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We study a collective decision-making mechanism for a swarm of robots. Swarm
robotics [9] is a novel approach in robotics that takes inspiration from social in-
sects to deal with large groups of relatively simple robots. Robots in a swarm act
only on the basis of local knowledge, without any centralized director, hence, in
a completely self-organized and distributed manner. The behavior of the swarm
is a result of the interaction of its components, the robots. The analysis of col-
lective decision-making mechanisms plays a crucial role in the design of swarm
behaviors.

We analyze a swarm robotics system originally proposed by Montes de Oca
et al. [7]. Robots in the swarm need to collectively decide between two possible
actions to perform, henceforth referred to as action A and action B. Actions have
the same outcome but different execution times. The goal of the swarm is to reach
consensus on the action with the shortest execution time. In particular, Montes
the Oca et al. studied this system in a collective transport scenario where robots
in the swarm need to transport objects from a source area to a destination area.
To this end, robots can choose between two possible paths. This corresponds to
perform action A or action B. The two paths differ in length and thus in the
traversal time. Each robot in the swarm has an opinion for a particular path.
Moreover, an object is too heavy for a single robot to be transported. A team of
3 robots is needed. The team collectively decides which path to take considering
the opinion favored by the majority.

Opinion formation models, such as the majority-rule model by Galam [2],
allow us to study and analyze this kind of systems. Krapivsky and Redner [4]
provided an analytical study of the majority-rule model under the assumption
of a well mixed1 population of agents. Later, Lambiotte et al. [5] extended the
work of Krapivsky and Redner introducing the concept of latency. In the model
of Lambiotte et al., when an agent switches opinion as a consequence of the
application of the majority rule, it turns in a latent state for a latency period
that has stochastic duration. A latent agent may still participates in voting,
thus influencing other agents, but its opinion does not change as a result of
the decision. This extension gives rise to a richer dynamics depending on the
duration of the latency period. Based on these works, Montes de Oca et al. [7]

1 In a well mixed population each agent has the same probability to interact with each
other agent [8].



proposed the differential latency model where the duration of the latency period
depends on the particular opinion adopted. After a decision, differently from the
model of Lambiotte et al., the team of agents become latent with a common
latency period and is not involved in further voting until the end of the latency
period. Montes de Oca et al. showed that the differential latency in the majority-
rule model steers the agents towards consensus on the opinion associated to the
shortest latency. Montes de Oca et al. applied these results to the study of the
swarm robotics system described above by modeling actions of the robots as
opinions and their execution times as the latency periods of different duration.

In the context of swarm robotics, a number of works has been devoted to the
differential latency model. Montes de Oca et al. [7] first proposed a fluid-flow
analysis of this model — using a system of ODEs — aimed at studying the
dynamics leading to consensus. This analysis, derived in the limit of an infinite
population, deterministically predicts consensus as a function of the initial con-
figuration of the system. However, in a finite population, random fluctuations
may drive the system to converge to the long path, even when the fluid-flow
model predicts that it should converge to the short one. Later, Scheidler [10]
extended the previous analysis using methods from statistical physics — e.g.,
master equation and Fokker-Planck equation — to derive continuous approxi-
mations of a system with a finite population size. With this approach, Scheidler
was able to study the exit probability, i.e., the probability that the system even-
tually reaches consensus on the opinion associated to the shortest latency, and
the expected time necessary to reach consensus. Finally, Massink et al. [6] pro-
vided a specification of the system using a stochastic process algebra. On the
basis of this specification, the authors obtained a statistical model checking and
a fluid-flow analysis.

Continuous approximations provide reliable predictions only when the num-
ber of robots is relatively large — e.g., thousands of robots. However, swarm
robotics aims to design scalable control policies that operate for swarms of any
size, ranging from tens to millions of robots. These models cover only the upper
part of this range. Besides, from a continuous approximation model, it is usu-
ally hard to derive statistics different from the expected value, which in turn,
often gives a poor representation of the underlying distribution — e.g., when the
variance is large compared to the expected value or when the distribution is not
symmetric.

The aim of this work is to study the majority rule with differential latency
with an approach able to cope with the limitations of previous approaches. In-
spired by the work of Banish et al. [1], we use the formalism of time homogeneous
Markov chains with finite state space [3]. In particular, it results that the Markov
chain describing the system is absorbing [3]. This approach allows us to consider
systems of any finite size and to derive reliable estimations of both the exit
probability and the distribution of the number of decisions necessary to reach
consensus.



Markov Chain Model

We model the majority rule with differential latency in a system of M robots as
an absorbing Markov chain [3]. Robots can be latent or non-latent. Only non-
latent robots, once grouped in a team of 3 members, take part to the decision-
making mechanism. As in Montes de Oca et al. [7], we consider a scenario where
the number k of latent teams is constant, and where the latency period follows
an exponential distribution whose expected value depends on the team’s opinion.
Without loss of generality, we consider the expected latency periods to be 1 for
opinion A and 1/λ with 0 6 λ 6 1 for opinion B. Moreover, we are interested
in the number ϑ of applications of the majority rule, thus, we consider each
application of the decision-making mechanism as one step of the process along
the chain. At each step ϑ we consider 3 stages:

1) A latent team becomes non-latent (it finishes its latency period).
2) A new team of 3 robots is randomly formed out of the set of non-latent

robots.
3) The team applies the majority rule to decide the team’s opinion. Next, it

turns in a latent state.

We are interested in the evolution over ϑ of the number of robots with opinion A
— the opinion associated to the shortest latency. Let N be the set of naturals. The
state of the Markov chain is a vector s = (sl, sn), where sl ∈ {l : l ∈ N, 0 6 l 6 k}
is the number of latent teams with opinion A and sn ∈ {n : n ∈ N, 0 6 n 6
M − 3k} is the number of non-latent robots with opinion A. The state space of
the Markov chain consists of m states, where m = (k + 1)(M − 3k + 1) is the
cardinality of the Cartesian product of the domains of sl and sn. By si and sj
we refer to two generic states. By sa and sb we refer to the consensus states in
which the whole swarm agrees on opinion A and B, respectively. Notice that sa
and sb are the absorbing states of the chain, that is, states that once reached
can never be left [3].

At the generic step ϑ, the process moves from s(ϑ) = si to s(ϑ + 1) = sj
following the aforementioned 3 stages. At stage 1), a latent team finishes its
latency period, becomes non-latent and disbands. The probability pi that this
team has opinion A is:

pi =
sli

sli + λ(k − sli)
. (1)

The set of non-latent robots with opinion A increases of c = 3 units, if the
disbanding team has opinion A; and of c = 0, otherwise. At stage 2), 3 random
robots form a new team in the set of non-latent robots. We are interested in
the probability qi that the new team has a number 0 6 d 6 3 of preferences for
opinion A. This probability is given by the hyper-geometric distribution

qi(d; c) =

(
sni +c

d

)(
M−3k−sni +3−c

3−d

)(
M−3k+3

3

) (2)



of the M − 3k+ 3 preferences in the current set of non-latent robots, composed
of sni +c votes for opinion A and M−3k−sni +3−c votes for opinion B. At stage
3), the majority rule is applied and the outcome is determined by the value of
d. Eventually, the process moves to the next state s(ϑ+ 1) = sj .

Equations (1) and (2) allow us to define the transition probabilities between
each possible pair of states si and sj . These probabilities are the entries of
the stochastic transition matrix P , which completely defines the dynamics of a
Markov chain, cf. Kemeny and Snell [3]. However, not all pairs of states define
a feasible move of the process along the chain according to the rules of the
system, i.e., not all pair of states are adjacent. Two states si and sj are adjacent
if ∆ijs = (∆ijs

l, ∆ijs
n) = sj − si appears in the first column of the following

table. The correspondent transition probability Pij is given in the second column:

(∆ijs
l, ∆ijs

n) Pij stage 1) stage 2)
(−1, 3)

piqi(3−∆ijs
n; 3)

A 3B
(−1, 2) A A2B
(0, 1) A 2AB

(0, 0) piqi(3−∆ijs
n; 3) + (1− pi)qi(|∆ijs

n|; 0)
A 3A
B 3B

(0,−1)
(1− pi)qi(|∆ijs

n|; 0)
B A2B

(1,−2) B 2AB
(1,−3) B 3A

Columns three and four provide the corresponding events observed in stages 1)
and 2), respectively: the opinion of the robots in the next latent team finishing
its latency period and the opinions of the robots that randomly form a new team
in the set of non-latent robots. For values of ∆ijs not included in column one,
the transition probability is Pij = 0.

The probabilistic interpretation of P is straightforward: at any step ϑ, if the
process is in state s(ϑ) = si it will move to state s(ϑ+ 1) = sj with probability
Pij . It is worth noticing that, being the consensus states sa and sb two absorbing
states, the probability mass of sa and sb is concentrated in the corresponding
diagonal entries of P , that is: Paa = 1 and Pbb = 1.

Analysis of Opinion Dynamics

In order to analyze the dynamics of the majority rule with differential latency,
we define, on the basis of P , the matrices Q, R, and N of Kemeny and Snell [3].
Q describes transitions between transient states, R gives the probability to move
from a transient state to an absorbing state, and N = (I − Q)−1 is the funda-
mental matrix with I being the identity matrix. From matrices Q, R, and N of
the Markov chain model we study the behavior of the system. We validate the
predictions of the model with the results of Monte Carlo simulations2 averaged
over 1000 independent runs for each choice of the parameters of the system.

2 We simulated two sets of robots: latent teams characterized by an opinion and a
latency, and non-latent robots described only by their opinions. The simulation pro-



Fig. 1: Probability E(si) to reach
consensus on opinion A versus
initial proportion δ of robots fa-
voring that opinion for different
settings of the system: (M =
20, k = 6, λ = 0.5), (M =
50, k = 16, λ ∈ {1, 0.5, 0.25})
and (M = 101, k = 33, λ = 0.5).
Lines refer to the predictions of
the Markov chain model, sym-
bols refer to the average results
of 1000 Monte Carlo simulations
for each initial configuration of
the system.
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First, we derive the exit probability E(si), i.e., the probability that a system
of M robots that starts in the initial configuration s(ϑ0) = si reaches consensus
on the opinion associated to the shortest latency — opinion A. This probability
is given by the entries associated to the consensus state sa of the product NR,
which corresponds to the matrix of the absorption probabilities [3].

Figure 1 reports the predictions of the exit probability over the initial density
δ = (3sli + sni )/M of robots favoring opinion A for several configurations of the
system. As found by Scheidler [10], the larger is the expected latency period
1/λ associated to opinion B, the smaller is the initial number of preferences for
opinion A such that the exit probability is E(si) > 0.5. Moreover, when the
number of robots M increases, the exit probability approaches a step function
around the critical density. It is worth noticing that the Markov chain model
predicts the outcome of the simulations with great accuracy, regardless of the
number of robots. A result that in general cannot be achieved using continuous
approximations approaches.

Next, we analyze the number τ of applications of the majority rule necessary
to reach consensus. As stated above, we consider each step along the chain as one
application on the decision-making mechanism. The expected value of τ is given
by τ̂ = ξN , where ξ is a column vector of all 1s. The entries of τ̂ correspond to
the row sums of the fundamental matrix N . In turn, N gives the mean sojourn
time for each transient state of a Markov chain [3], that is, the expected number
of times that a process started in state s(ϑ0) = si passes from state sj . The

ceeds as follow until consensus is reached: 1) the latent team having minimum latency
is disbanded and its component robots are added to the set of non-latent robots,
2) 3 robots are randomly sampled from the set of non-latent robots and the major-
ity rule is applied among them, 3) the new team is added to the set of latent teams
and its latency is drawn from the exponential distribution according to the team’s
opinion.
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Fig. 2: Number τ of applications of the majority rule necessary to reach consensus
for a system of M = 50 robots, k = 16 teams and λ ∈ {1, 0.5, 0.25}. (a) Expected
value τ̂ , (b) variance τ̂2, (c) cumulative distribution function P (τ 6 ϑ; su), (d)
probability mass function P (τ = ϑ; su) and details of mode, median and mean
values. Lines refer to the predictions of the Markov chain model, symbols refer to
the average results of 1000 Monte Carlo simulations for each initial configuration
of the system.

variance of τ is given by τ̂2 = (2N − I)τ̂ − τ̂sq, where I is the identity matrix
and τ̂sq is τ̂ with squared entries [3].

Figures 2a and 2b show the predictions of the expectation τ̂ and the variance
τ̂2 of the number of decisions necessary before consensus for a system with M =
50 robots. Again, the Markov chain model predicts the Monte Carlo simulations
with great accuracy. Similarly to the findings of Scheidler [10] for the consensus
time, the value of τ̂ is maximum near the critical density of the initial number
of robots favoring opinion A. However, the expected number of decisions, which
is related to the consensus time in Scheidler [10], is not a reliable statistics for
this system. Indeed, the variance τ̂2 is about three orders of magnitude larger
than τ̂ .

Finally, we derive the cumulative distribution function P (τ 6 ϑ; si) of the
number of decisions before consensus as well as its probability mass function
P (τ = ϑ; si). From a swarm robotics perspective, we are interested in the dy-



namics of a system initially unbiased, i.e., a system that starts with an equal
proportion of preferences for the opinions A and B. Let s(ϑ0) = su represents
this initial unbiased configuration. Recalling that Q is the matrix of the transi-
tion probabilities for the transient states, we have that the entries Qϑ

uj of the ϑth

power of Q give the probabilities to be in the transient state sj at step ϑ when
starting at su. Thus, the row sum of the uth row of Qϑ gives the probability to
still be in one of the transient states. From this probability, we can derive the
cumulative distribution function P (τ 6 ϑ; su) simply by computing the series
{1−

∑
j Q

ϑ
uj} for values of ϑ such that Qϑ → 0.

Figure 2c shows the cumulative distribution function P (τ 6 ϑ; su) for a
system of M = 50 robots that starts unbiased. Obviously, the longer is the
latency period 1/λ of opinion B, the larger is the number of applications of the
majority rule necessary to reach consensus. Figure 2d, provides the probability
mass function P (τ = ϑ; su), together with details of mode, median, and mean
values of τ . As we can see, the values of the mode, median and mean statistics
diverge for increasing values of the ratio 1/λ of the two expected latency periods.
Moreover, when 1/λ→∞ the shape of the distribution P (τ = ϑ; su) tends to a
flat function, thus revealing that the variance dominates the system.

Conclusion

We designed an absorbing Markov chain model for collective decisions in a system
with a finite number of robots based on the majority rule with differential latency.
Using our model, we derived: the probability that a system of M robots reaches
consensus on the opinion associated to the shortest latency period, and the
distribution of the number of applications of the majority rule necessary to
reach consensus. This latter reveals that the system is characterized by a large
variance of the number of decisions necessary before consensus, and thus, that
its expected value, which was mainly adopted in previous studies, is a poor
statistic for this system. In contrast to continuous approximations, we explicitly
model the state space of the system — which is discrete — and the transition
probabilities governing its dynamics. This approach allows us to always derive
reliable predictions of a system regardless of its size.

Our contribution is relevant from a swarm robotics perspective not only for
the reliability of its predictions; but also, because it allows us to perform a deeper
analysis of the system. The analysis of our Markov chain model, with particular
regard to the distribution of the number of decisions necessary to consensus,
gives the possibility to perform statistical inference on certain interesting aspects
of the system. Moreover, the approach can be easily extended to other voting
schemata, allowing the comparison at design time of different choices for the
decision-making mechanism.

In real-robot experiments, latency periods are unlikely to be exponentially
distributed. Moreover, it is hard to ensure a constant number of teams in time.
These assumptions represent hard constraints for a swarm robotics system.
Massink et al. [6] propose to cope with these constraints modeling the latency



period with an Erlang distribution. We plan to extend our approach in a simi-
lar way and to validate the resulting model with physics-based simulations and
real-robot experiments.
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