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Abstract

We study a self-organized collective decision-making
strategy to solve a site-selection problem using a swarm
of simple robots. Robots can only move forward or turn
in place; sense the intensity of the ambient light; and ex-
change 3-byte messages with peers in a limited range.
The goal of the swarm is to collectively decide which of
the sites available in the environment is the best candi-
date site. We define a distributed and iterative decision-
making strategy: robots explore the available options,
determine the options’ qualities, decide autonomously
which option to take, and communicate their decision
to neighboring robots. We study the effectiveness and
robustness of the proposed strategy using a swarm of
100 Kilobots and we focus on the impact of the neigh-
borhood size over the dynamics of the system.

Introduction
In our research we study how large swarms of simple robots
can take efficient and accurate decisions when functioning
as a compact information processing entity by coordinat-
ing their actions using collective decision-making mecha-
nisms. In this paper, we propose a self-organized collective
decision-making strategy to solve a site-selection problem
using a swarm or robots. Possible applications that may ben-
efit from the scalability and robustness of swarm approaches
include finding the target location in a human body where
to deliver drugs or the most suitable location for construc-
tion in a hostile environment. The swarm is initially posi-
tioned in the nest, which is an area functioning as decision-
making hub. The nest provides access to 2 equally distant
sites, A and B. Robots in the swarm may sample the qual-
ity ρi, i ∈ {A,B}, of a site by exploring it and may use this
information during the decision-making process. The goal
of the swarm is to collectively agree on which site has the
maximum quality. We implement our strategy in a swarm of
100 Kilobots (Rubenstein et al. 2014) and we show that it
requires minimal robot capabilities.

We define a self-organized decision-making strategy that
requires minimal perception and computational capabilities.
Robots always have a preference for a particular site (hence-
forth, the robot opinion). The high-level control algorithm
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of the individual robot is defined by a finite-state machine
of 4 states (Fig. 1a). In the dissemination states (DA,DB)
agents broadcast their opinion in a limited spatial range.
Meanwhile, they perform random movements to stir their
spatial distribution within the nest thus preventing the frag-
mentation of opinions. Prior to move to the exploration state,
a robot determines its new opinion using the majority rule
over a set of opinions which consists of the opinions of the
robot’s neighbors and its own current opinion. In the explo-
ration states (EA, EB) robots travel from the nest to the site
associated with their current opinion, explore the site, esti-
mate its quality, return to the nest, and proceed to the respec-
tive dissemination state.

To promote the spread of the best opinion, robots spend a
time in the dissemination which is proportional to the opin-
ion’s quality (either ρAg or ρBg where g is a design pa-
rameter). Consequently, robots favoring the best site have
higher chances to influence the opinions of other peers. In
this way robots directly control the positive feedback effect
that drives the collective decision towards the best site.

Robotic Experiment
We implemented the above-described distributed algorithm
in a swarm of Kilobots. The Kilobot is a low-cost, 3.3 cm
robot with stick-slip motion (1 cm/s forward, π/4 rad/s turn
in place), one ambient light sensor, and infrared commu-
nication capabilities (3-byte messages in a range up to 10-
20 cm). We place N = 100 robots in a rectangular arena of
100 × 190 cm2 (Fig. 1b). The arena is partitioned in three
regions: site A at the right side; nest at the center; and site B
at the left side. We consider a scenario where site A is twice
as good compared to site B (ρA = 1 and ρB = 0.5). Robots
can navigate between sites and nest using as a reference
point a light source positioned at the right side of the arena.
Due to the Kilobots’ limited perception capabilities, we em-
ulate the identification of sites and the estimation of their
quality using infrared beacons positioned under the Perspex
surface of the arena. Each beacon repeatedly broadcasts a
message containing the type (A or B) and the quality (ρA
or ρB) of a site. Robots perceive the beacons only at the site
in the proximity of the border with the nest.

Depending on the current perceptions and on the con-
trol state, a robot alternates three low-level motion behav-
iors: random motion (random walk) and oriented motion to-
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Figure 1: Illustrations of: a) the probabilistic finite-state machine of the individual agent; b) screen-shot of a robot experiment;
and c) proportion of robots with opinion A over time during robot experiments.

wards or away from a light source (respectively, phototaxis
and anti-phototaxis). In the dissemination state, robots per-
form a random walk within the nest and repeatedly broad-
cast their opinion. The duration of the dissemination state is
determined by sampling an exponential distribution whose
mean is given by either ρAg or ρBg. If, while in the dissem-
ination state, a robot perceives a message from a beacon, it
recognizes that it is mistakenly leaving the nest; as a con-
sequence, it enters either the phototaxis or anti-phototaxis
behavior and returns to the nest. Before moving to the ex-
ploration state, a robot records the opinions of its neighbors,
adds its own current opinion, and applies the majority rule
to determine which site to explore (possibly switching opin-
ion). In the exploration state, robots move towards the site
associated to their current opinion (respectively, performing
phototaxis if moving towards site A and anti-phototaxis if
moving towards site B); they explore the area for an expo-
nentially distributed period of time (period which, in a real
scenario where robots are endowed with task-specific sen-
sors, would corresponds to the actual estimation of the site’s
quality); and then return to the nest.

We study the effects of different neighborhood sizes N
on the dynamics of the decision process. We perform two
series of experiments (10 runs of 90 min for each series)
where we vary the maximum numberNmax of opinion mes-
sages that a robot is allowed to receive before applying the
majority rule. For convenience, we refer to the maximum
size Gmax = Nmax + 1 of the group of opinions used in
the majority rule which includes the robot current opinion
(Gmax ∈ {5, 25}). Fig. 1b depicts a screen-shot taken from
one of the experiments. We show in Fig. 1c the dynam-
ics of the proportion of opinion A during the decision pro-
cess ((DA + EA)/N ). When Gmax = 25, the swarm takes
approximately 60 min to exceed a 90% majority for opin-
ion A (white box-plots). When Gmax = 5, the swarm ex-
ceeds the 90% majority in around 70 min (gray box-plots).
We thus observe a positive correlation between the speed of
the decision process and the average neighborhood size: the
bigger the neighborhood, the faster the decision process. Ad-
ditionally, Fig. 1c shows that even though the swarm estab-
lishes a large majority of> 95%, the swarm does not reach a
100% consensus. This is due to some robots suffering from
poor motion performance making them less likely to change

opinion. Nonetheless, the proposed decision-making strat-
egy proves to be robust to individual robot failures by en-
abling the swarm to take the best decision.

Conclusions
We proposed a self-organized collective decision-making
strategy that can be implemented in a swarm of 100 robots
with minimal actuation, perception, and computational ca-
pabilities. Robot experiments show both the robustness of
the decision strategy and the effects of spatial density on the
velocity of the decision process. However, the time-cost of
performing robot experiments limits the available data. In
our accompanying article (Valentini, Hamann, and Dorigo
2014a), we defined a mean-field approximation model of the
system dynamics to further investigate the effects of spatial
density. Using this model, we show that consensus states are
the only asymptotically stable solutions and that the speed
of the decision-making process increases with the neigh-
borhood size while its accuracy decreases. Finally, we an-
alytically compared our strategy to a previously proposed
strategy based on the voter model (Valentini, Hamann, and
Dorigo 2014b) showing a speed up of the decision process.
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