot recognises
the signal and executes its next rule, to open connection slot L. (5): The Send HS Sig rule times
out and the connected s-bot executes its next rule, to open connection slot B.

The Send HS Sig and Wait HS Sig rules provide the flexibility to cre-
ate many more morphologies, such as the star, arrow and T-shape morphologies in
Fig. 1.5. The rule sequences required for a simple arrow morphology and the corre-
sponding morphology growth pattern are shown in Fig. 1.8.

Extend( B ) Wait HS Sig

Wait HS SigExtend( BL ) Wait HS Sig

Send HS Sig

Other extending s−bots:

Seed s−bot:

Extend( BR )

1 2 3 4 5

Fig. 1.8 Top: Arrow Morphology extension rules. Bottom: Corresponding morphology growth pat-
tern

Symmetrically Growing Morphologies — Rule: Balance
When we use the Send HS Sig and Wait HS Sig rules to generate mor-

phologies such as the star, arrow or T-shape, we run the risk that morphology growth
will be asymmetrical. In the arrow morphology, for example, it is stochastically pos-
sible that one arm of the arrow will continue to develop while the other arm does
not develop at all. Such imbalances are particularly problematic when the number
of s-bots is limited, as is the case in our real robot experimentation.

To solve this problem, we introduce the Balance rule. When executing this
rule, a connected robot waits with its LEDs unilluminated until it cannot see any
connection slots around it.2 In practice, this means that the s-bot waits until it can-

2 An s-bot cannot distinguish between LEDs that belong to the morphology to which it is currently
connected and LEDs on robots in other nearby morphologies. It could therefore happen that a
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Extend( R )

Wait HS Sig

Extend( B )

Wait HS Sig Wait HS Sig

Extend( L )

Send HS Sig Balance Wait HS SigExtend( B )

Seed s−bot:

Other extending s−bots:

1 2 3 4 5 6 7 8

Fig. 1.9 Balanced T-shape Morphology. Top: Morphology extension rules. Bottom: Morphology
growth. The seed s-bot opens connection slots R, B, L in turn. The connected s-bots each execute
the Balance rule, and therefore wait until they can see no green or blue LEDs before executing
subsequent extension rules. The result is that once the seed s-bot is no longer displaying an open
connection slot, all three connected s-bots open connection slot B at the same time. (Reprinted
from [29].)

not see any green or blue LEDs. As soon as this is the case, the connected s-bot
continues executing subsequent morphology extension rules.

The Balance rule allows parts of the morphology that are in visual range of
each other to grow at the same rate. In the arrow morphology, for example, as long
as the s-bots at the ends of the two arms of the arrow can still see each other, the two
arms will differ in length by at most one s-bot. An example use of the Balance rule
can be seen in Fig. 1.9, which shows the growth of a balanced T-shape morphology.

Morphology extension rules for the seed robots of the Balanced Arrow Morphol-
ogy and for the Balanced Star Morphology, respectively, are given in Fig. 1.10.
Growth of both of these morphologies is similar to that of the Balanced T-shape
Morphology shown in Fig. 1.9 above and all other extending s-bots follow the same
rules as in the Balanced T-shape Morphology.

Experiments using all three balanced morphologies are presented in Sect. 1.5.3.

Morphologies with higher repetition period — Rule: Decide

More complex morphologies can be achieved if we allow the robots to make
conditional decisions about how to extend the local structure based on local sensing.
The Decide rule allows an attaching s-bot to modify its behaviour based on the
post handshake actions of the extending s-bot to which it is attaching. In Fig. 1.11,
the extending s-bot in scenario A (left) is executing a different rule sequence from
the extending s-bot in scenario B (right). In both scenarios, the attaching s-bot is

robot executing the Balance rule would wait for a connection slot opened by a nearby robot
connected to a different morphology. In this section, we do not address this problem—we consider
the formation of only one morphology at a time. However, this issue disappears with the symbolic
communication based approach we present in Sect. 1.6
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Wait HS Sig Wait HS SigExtend( BL )

Extend( FL )

Wait HS Sig Wait HS Sig

Extend( BR ) Extend( FR )

Wait HS Sig Wait HS Sig

Extend( BR )

Extend( BL )

Star seed s−bot:

Arrow seed s−bot:

Fig. 1.10 Morphology extension rules for the seed robots of the Balanced Arrow Morphology (top)
and for the Balanced Star Morphology (bottom).

executing the same rule sequence. The attaching s-bot uses the Decide rule to
determine the appropriate post-handshake behaviour based on the post-handshake
actions of the extending s-bot.

A B

A3 B1 B2 B3A1 A2

Fig. 1.11 Decide rule. (A1,B1): Attaching s-bot successfully grips extending s-bot. (A2): Ex-
tending s-bot recognises handshake signal and executes subsequent rule which is to open con-
nection slot R. (B2): Extending s-bot recognises handshake signal and has no subsequent rules.
(A3): Attaching s-bot executes decision rule — sees green ahead (i.e., sees an open connection
slot ahead) and therefore ‘decides’ not to execute any subsequent rules. (B3): Attaching s-bot ex-
ecutes decision rule — sees no green ahead (i.e., does not see an open connection slot ahead) and
therefore ‘decides’ to open connection slot R.

The Rectangle Morphology is one of the morphologies that can be formed us-
ing the Decide rule. Figure 1.12 shows the morphology extension rules and the
morphology growth for this morphology.

1.5.3 Results

We grew four morphologies (line, balanced arrow, balanced star, rectangle) 10 times
with 7 real s-bots. Completed examples of the four morphologies are shown in
Fig. 1.13. Photographs and videos of experiments described in this chapter can be
found in [1].

We conducted our experiments in a walled arena of 220cm x 220cm. In each
experiment, we grew a single morphology. The free s-bots started each experiment at
one of 12 points (randomly sampled without replacement) evenly distributed around
a circle of radius 50cm centred on the seed s-bot. The free s-bots were placed in
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Wait HS Sig Wait HS SigExtend( B )

Extend( L ) Extend( B )

Wait HS Sig Wait HS Sig

Other extending s−bots:

Seed s−bot:

Extend( R )

Send HS Sig
no

see slot?
Decide

yes

1 3 4 5 6 72

Fig. 1.12 The Rectangle Morphology. Above: Morphology extension rules. Below: Morphology
growth. (1): Seed opens connection slot B (2): Connected s-bot sends handshake signal. (3): Seed
sees handshake signal, then opens connection slot R. First connected s-bot executes Decide rule
— sees connection slot and therefore executes no subsequent extension rules. (4): Another s-bot
connects and handshakes. (5): Seed sees handshake signal but does not open another connection
slot. Connected s-bot executes Decide rule — does not see a connection slot, and therefore opens
connection slot L itself. (6): Another s-bot connects and handshakes. (7): Morphology growth
pattern repeats. (Reprinted from [29].)

Line Rectangle Star Arrow

Fig. 1.13 Four different morphologies constructed with 7 real robots: line, rectangle, star and
arrow. Note that the rectangle and star morphologies would become symmetric with the addition
of more robots. (Reprinted from [11].)

one of four possible starting orientations (randomly sampled with replacement). An
experiment was considered finished once all 6 free s-bots had successfully attached
or after 15 minutes had expired.

All 6 free robots successfully connected to the morphology in 38 out of 40 exper-
iments. In a single rectangle morphology experiment, one robot failed to connect,
and in another of the rectangle morphology experiments two robots failed to con-
nect. Figure 1.14 shows morphology growth over time. Each line in the figure repre-
sents the mean growth times of a single morphology over ten experiments. All four
morphologies grow at a similar rate until they reach a size of three s-bots. Subse-
quent growth rates for the star, arrow and line morphologies remain relatively close,
and the three morphologies have comparable mean completion times of 335 s, 347 s
and 366 s, respectively. The rectangle morphology had a slower growth rate, with a
mean completion time of 634 s.
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Fig. 1.14 Mean morphology growth times of morphologies. Each horizontal line segments repre-
sents a time interval during which the morphology size remains constant. Vertical line segments
correspond to moments at which a free s-bot connects to a morphology. Left: Real robot experi-
ments — each morphology grown 10 times with seven s-bots. Right (reprinted from [29]): Experi-
ments in simulation. Each morphology grown 100 times with 25 s-bots. We fix the number of free
s-bots in the system at 10, by feeding a new s-bot into the simulation after every connection.

To investigate the scalability properties of our morphology growth scheme, we
conducted experiments with larger numbers of s-bots in simulation. We first veri-
fied the verisimilitude of our simulation environment [10] by growing the same four
morphologies in simulation (see Tab. 1.1). For the star, arrow and line morpholo-
gies, simulated morphology growth time is comparable to real-world growth time.
The rectangle morphology takes 31% less time in simulation. We believe that this
discrepancy is due to the fact that when the robots are densely packed, the camera
is more accurate in simulation than in reality, as we do not simulate occlusions and
reflections. We chose, therefore, not to use the rectangle morphology or any other
densely packed morphologies in our simulation based scalability testing.

Table 1.1 Mean completion times for different morphologies on real s-bots and in simulation.

Real s-bots Simulated s-bots Difference
Star 335.32 s 325.31 s −3.0%
Arrow 346.56 s 331.37 s −4.2%
Line 365.53 s 339.76 s −7.0%
Rectangle 663.46 s 456.71 s −31.2%

For our simulation tests, we chose the morphologies line, arrow, T-shape and
star, because they respectively can have one, two, three and four connection slots
open simultaneously (see Fig. 1.5). We kept the number of free robots constant
at 10. Each time a free robot connected to the morphology a new free robot was
added to the simulation. For each morphology, we conducted 100 trials. A trial was
considered finished when the morphology reached a size of 25 connected robots.
Table 1.1 shows the mean connection times for the different morphologies. The
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results show that all of the morphologies scale linearly. Furthermore, we can see that
morphologies with larger numbers of simultaneously open connection slots grow
faster.

1.5.4 Summary

In this section, we demonstrated growth of specific morphologies on a real-world
self-assembling robotic platform. We achieved a high success rate in building four
different morphologies using seven real robots and we showed that the approach
scales well. For more details see [11, 29].

The approach presented relies on morphology extension rules. Although this ap-
proach has the benefit of being fully distributed, it has a number of limitations with
respect to our goal of giving the robots the capacity to adaptively self-assemble into
task-specific morphologies:

• The seed robot is predetermined and is given a seed-specific set of rules.
• Only one pre-determined morphology can be built in each experiment.
• Only periodically repeating morphologies are possible.
• There is no way to regulate the size of the morphology, i.e., to stop morphology

growth — growth continues until there are no more free robots.

In the next section, we show how the introduction of symbolic communication
between connected s-bots can help to overcome the above limitations and allows
swarmorph to generate arbitrary morphologies.3

1.6 Symbolic Communication and a Morphology Generation
Language – SWARMORPH-script

In this section, we present a more sophisticated morphology control paradigm capa-
ble of forming arbitrary morphologies. We abstract morphology extension rules into
instructions that can be combined into short morphology generation programs or
scripts. The resulting scripting language — SWARMORPH-script — also includes
instructions that allow physically connected s-bots to communicate symbolically.
Using the SWARMORPH-script paradigm, we show how arbitrary morphologies
can be formed in a distributed fashion, how morphology size can be regulated, and
how multiple separate morphologies can be assembled.

3 Instead of introducing symbolic communication to generate arbitrary morphologies (as we do
in the next section), an alternative avenue (that we have not pursued) might be to create more
morphology extension rules of the type presented in this section, and thus generate richer mor-
phologies whilst avoiding symbolic communication. Such a research avenue could also encompass
formal analysis of the morphologically expressive power of a given set of extension rules, perhaps
using a grammar based approach akin to that pursued by Klavins et al. [24].
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1.6.1 Methodology

Using SWARMORPH-script, morphology growth still occurs through local mor-
phology extensions in particular directions. However, when a robot connects to a
morphology, we now allow it to communicate strings of symbols with the robot
to which it is connected. The strings can be interpreted as indices of instructions
describing how to extend the structure locally.

Arbitrary morphologies can be created by communicating information about the
local state of the morphology (usually the communication of a single digit suffices)
to each new robot that connects to the structure. The newly connected robot can
extend the local structure appropriately based on this information, then pass on up-
dated state information to the next robot to attach. A similar mechanism allows for
morphology size regulation — a counter can be incremented and passed on by each
attaching robot. Once the counter has reached a certain threshold, the next robot can
stop extending the morphology.

S-bots have no dedicated hardware that allows connected s-bots to communicate
with one another. To compensate, we implemented a simple visual communication
protocol based on camera and LEDs. Each time a bit is transmitted, the sending
robot changes the illumination of its LEDs. The colour green represents a ‘0’ bit,
blue represents a ‘1’ and red represents a repeat bit. The receiver acknowledges
receipt of each bit by lighting up its LEDs to match the colour of the sender’s LEDs.
Once the receipt of a bit has been acknowledged, the sender transmits the next bit. In
experimental tests, this visual communication mechanism proved slow but reliable.
We conducted 10 trials of an experiment that involved transmitting 100 bits between
two connected robots. In all 10 trials, the string was successfully communicated and
on average the transmission took 121 seconds resulting in an average bandwidth of
0.8 bits/second.

1.6.2 Example — The Horseshoe Morphology

We demonstrate the SWARMORPH-script approach with the horseshoe morphol-
ogy (see Fig. 1.15). This simple morphology would be impossible using our previ-
ous system of local extension rules (presented in Sect. 1.5), as morphology growth is
limited. The size of the morphology is determined in advance by script-based logic.
The script used to generate the horseshoe morphology is shown in Fig. 1.15.

The control is homogeneous — all of the robots start by executing the first in-
struction RandomWalkUntil. They perform a random walk until they either de-
tect a dark patch of ground or an open connection slot. The first robot that detects a
patch of dark ground becomes the seed robot (as dictated by the conditional state-
ment in line 2) and opens the first connection slot (connection slot left). Note that
the InviteConnection instruction causes an s-bot to open a particular con-
nection slot, and then wait until it has been successfully gripped before continuing
to execute subsequent instructions. Other robots that see this or subsequent open
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connection slots try and attach to a connection slot (as dictated by the conditional
statement in line 9). Once attached to a connection slot, a connecting robot receives
an instruction sequence identifier from the robot to which it connected. Any of the
free robots can assume any position in the morphology. The first robot to connect
to the seed receives instruction sequence id 1, which tells it to execute lines 12−14
in the script (this is the robot to the right of the seed robot in Fig. 1.15). Follow-
ing instructions in lines 12−14, this robot then opens a connection slot to its right.
The robot that connects to this new open connection slot then receives instruction
sequence id 0 and does not open any further connection slots, thus terminating mor-
phology growth for this branch of the morphology. A similar process results in a
mirror branch of the morphology being created on the other side of the seed robot,
but with the first robot connecting to the seed on that side opening connection slot
left instead of connection slot right.

RandomWalkUntil( dark-ground-detected1
or connection-slot-detected )2

if dark-ground-detected then3
InviteConnection( left )4
SendInstrSeqId( 1 )5
InviteConnection( right )6
SendInstrSeqId( 2 )7
StopExecution()8

end9
if connection-slot-detected then10

FindSlotThenConnect()11
ReceiveInstrSeqId()12
if received-seq-id = 0 then13

StopExecution()14
end15
if received-seq-id = 1 then16

InviteConnection( right )17
SendInstrSeqId( 0 )18
StopExecution()19

end20
if received-seq-id = 2 then21

InviteConnection( left )22
SendInstrSeqId( 0 )23
StopExecution()24

end25
end26

Fig. 1.15 Horseshoe morphology script and result. (Photo reprinted from [12].)

1.6.3 Multiple Morphologies

Using SWARMORPH-script multiple morphologies can be generated by instructing
a connected robot to split off from an existing morphology and to start a new mor-
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phology. In practice, this occurs by passing an instruction sequence id to a newly
connected s-bot that causes it to disconnect and start a new morphology.

We demonstrate the generation of multiple morphologies by generating multiple
small squares (Fig. 1.16). The experimental setup used is the same as in Sect. 1.6.2.
In the mini-squares morphology, a mini-square of four s-bots is initially constructed.
The fourth and final robot in the morphology opens a temporary connection slot.
When the fifth robot connects to the morphology, it receives instruction sequence
id ‘4’ that causes it to disconnect, retreat for 5s and then start a new mini-square
morphology. The formation process continues until no more robots are available.

RandomWalkUntil( dark-ground-detected1
or connection-slot-detected )2

if dark-ground-detected then3
InviteConnection( left )4
SendInstrSeqId( 1 )5
StopExecution()6

end7
if connection-slot-detected then8

FindSlotThenConnect()9
ReceiveInstrSeqId()10
if received-seq-id = 1 then11

InviteConnection( right )12
SendInstrSeqId( 2 )13
StopExecution()14

end15
if received-seq-id = 2 then16

InviteConnection( right )17
SendInstrSeqId( 3 )18
StopExecution()19

end20
if received-seq-id = 3 then21

InviteConnection( back )22
SendInstrSeqId( 4 )23
StopExecution()24

end25
if received-seq-id = 4 then26

Disconnect()27
Retreat( 5s )28
InviteConnection( left )29
SendInstrSeqId( 1 )30
StopExecution()31

end32
end33

Fig. 1.16 Mini-square morphologies script and result. (Photo reprinted from [12].)

We chose to generate several copies of a relatively simple morphology in order to
demonstrate the principle. However, more complex SWARMORPH-script programs
could generate a series of different morphologies of arbitrary complexity. Further-
more, the script we presented generated one complete morphology before starting
to generate the next morphology. However, morphologies could also be generated in
parallel — it would suffice to pass the instruction sequence id for new morphology
creation during, rather than at the end, of morphology construction.
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Square Shovel Multiple Lines Multiple Triangles

Fig. 1.17 Four morphologies generated using SWARMORPH-script. (Photos reprinted from [12].)

1.6.4 Summary

In this section, we have demonstrated the formation of arbitrary morphologies by
self-assembling robots. We abstracted basic control primitives as commands in a
simple language, and used this high-level descriptive language to express logic for
growing specific morphologies. For more details see [12].

The abstraction of the morphology extension rules into SWARMORPH-script
allowed us to overcome most of the limitations of the initial approach detailed in
Sect. 1.5. However, two essential features necessary for the system to be capable
of solving tasks by self-assembling have still not been demonstrated: the ability to
respond to different obstacles and the ability to carry out tasks when assembled into
a larger robotic entity. We address those features in the next section.

1.7 Using SWARMORPH to solve tasks

In this section, we show how the SWARMORPH approach can be applied to specific
tasks. The tasks we consider are navigation-based tasks. Each task consists of an
obstacle that the s-bots must overcome while performing phototaxis. We present a
SWARMORPH-script program that allows a group of s-bots to navigate from one
end of the environment to the other, forming appropriate morphologies to overcome
any obstacles they encounter en route.

The environment we use can contain up to two obstacles placed in any order.
Each obstacle is insurmountable by a single robot — to succeed, the robots must
form physical connections to each other and navigate as a larger connected entity.
However, the obstacles have been chosen so that each morphology requires a dedi-
cated morphology that is incapable of overcoming the other obstacle.

The robots respond to the presence of an obstacle by initiating a self-assembly
process and forming the connected morphology appropriate to the obstacle encoun-
tered. When an appropriate morphology has been formed, the robots cross the ob-
stacle collectively, then disassemble and continue individually.
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1.7.1 Experimental Setup

We conduct our experiments in the arena shown in Fig. 1.18. A strong light source
is located at the far end of the arena. The s-bots start each experiment disconnected
from each other and their task is to navigate from the start zone to the light source.
The arena contains two obstacles: a gap and a bridge that consists of two pipes. The
order of the obstacles in the arena is variable. In all experiments, the robots do not
know a priori which obstacle they will encounter first. Neither the gap nor the bridge
can be overcome by a single robot operating alone.

(a) (b)

(c)

Fig. 1.18 (a) The real arena. (b) A line morphology in the process of being formed after the gap
has been encountered. (c) The arena in simulation.

1.7.1.1 The Gap Obstacle

To overcome this obstacle, the robots must cross a 22 cm wide rectangular hole that
runs the width of the arena. An s-bot can detect the gap based on readings from its
infrared ground sensors. A gap of 22 cm was chosen because it is reliably passable
by four real s-bots connected in a line morphology (a three s-bot line morphology
will fail unless it is perfectly aligned, and any smaller morphology always fails). The
gap and a four s-bot linear swarm-bot crossing the gap can be seen in Fig. 1.19 (left).

Although the grippers on the s-bots are powerful enough for one s-bot to support
two other s-bots suspended over the gap, it puts significant strain on the hardware.
When we perform replications of our experiment, we therefore replace the gap by
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an equal-sized stripe of black arena surface. For the s-bots, the black surface is
indistinguishable from the gap. A video of the s-bots crossing a 22 cm real gap can
be seen in the supplementary material [1].

1.7.1.2 The Bridge Obstacle

To overcome this obstacle, the robots must use a bridge to cross a 50 cm wide rect-
angular hole that runs the width of the arena. The bridge is made of two pipes spaced
17.5 cm apart, each with a diameter of 8 cm. The curvature of the pipes is such that
a moving s-bot cannot balance on a single pipe. The two pipes are also sufficiently
far apart that the wheels of a single s-bot cannot make contact with both pipes at the
same time. Thus, a single s-bot cannot traverse a bridge alone. However, a so called
2-s-bot support morphology is capable of successfully traversing the bridge. The
support morphology consists of two appropriately oriented, physically connected
s-bots. In this configuration, the s-bots can traverse a bridge, since the connected
morphology makes contact with both pipes at the same time (each constituent s-bot
touches one of the pipes). The curvature of the pipes does not cause the morphology
to topple, as the two s-bots mutually support each other, see Fig. 1.19 (right).

The on-board computer vision software does not enable the robots to estimate
the width of a gap or to see the bridge. We have therefore placed a special reflective
material before the bridged 50 cm gap to distinguish it from the 22 cm gap. The
reflective material can be detected by an s-bot using its infrared ground sensors:
readings are higher than for the normal arena floor. In order to determine the posi-
tion of the bridge, we have put a distinct simple barcode in front of each pipe, see
Fig. 1.19 (right). The barcode is made up of different materials that can be detected
by an s-bot’s ground sensors. Whenever a robot detects a barcode, it can use the
barcode information to determine which pipe it is facing (left pipe or right pipe) and
build the morphology to cross the bridge accordingly. We have also added reflective
material on the far side of the bridge to allow the robots to detect when they have
successfully crossed the bridge.

Fig. 1.19 The two obstacles and the appropriate morphology for each tasks. Left: The gap crossing
task (line morphology). Right: The bridge traversal task (support morphology). (Photos reprinted
from [13].)
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1.7.2 Example Script to Respond to Hole with Three S-bot Line
Morphology

The gap crossing script (Fig. 1.21 left) is an example of a complete SWARMORPH-
script that solves a task using morphology control. When executed on three or more
s-bots, the s-bots perform phototaxis until a gap is detected. When a gap is detected,
a three s-bot swarm-bot will self-assemble into a linear morphology and attempt to
cross the gap. Once the gap has been crossed, the swarm-bot disassembles and the
s-bots continue individually.

(a) (b) (c) (d) (e)

Fig. 1.20 An example of a line of three s-bots forming a line to cross a gap. See text.

An s-bot executing the gap crossing script (Fig. 1.21 left) will first perform pho-
totaxis until either a gap is detected or until another s-bot displaying a connection
slot is seen. If an s-bot detects a gap using its infrared ground sensors, it becomes the
seed of a new morphology: it first opens a new connection slot to its rear in order to
invite a free s-bot to physically connect (Fig. 1.20a). When an s-bot has connected,
the seed has to wait for a notification from the newly connected s-bot that indicates
that the morphology is complete before starting to cross the gap. When an s-bot
connects to the seed, it receives instruction sequence id 0. This tells the newly con-
nected s-bot that it is the middle s-bot in the linear morphology and that it has to
receive a connection from another s-bot in order to complete the morphology. The
middle s-bot therefore opens a connection slot to its rear (Fig. 1.20b). When a free
s-bot connects to the middle s-bot, the middle s-bot sends it id 1 to tell the newly
connected s-bot that it is the last s-bot in the morphology. The middle s-bot then
notifies the seed that the morphology is complete and starts to move across the gap
(Fig. 1.20c-d). Upon receiving the notification from the middle s-bot, the seed be-
gins to move across the gap. The s-bot that connected to the morphology last starts
to move across the gap immediately after the middle s-bot has sent it instruction
sequence id 1.

The s-bot that connected to the morphology last is also the last s-bot to cross the
gap. When it has crossed the gap (i.e., when its infrared ground sensors detect that it
is no longer over the gap), it sends a notification to the middle s-bot and disconnects
from the morphology by opening its gripper. When the middle s-bot receives the
notification, it forwards the notification to the seed and disconnects. When the seed
receives the notification, it knows that the swarm-bot has made it across the gap and
that the two other s-bots have disconnected (Fig. 1.20e). After having crossed the
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gap, all the s-bots restart their script and continue individually until a new gap is
encountered.

Gap crossing script:
Label: ‘start’1
IndependentPhototaxisUntil( gap detected or2

connection-slot-detected )3
if gap detected then4

// Instructions for seed s-bot:5
InviteConnection( back )6
SendInstrSeqId( 0 )7
PauseUntilSignal( signal-from-back )8
ConnectedPhototaxisUntil(9

signal-from-back )10
Jump( ‘start’ )11

end12
if connection-slot-detected then13

FindSlotThenConnect()14
ReceiveInstrSeqId()15
if received-seq-id = 0 then16

// Instructions for middle s-bot:17
InviteConnection( back )18
SendInstrSeqId( 1 )19
SendSignal( front )20
ConnectedPhototaxisUntil(21

signal-from-back )22
SendSignal( front )23
Disconnect()24
Jump( ‘start’ )25

end26
if received-seq-id = 1 then27

// Instructions for last s-bot:28
ConnectedPhototaxisUntil(29

gap-crossed )30
SendSignal( front )31
Disconnect()32
Jump( ‘start’ )33

end34
end35

Multitask script:
Label: ‘PhototaxisAndLookForTasks’1
IndependentPhototaxisUntil( gap detected or2

bridge-detected or connection-slot-detected )3
if gap detected then4

// Instructions for line morphology seed s-bot:5
InviteConnection( back )6
SendInstrSeqId( 0 )7
PauseUntilSignal( signal-from-back )8
ConnectedPhototaxisUntil(9

signal-from-back )10
Jump( ‘PhototaxisAndLookForTasks’ )11

end12
else if bridge-detected then13

// Instructions for support morphology14
// seed s-bot:15
InviteConnection( left )16
SendInstrSeqId( 3 )17
ConnectedPhototaxisUntil( bridge-crossed )18
Jump( ‘PhototaxisAndLookForTasks’ )19

end20
else if connection-slot-detected then21

FindSlotThenConnect()22
ReceiveInstrSeqId()23
if received-seq-id = 0..2 then24

// Code similar to gap crossing25
// script (left) for s-bots26
// connecting to a line morphology.27

end28
if received-seq-id = 3 then29

// Instructions for second s-bot in30
// bridge morphology:31
ConnectedPhototaxisUntil(32

bridge-crossed )33
Disconnect()34
Jump( ‘PhototaxisAndLookForTasks’ )35

end36
end37

Fig. 1.21 Left: A gap crossing script - when a gap is encountered, a three s-bot line morphology
is created, the resulting swarm-bot moves across the gap, the s-bots disassemble, and the script
is restarted. Right: High-level structure of the SWARMORPH-script used in our experiments in
which four s-bots face multiple tasks.
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(1) (2) (3) (4)

(5) (6) (7) (8)

Fig. 1.22 Video frames from an experiment in which four robots form a line morphology and cross
a gap.

1.7.3 Overview of Script to Solve Both Tasks

We developed a SWARMORPH-script that enables s-bots to self-assemble into
different morphologies depending on which obstacles they encounter. We used
this script in both our simulation-based experiments and in our real robot ex-
periments. The high-level structure of this so called multitask script is shown in
Fig. 1.21 (right). All the s-bots initially perform phototaxis until either an obstacle is
encounter or until one of the s-bots opens a connection slot (because it has detected
the presence of an obstacle). At this point, logic is executed that depends on the type
of obstacle (gap or bridge). The part of the multitask script (Fig. 1.21 right) related
to the self-assembly of the line morphology when the gap is detected is similar to
the gap crossing script (Fig. 1.21 left)—but in this case a four s-bot line morphology
is formed instead of a three s-bot line morphology.

The logic for assembling the support morphology is simpler than the logic for
the line morphology. Since there are only two s-bots in the support morphology
(whereas the line morphology consists of four s-bots) there is no need to use notifi-
cations: both robots know immediately when the morphology has been assembled.
Similarly, it is not necessary for the second s-bot in the support morphology to no-
tify the seed that it has crossed the bridge: both robots cross the bridge at the same
time and the second s-bot in the support morphology can simply let go as soon as it
detects that it has made it safely across the bridge.
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1.7.4 Simulation-Based Experiments

We conducted experiments in a physically embodied simulation environment in
which the robots were required to assemble, overcome one of the obstacles, dis-
assemble, reassemble to overcome the second obstacle and disassemble again. The
simulation environment can be seen in Fig. 1.18 (c). The robots do not know a priori
the order of the obstacles they will encounter. We ran 100 experiments in which the
robots encountered the gap obstacle before the bridge obstacle, and 100 experiments
in which the robots encountered the bridge obstacle before the gap obstacle.

In the bridge-then-gap experiments, the success rate was 96% (success being de-
fined as all robots successfully overcoming both obstacles). The average completion
time for the bridge-then-gap experiments was 722 seconds (st.dev. 147 seconds). In
the gap-then-bridge experiments, the success rate was 97%. The average completion
time was 762 seconds (st.dev. 182 seconds). The difference between the completion
times for the bridge-then-gap and the gap-then-bridge experiments was not found to
be statistically significant (p = 0.08 using a two-tailed Mann-Whitney test).

1.7.5 Real World Experiments

We conducted experiments separately for each of the two potential obstacles. The
s-bots were not aware a priori which obstacle they would encounter. We conducted a
set of 5 experiments with 4 s-bots encountering the gap obstacle.4Figure 1.22 shows
a series of frames from a successful experiment. In all five experiments, the sys-
tem successfully detected the gap and formed the appropriate morphology. In four
out of five experiments, the notification mechanism successfully allowed the four
s-bot line morphology to start collective phototaxis in a coordinated manner, and
to disassemble once the final s-bot had crossed the gap. In a single experiment, a
failed notification signal between the third and fourth s-bots in the line morphology
resulted in the first two s-bots in the morphology commencing collective photo-
taxis while the rear two s-bots were still engaged in (unsuccessful) signalling—the
experiment was manually aborted.

We conducted 5 trials in which two s-bots encountered the bridge. In all 5 tri-
als, the s-bots successfully detected the environmental cues and formed the correct
morphology with which to cross the bridge. In three out of 5 experiments, the s-bots
successfully crossed the bridge. In 2 out of 5 experiments, inaccuracies in the detec-
tion of the target light source caused the s-bots to veer sideways off the bridge, and
they had to be manually placed back on the bridge. In every experiment, the s-bots
successfully detected that they had crossed the bridge and disassembled.

Frames from an experiment with 4 s-bots crossing the bridge 2-by-2 with real
s-bots are shown in Fig. 1.23. The frames in the figure are taken from a proof-of-
concept video in which we ran four s-bots over both obstacles in sequence. The
figure shows two sets of two s-bots crossing the bridge, and parallel task execution
as the first pair of s-bots over the bridge encounter the gap obstacle, and start forming
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the line morphology, while the second set of s-bots forms the support morphology
to cross the bridge. These videos can be found in the supplementary material [1].

(1) (2) (3) (4)

(4) (5) (7) (8)

Fig. 1.23 Video frames from an experiment in which four s-bots cross the bridge obstacle by
forming two support morphologies.

1.7.6 Summary

In this section, we have demonstrated how, by forming dedicated morphologies, a
group of self-assembling robot can overcome obstacles insurmountable for a single
robot. We demonstrated 1) how dedicated morphologies are grown from a single
seed robot when an obstacle or an environmental clue is encountered, 2) how the
local visual notifications are used to coordinate navigation over an obstacle, and
3) how the robots disassemble once the obstacle has been overcome and continue
individually until the next obstacle is encountered. In our experiments, the robots
were all homogeneous and autonomous.

In our research, the response to the different types of obstacles – namely the
formation of dedicated morphologies – was preprogrammed. Whenever a gap is en-
countered, for instance, a linear morphology of four robots is always self-assembled
– regardless of the width of the gap. In order for the robots to be truly adaptive, they
should be able to respond to previously unseen obstacles by forming new and ap-
propriate morphologies during task-execution. However, the current sensory equip-
ment does not provide our robots with sufficient information to allow them to, for
instance, estimate the width of a gap or to see the location and structure of a bridge.

4 As noted previously, to prevent damage to the robots we used a black surface instead of a gap.
This surface presents sensory information to the s-bots’ ground sensors that is almost identical to
the sensory information presented by the real gap obstacle.
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In our ongoing work, we are therefore investigating the use of heterogeneous robotic
swarms in which flying robots with a privileged view of the environment can guide
wheeled robots on the ground to form appropriate morphologies when new obstacles
are encountered. We discuss this work in more detail in the next section.

1.8 Towards Genuine Adaptivity

In this section, we discuss ongoing and future work that will lead to the SWAR-
MORPH system becoming genuinely adaptive. We first present a control logic
transmission mechanism which allows s-bots to transmit whole or partial scripts
to each other. This frees SWARMORPH-script from the constraints of having all
morphology generation logic pre-coded into a script. Using control logic transmis-
sion, robots can formulate an appropriate morphology on the fly, in response to
never seen before conditions, and communicate the relevant instructions to create
the morphology to other robots. We also discuss future work in the context of the
Swarmanoid project [15]. This ongoing project studies the interaction of heterege-
neous robotic swarms. In particular, aerial robots might be used in the future to
direct the morphology generation activities of ground-based robots.

1.8.1 Control Logic Transmission

Control logic transmission allows robots with no a priori knowledge of a particu-
lar morphology to nonetheless take part in morphology growth. The morphologies
presented in Sect. 1.6 relied on the communication of a single number between
connected robots — an instruction ID that mapped to segments of preprogrammed
control logic on the recipient robot. This approach is efficient in terms of restricting
communication to a minimum, but has the disadvantage that the set of morphologies
that can be generated is limited by the set of rules given to the robots at the start of
an experiment.

To overcome these restrictions, we introduced dedicated primitives in the
SWARMORPH-script language to allow for the communication of partial or whole
morphology generation control programs. To send a script, each SWARMORPH-
script command is compiled to a 5-bit string literal before being sent. The robot that
receives a script maps these 5-bit string literals back to SWARMORPH-script com-
mands, and then executes the script thus received. The SendScript command
takes a list of SWARMORPH-script commands as a parameter. Alternatively, a spe-
cial parameter, ‘self’, can be provided to the SendScript command which
tells the sending robot to transmit a copy of the whole script it is currently execut-
ing.

We demonstrate the communication of morphology control logic with the
transmitted-triangle morphology. In our experimental setup, we program a single
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‘master’ robot with morphology control logic to create a morphology and to commu-
nicate the same control to other robots. All other robots are ‘slave’ robots that start
without any a priori morphology creation logic, except the basic logic required to at-
tach to a connection slot and execute any morphology control logic received through
communication. The morphology slave script that we execute on these robots is
shown in Fig. 1.24.

FindSlotThenConnect();1
ReceiveScript();2
ExecuteReceivedScript();3

Fig. 1.24 Morphology slave script. This script is executed by robots that do not have any prepro-
grammed morphology expansion rules.

In the transmitted-triangle morphology (Fig. 1.25), the first action of the seed
robot is to execute the Disconnect and Retreat instructions before opening
a connection slot. This is done to maintain homogeneity of control, as these are
the first instructions that a ‘slave’ robot will need to execute when it receives in-
structions to replicate the morphology. The seed robot then opens a connection slot
to its rear left and sends a StopExecution command to the connecting robot.
Thus, the first connected robot takes no further actions. The seed then opens a sec-
ond connection slot to its rear right and sends a StopExecution command to
the robot that connects to the slot. When three robots are assembled in this way, a
single instance of the triangle morphology has been created. The seed then opens
a temporary connection slot to its front left and sends a copy of its own script
(SendScript(self)) to the robot that connects. This connecting robot is now
executing the same script as the seed robot for the first morphology. It therefore
disconnects, retreats and starts forming another triangle morphology. This process
will continue to generate more triangle morphologies as long as there are still un-
connected slave robots available.

1.8.2 Morphology Control in a Heterogeneous Swarm

The sensing capabilities of the s-bot are limited. In the experiments presented in
Sect. 1.7, we were forced to place explicit cues in the arena to allow the robots to
distinguish between the two types of obstacle. One solution to this problem might
be to use a heterogeneous swarm, where supervisory robots with more sophisticated
sensors equipment direct the morphogenesis activities of self-assembling robots.

The Swarmanoid project [15] is currently investigating this type of heteregeneous
cooperation. In particular, some studies have already addressed the possibility of
communication and cooperation between aerial and ground-based robots [25, 30].
Ongoing research effort is being applied to the problem of adapting these heteroge-
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Disconnect();1
Retreat(10s);2
InviteConnection(back-left);3
SendScript(4
StopExecution();5

);6
InviteConnection(back-right);7
SendScript(8
StopExecution();9

);10
InviteConnection(front-left);11
SendScript(self);12
StopExecution();13

Fig. 1.25 Transmitted-triangle morphologies. Script and result. (Photo reprinted from [12].)

Fig. 1.26 Heterogeneous robot in a disaster zone. A heterogeneous robot swarm clears debris in
an afflicted office to facilitate subsequent access for search and rescue workers. An aerial robot
locates an object that needs to be moved (the toppled chair) and instructs ground-based robots to
self-assemble into an appropriate morphology capable of moving the object.
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neous communication and cooperation modalities to enable supervised morphogen-
esis. Figure 1.26 shows an example of how such supervised morphogenesis might
enable a heterogeneous group of robots to react adaptively to its environment in a
future search and rescue environment.

1.9 Conclusion

In this chapter, we have demonstrated SWARMORPH — a system that enables
the construction of arbitrary two dimensional morphologies with self-propelled au-
tonomous robots. Our approach proved reliable and effective on a real-world robotic
platform, and was shown to scale well in a simulated environment. We also showed
how our morphology control mechanism could be used to respond appropriately to
different tasks. We have already outlined in Sect. 1.8 how SWARMORPH could
start to become more of a genuinely adaptive morphology control system.

Although the work presented in this chapter was conducted exclusively on the
swarm-bot platform, we do not foresee great difficulty in tranferring SWARMORPH
to other robotic platforms. The key ideas underlying SWARMORPH are:

1. Directed local extensions to a morphology enable the creation of a specific global
structure.

2. Abstraction of extension rules into script-based instructions.
3. Communication between connected robots to enable the propagation of morphol-

ogy creation information.

Since SWARMORPH control logic relies on an abstraction of these ideas, it
would be straightforward to implement SWARMORPH on any self-assembling sys-
tem where the robots have an ability to dictate where another robot should attach and
where connected robots can exchange symbolic information. In other words, once
directional self-assembly has been implemented on a system, SWARMORPH can
immediately be applied by using directional self-assembly as a module. By similar
logic, SWARMORPH should be capable of creating three dimensional structures.
It would suffice to define a directional self-assembly mechanism for a three dimen-
sional self-assembling system (and a corresponding notation for defining connection
slots in three dimensions). SWARMORPH-script programs could then be written to
build three dimensional robotic entities.

The results presented in this chapter were not always perfect. Actuation and sens-
ing failure of individual components resulted in occasional malformed morpholo-
gies and some task execution failures. Self-assembling systems are generally con-
sidered to have the potential for robustness in the face of individual agent failure.
An important area for future development of the SWARMORPH system would be to
explicitly add mechanisms to ensure such robustness. Possible approaches could in-
clude verification of shape correctness before a task is performed, time-out and reset
mechanisms for malformed or partially formed shapes, and more sophisticated mor-
phology designs that include a degree of physical and/or topological redundancy.
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In the longer term, we see SWARMORPH as a layer on which other types of re-
search could be conducted. We hope that ongoing morphology control research will
treat SWARMORPH as a tool and focus more generically on how distributed robotic
systems can adaptively detect, respond to and communicate information about their
tasks and environments in order to generate collective robotic entities with appro-
priate morphologies.
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Bruxelles, Belgium (2005)

11. Christensen, A.L., O’Grady, R., Dorigo, M.: Morphology control in multirobot system. IEEE
Robotics and Automation Magazine 14(4), 18–25 (2007)



References 33

12. Christensen, A.L., O’Grady, R., Dorigo, M.: SWARMORPH-script: A language for arbitrary
morphology generation in self-assembling robots. Swarm Intelligence 2(2-4), 143–165 (2008)

13. Christensen, A.L., O’Grady, R., Dorigo, M.: Parallel task execution, morphology control and
scalability in a swarm of self-assembling robots. In: Proceedings of the 9th Conference on
Autonomous Robot Systems and Competitions, Robótica 2009, pp. 127–133. IPCB-Instituto
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