Swarm Intell (2015) 9:1-22
DOI 10.1007/s11721-014-0102-6

The TAM: abstracting complex tasks in swarm robotics
research

Arne Brutschy - Lorenzo Garattoni - Manuele Brambilla -
Gianpiero Francesca - Giovanni Pini - Marco Dorigo -
Mauro Birattari

Received: 9 March 2014 / Accepted: 17 December 2014 / Published online: 25 January 2015
© Springer Science+Business Media New York 2015

Abstract Research in swarm robotics focuses mostly on how robots interact and cooperate
to perform tasks, rather than on the details of task execution. As a consequence, researchers
often consider abstract tasks in their experimental work. For example, foraging is often studied
without physically handling objects: the retrieval of an object from a source to a destination is
abstracted into a trip between the two locations—no object is physically transported. Despite
being commonly used, so far task abstraction has only been implemented in an ad hoc fashion.
In this paper, we propose a new approach to abstracting complex tasks in swarm robotics
research. This approach is based on a physical device called the “task abstraction module”
(TAM) that abstracts single-robot tasks to be performed by an e-puck robot. A complex
multi-robot task can be abstracted using a group of TAMs by first modeling the task as the
set of its constituent single-robot subtasks and then abstracting each subtask with a TAM.
We present a collection of tools for modeling complex tasks, and a framework for controlling
a group of TAMs such that the behavior of the group implements the model of the task.

Guest editor: Roderich GroB.

A. Brutschy (X)) - L. Garattoni - M. Brambilla - G. Francesca - G. Pini - M. Dorigo - M. Birattari
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
e-mail: arne.brutschy @ulb.ac.be

L. Garattoni
e-mail: lgaratto@ulb.ac.be

M. Brambilla
e-mail: mbrambil@ulb.ac.be

G. Francesca
e-mail: gianpiero.francesca@ulb.ac.be

G. Pini
e-mail: gpini @ulb.ac.be

M. Dorigo
e-mail: mdorigo@ulb.ac.be

M. Birattari
e-mail: mbiro@ulb.ac.be

@ Springer

2 Swarm Intell (2015) 9:1-22

The TAM enables research on cooperative behaviors and complex tasks with simple, cost-
effective robots such as the e-puck—research that would be difficult and costly to conduct
using specialized robots or ad hoc task abstraction. We demonstrate how to abstract a complex
task with multiple TAMs in an example scenario involving a swarm of e-puck robots.

Keywords Swarm robotics - Task abstraction - Swarm intelligence - Robotics
1 Introduction

Research in swarm robotics focuses on how robots interact and cooperate to perform
tasks (Beni 2005; Dorigo et al. 2014), rather than on the details of task execution. For exam-
ple, consider a hypothetical swarm-operated assembly line where one group of robots drills
holes through several parts and another group subsequently bolts them together; or imagine
a swarm of nano-bots that extirpate cancer cells: one group of robots identifies and marks
tumors; another group subsequently destroys them. While task execution is completely dif-
ferent in the two examples, the logical relationship between the tasks is the same: two tasks
have to be executed one after the other. If the focus of the research is to develop coordina-
tion mechanisms that allow a swarm to tackle tasks with this kind of logical relationship, it
might be desirable to isolate the logical relationship from the details of task execution and
focus on the logical relationship, rather than spending resources on inessential aspects of the
implementation. We call task abstraction the process by which one focuses on the logical
relationship between tasks and omits the details of their execution.

Task abstraction is not a novel concept in swarm robotics research; in fact, it has been used
implicitly in numerous studies—for a comprehensive review of the swarm robotics literature,
see Brambilla et al. (2013). However, up to now, task abstraction was either (i) confined to
simulation or (ii) conducted using some sort of ad hoc solution. Simulation has the advantage
of being inexpensive, but approaches developed solely in simulation may suffer from the so
called “reality gap” (Jakobi et al. 1995; Francesca et al. 2014b). This is particularly relevant
in complex systems, where small but unavoidable differences between simulation and reality
could lead to widely diverging behaviors.

Ad hoc solutions are task abstractions that are created for use in the context of a specific
experiment. Typically, ad hoc solutions are not generalizable as they are tightly connected
to the nature of the experiment. As a result, they cannot be easily and directly exploited
in other experiments. Examples of ad hoc solutions to task abstractions are: using travel
between two locations to abstract the act of physically transporting objects (e.g. Kernbach
etal. 2012; Acerbi et al. 2007; Francesca et al. 2014a, b); using tailor-made inanimate physical
objects to abstract manipulation tasks (e.g., Ijspeert et al. 2001); and using special electronic
devices to abstract tasks with some dynamic property (e.g. Mataric¢ et al. 2003). Due to their
impromptu nature, ad hoc solutions are typically only used to abstract simple tasks that can
be tackled by a single robot without any relations to other robots or tasks. Indeed, tasks that
require multiple robots are much harder to abstract due to the interrelationships between the
constituent single-robot subtasks and the actions of the robots. Additionally, experiments
that use ad hoc solutions are costly and difficult to replicate by other researchers—a fact that
effectively limits the complexity of the tasks studied in the literature.

In this paper, we propose a new approach to abstracting complex multi-robot tasks in
swarm robotics research. This approach is based on a physical device that serves as an
abstraction of single-robot tasks to be performed by an e-puck robot. We call this device the
TAM, an acronym for task abstraction module (see Fig. 1). In abstract terms, we say that a
robot performs a single-robot task if it is busy for a given amount of time at a specific location

@ Springer

Swarm Intell (2015) 9:1-22 3

Fig. 1 The TAM and the e-puck robot. The TAM is a booth into which an e-puck can enter. Once an e-puck
has entered fully into the TAM, it is considered to be working on the task abstracted by the TAM. The behavior
of multiple TAMs can be coordinated to implement interrelationships between the tasks they abstract

and at a specific moment in time. A TAM implements this abstraction of single-robot tasks
for real-robot experiments. The TAM operates at an intermediate level of abstraction between
simulation experiments and robot experiments. As such, the TAM can be considered a task
emulator similar to hardware emulators used in integrated circuit design.

Complex multi-robot tasks can be abstracted by a group of TAMs as follows. First, a
complex task is modeled as the set of its constituent single-robot subtasks and their interrela-
tionships. Second, each single-robot subtask is abstracted by a single TAM and the behavior
of the TAMs is coordinated such that it reflects the interrelationships identified by the model.
We present a collection of tools for modeling complex tasks and a framework for controlling
a group of TAMs such that the behavior of the group implements the model of the complex
task. The combination of the TAM, the modeling tools, and the control framework forms a
new approach for conducting research in swarm robotics, which enables research on coop-
erative behaviors and complex tasks with simple, cost-effective robots such as the e-puck.’
The research enabled by the TAM would be difficult and costly to conduct using specialized
robots or ad hoc task abstraction.

This paper is organized as follows. In Sect. 2, we describe how to abstract a single-robot
task using the TAM. In Sect. 3, we describe how to abstract a complex multi-robot task using
a group of TAMs. In Sect. 4, we demonstrate the use of the TAM in a real-robot scenario. In
Sect. 5, we review the literature according to the task studied. In Sect. 6, we summarize the
contributions of this work and present some directions for future research.

2 Using a TAM to abstract a stationary atomic task

In this paper, we call a task that can be performed by a single robot in a defined time window
an atomic task. We call a task that has to be performed at a specific location a stationary
task. Finally, we call a task that is both atomic and stationary a stationary atomic task. In
other words, we say that a robot performs a stationary atomic task if it is busy for a given

! The e-puck is a small, round mobile robot designed for research purposes by Mondada et al. (2009).

@ Springer

4 Swarm Intell (2015) 9:1-22

v
i N\ mirror that provides

360° view

omni-directional

i camera extension

- i embedded Linux

% , i computer

IR transceivers SOPERORM |
forward-facing k range and beqring
camera ‘E‘) sensor extension
8

Fig. 2 Two configurations of the e-puck robot. The robot on the left is an e-puck without any extension. The
sensors relevant to the TAM are the forward-facing camera for the detection of the TAM and the IR transceiver
for communication with the TAM. The robot on the right is an e-puck with several extensions: the range and
bearing sensor (Gutiérrez et al. 2008), the embedded computer running Linux (http://www.gctronic.com/) and
the omni-directional camera. The TAM is compatible with all these extensions; the omni-directional camera
is used to detect the TAM instead of the forward-facing camera, if present. We use robots configured as shown
on the right in the demonstration presented in Sect. 4

amount of time at a specific location and at a specific moment in time. Examples of stationary
atomic tasks are “push a button”, “hold a door open for a given amount of time”, and “guard
a specific location”.

2.1 TAM concept and design goals

We conceived the TAM as a physical device that abstracts stationary atomic tasks for labora-
tory experiments involving the e-puck robot. The e-puck is a mobile robot designed for educa-
tional and research purposes.2 Itis small, compact, extensible, and relatively cheap (Mondada
et al. 2009). The e-puck is well suited for swarm robotics research as attested by the large
number of studies that have been conducted using it (for example, Sperati et al. 2008; Campo
et al. 2011; Francesca et al. 2014b; Gauci et al. 2014). Figure 2 illustrates the e-puck and
describes the sensors relevant to the TAM.

Physically, the TAM is a booth into which an e-puck can enter. The TAM is equipped
with RGB LEDs, light barriers, and an IR transceiver for communication. The TAM can use
its RGB LEDs to announce the availability of work, that is, the presence of the stationary
atomic task it abstracts. Different tasks can be signaled by using different LED colors.

The light barriers allow the TAM to detect when a robot enters into it. The IR transceiver
can be used to communicate with a robot inside the TAM. See Fig. 3a for a conceptual
drawing of the TAM.

An e-puck can perceive the RGB LEDs of the TAM using its color camera. If an e-puck
perceives a TAM in its proximity, it can decide to work on the stationary atomic task abstracted
by that TAM by entering into it. Upon detection of the robot, the TAM reacts according to a
user-defined logic; for example, by changing the color of its LEDs, communicating with the
robot, or sending information to other TAMs.

2 http://www.e-puck.org/.

@ Springer

http://www.gctronic.com/
http://www.e-puck.org/

Swarm Intell (2015) 9:1-22 5

antenna RGB LEDs
IEEE 802.15.4 mesh ((®)
ﬁ networking module
N IR transceiver
/ |EEE 802.15.4 mesh e Atmel ATmega-
\ networking module 1284p 8-bit uC

— 7 IR light barriers
Q RGB LEDs on/off

7

E-puck entering
into the TAM battery

IR light IR
barriers transceiver

(a) (b)

Fig. 3 a Schematic drawing of the TAM. b Block diagram showing the functional components of the TAM

Our goal is to design the TAM so that it is remotely controllable by a central computer, it
can report experimental data to the computer, it operates without being physically tethered
to the computer, and it is considerably cheaper than an e-puck robot.

2.2 Implementation of the TAM

The TAM is based on Arduino,? an open-source embedded electronics platform that uses an
Atmel microcontroller of the AVR family as a central processor. Arduino is widely avail-
able, supported by a large community, and easier to use than other embedded electronics
platforms (Banzi 2008). Figure 3b shows a block diagram of the functional components of
the TAM.

The TAM adopts an 8-bit RISC processor (ATmega-1284p, 16 MHz), which runs the
firmware that locally controls the behavior of the TAM. The RGB LEDs support 24-bit
colors and are diffused by a sheet of semi-transparent plastic to facilitate detection by the
e-puck. An e-puck can perceive the LEDs of the TAM only from an acute angle: experiments
have shown that e-pucks can detect the TAM when positioned in a cone-shaped area that
extends up to a distance of 90cm in front of the TAM’s opening (see Fig. 4).

As mentioned above, the TAM announces different task types using different LED colors.
Hence, the number of different tasks that the TAM can announce depends on the capability
of the robots to differentiate between LED colors. In case of an e-puck equipped with the
omni-directional camera extension, we were able to differentiate between up to six tasks.

Communication between the TAM and an e-puck is implemented using the IR transceiver
and the e-puck library IRcom.* This functionality can be used to further differentiate tasks
once the robot is inside the TAM.

Autonomy is facilitated by a rechargeable lithium-ion battery with S Wh capacity. A single
battery lasts over 10h in a typical experiment (we assume the demonstration presented in
Sect. 4 to be a typical experiment).

The TAM is equipped with a IEEE 802.15.4 wireless mesh network module. The TAM can
be configured to work on 4 different wireless channels, which allows up to four experiments

3 http://www.arduino.cc/.
4 http://gna.org/projects/e-puck/.

@ Springer

http://www.arduino.cc/
http://gna.org/projects/e-puck/

6 Swarm Intell (2015) 9:1-22

Fig. 4 Area in which an e-puck
is able to perceive the TAM when
using the omni-directional
camera extension. To obtain this
image, an e-puck was placed with
random orientations on a 10cm
by 10cm grid. The e-puck
signaled that it can perceive the
TAM at a given location by
setting its LEDs to red. The
asymmetry in the perception area
results most likely from
imperfections in the mirror of the
omni-directional camera (Color
figure online)

to be run in parallel. The TAMs involved in each experiment would operate on the same
channel and would not interfere with the TAMs of the other experiments.

The TAM has a cubical shape with a length of 12cm in every dimension. We designed
the body of the TAM so that an e-puck can enter into the TAM without accidentally moving
it. This is achieved by two measures: first, we chose a material for the body that is relatively
heavy (POM or polyoxymethylene plastic), and second, we equipped the TAM with six
rubber feet that increase friction between the TAM and the floor. The TAM can be used with
the standard e-puck (without extensions) as well as with an e-puck using the Linux extension
and the omni-directional camera.

The TAM is fully supported by the ARGoS simulation framework (Pinciroli et al. 2012),
which simulates the whole set of sensors and actuators available on the TAM and the e-
puck. For both devices, the ARGoS framework enables the usage of software developed in
simulation on the real device without requiring any changes.

The TAM is open source under the Creative Commons Attribution-Share-Alike 3.0
Unported License. The TAM possesses an extension connector that allows researchers to
extend its capabilities. For further details regarding this connector, the implementation of the
TAM, including all data required for production (circuit schematics, layouts of the circuit
boards, CAD-models of the body, and the firmware) as well as the control framework required
for controlling a large number of TAMs (cf. Sect. 3), see the supplementary online material
of this paper (Brutschy et al. 2013) and the accompanying technical report (Brutschy 2014).

2.3 Control framework

We propose a centralized framework for controlling groups of TAMs. In an experiment, the
control framework governs the state of each TAM and changes it according to interrela-
tionships between the stationary atomic tasks that the TAMs abstract. Note that this control
framework does not control the robots of the swarm, which remains a fully distributed system.

The control framework consists of two components: the coordinator and the firmware run-
ning on each TAM—see Fig. 5 for a graphical representation. The coordinator controls each
individual TAM by issuing commands to and receiving event notifications from the TAM’s

@ Springer

Swarm Intell (2015) 9:1-22 7

[CD)]
)

Researcher's workstation
(coordinator)

TAM
(firmware)

Fig. 5 The control framework and its components. The central coordinator remotely controls the TAMs in
an experiment by issuing commands to and receiving event notifications from the firmware running on each
TAM. Commands and event notifications are relayed by the wireless mesh network modules of the TAMs

firmware. The firmware reports all events and changes in sensory data to the coordinator,
and executes all commands that it receives in return. Commands and event notifications are
relayed using the wireless mesh network modules of the TAMs.

The control framework that we propose has several advantages. First, it makes setting up
and conducting experiments with TAMs relatively effortless, as changing the behavior of all
TAM:s requires only to modify the coordinator. Second, the central design allows for accurate
statistics-keeping during experiments: all events can be recorded using a central time, which
is required for the consistency of the experimental records. This, in turn, allows researchers
to fuse data from multiple TAMs with external sensor data (e.g., from a tracking system).

2.4 Reliability experiments

We conduct two experiments in order to evaluate the reliability of the TAM device, the
mesh network, and the control framework. Both experiments have been recorded using a
video camera. Additionally, we recorded all the available data from the TAMs using the
coordinator. Videos and data are available in the supplementary online material (Brutschy
et al. 2013).

The goal of the first experiment is to measure the reliability and battery life of the TAM.
In the experiment, a single e-puck robot has to continuously perform two stationary atomic
tasks abstracted using two TAMSs. The TAMs are positioned in the arena such that they are
facing each other with a distance of 50cm. The robot has to alternate between tasks; each
task is abstracted using a single TAM. The experiment is terminated once the battery of the
robot is depleted. We conducted a single trial that terminated after 40 min. During this time,
the robot executed a total of 96 single-robot tasks. No failures occurred during the runtime
of the experiment.

The goal of the second experiment is to evaluate the mesh network and the control frame-
work in terms of scalability. In the experiment, all 50 TAMs available to us are used to abstract
50 atomic tasks. The TAMs are positioned in the arena following a decagon shape with 5
TAMs on each side and a diameter of 184 cm. The tasks have to be performed by two e-puck
robots. The experiment terminates once each of 50 atomic tasks has been performed exactly
once. We conducted a single trial that terminated after 17 min. Again, no failures occurred
during the runtime of the experiment.

In addition to these experiments, we can consider the data recorded during the demon-
strations presented in Sect. 4. The data shows that during these demonstrations, the robots

@ Springer

8 Swarm Intell (2015) 9:1-22

performed 35 complex tasks successfully. Two tasks failed because robots abandoned a task
due to sensor noise or other technical problems. No failures occurred because of the TAMs
or the coordinator.

3 Using a group of TAMs to abstract a complex task

In this paper, we call a complex task a task that can be decomposed into a collection of
atomic tasks, referred to as subtasks. In particular, we consider complex tasks that can be
decomposed into a collection of stationary atomic subtasks, each of which can be abstracted
by a TAM as presented in Sect. 2. Atomic subtasks might require to be performed in a
given order or concurrently. We call the logical and hierarchical structure of the subtasks the
interrelationship between subtasks. Examples of complex tasks are “harvest an object and
store it at a central location”, “open a faucet while holding a bucket under it”, and “push two
buttons at the same time at different locations”. Note that complex tasks are not necessarily
multi-robot tasks. For example, a complex task might require a single robot to execute several
atomic subtasks, one after the other.

Stationary atomic subtasks might be contiguous in space or might take place at different
locations. In the latter case, robots might need to travel from one location to the other in order
to carry out the complex task. This implies that a complex task that is composed of stationary
atomic subtasks could be non-stationary.

In order to use a group of TAMs to abstract a complex task, we first need to model
the complex task as a collection of stationary atomic tasks, which are then individually
abstracted by a group of TAMs. We propose a two-level approach to modeling complex
tasks. The goal of the high-level model is to describe the hierarchical structure of a complex
task without having to consider all the details of the interrelationships between its subtasks.
The model is a convenient high-level description of complex tasks and serves as a basis for
classifying and comparing them. The goal of the low-level model is to define the details of the
interrelationships between the subtasks of a complex task. The model serves as a blueprint
for the software that implements these interrelationships between TAMs.

We use well-known visual modeling languages for both levels, more specifically, we use
UML 2.x activity diagrams for the high-level model (Rumbaugh et al. 2004) and Petri nets
for the low-level model (Petri and Reisig 2008). UML 2.x activity diagrams are appropriate
for the high-level model as they are intuitive and convenient to use (Rumbaugh et al. 2004).
Petri nets are appropriate for the low-level model because they have a well-defined execution
semantics that allows one to simulate them.’

3.1 High-level model

In order to model the hierarchical structure of a complex task, we decompose the task into
its constituent subtasks. The complexity of the original task resides in the interrelationships
between its subtasks. Decomposition is recursive, that is, subtasks can potentially be decom-
posed further; a subtask of a task can therefore consist of subtasks, as well. Decomposition
stops once all decomposable subtasks have been decomposed.

We call the hierarchical structure formed by the subtasks of the complex task the trask
relationship graph. A task relationship graph is a directed acyclic graph: there is a direction

5 1t should be noted that, although the semantics of activity diagrams is loosely based on Petri nets, activity
diagrams are unsuitable for simulation because “the rules for activity execution are not clearly explained and
defined in the UML specification” (Spiteri Staines 2010).

@ Springer

Swarm Intell (2015) 9:1-22 9

Fig. 6 High-level models of the (a)

basic task types, expressed using
UML 2.x activity diagrams. a An Tatomic ®
atomic task; b A complex task start end

whose subtasks have a sequential

interrelationship; ¢ A complex T
task whose subtasks have a (b) sequential
concurrent interrelationship
T >—>< T
start end
(c) / 7:'()7’,(;'(1.7‘7'67',t \

start

in which the graph has to be traversed in order to execute the original task. Furthermore, each
of the nodes of this graph may be a task relationship graph in itself, that is, the graph may be
nested.

As defined in Sect. 2, an atomic task is a task that can be performed by a single robot. An
atomic task cannot be decomposed, and can be directly abstracted with a TAM. A complex
task, on the other hand, can be decomposed into several atomic subtasks, each of which
can be abstracted with a TAM. The group of TAMs that abstracts the different subtasks
forms the abstraction of the complex task. We define a task instance as a specific realiza-
tion of a given task. We describe the task relationship graph visually via UML 2.x activity
diagrams (Rumbaugh et al. 2004): we use the UML 2.x activity diagram primitives called
actions to describe atomic tasks (see Fig. 6a) and activities to describe complex tasks (see
Fig. 6a, b). We distinguish complex tasks on the basis of their interrelationships:

— A sequential interrelationship requires that the subtasks are executed in a given order
(see Fig. 6b). An example is a task in which one robot starts to pull a stick from the
ground, and that pulling motion must be continued by a second robot (see, e.g., Ijspeert
et al. 2001).

— A concurrent interrelationship requires that the subtasks are executed at the same time
(see Fig. 6¢). An example is an area coverage task in which several robots must occupy
pre-defined spatially distributed positions in the environment (see, e.g., Berman et al.
2009).

Recursive task decomposition used in conjunction with the described types of task inter-
relationships yields a powerful yet simple approach to model various complex tasks.

3.2 Low-level model

The high-level model is convenient to use, but omits some of the details of the interrelation-
ships between subtasks. Examples of these details are “two sequential tasks must be executed

CEINT3

by the same robot”, “two concurrent tasks have to start or end at the same moment in time”,

@ Springer

10 Swarm Intell (2015) 9:1-22

7‘ ..

sequential
ettt it " ittt
robot . t seconds ! 1 robot . t seconds H
: arrives working passed : 1 arrives working passed :
| :
1 \ 1
. Y ! ! /R '
| U I | u [
1 \ 1
1 \ : 1
T \ |-
: 1 f :
T . \ . wait I
e available 73 leave X : available 7-2 leave '
! 1 work \ h
: I available : :
| \ :
! () 1 | /;\ h
: U ! 1 u : :
1 .
1 becomes wait robot | : becomes wait robot [
! available available leaves 1 | available available leaves v
1 |-

Fig.7 Low-level model of a complex task Tsequential Whose subtasks have a sequential interrelationship. The
model is expressed using a limited Petri net; all places have a capacity of 1 and all transitions have a weight
of 1. Two subnets model the state of the atomic subtasks 71 and tp, demarcated by dashed lines. The place
work available represents the sequential interrelationship that links the two subtasks, depicted between the
two atomic subtasks

and “two sequential tasks feature a blocking work transfer” (i.e., the first task cannot complete
unless the second has started, see Pini et al. 2011; Brutschy et al. 2014).

In order to properly model these details, we propose to use limited capacity Petri nets (Petri
and Reisig 2008). Petri nets offer, just as UML 2.x activity diagrams, a graphical notation
for stepwise processes that include sequential and concurrent execution. Contrary to activity
diagrams, the flow of execution in a Petri net can be simulated, which allows the researcher
to test the model before using it in a physical experiment.

We propose to create the Petri net model following a “bottom-up” approach: one starts
from the atomic tasks in the high-level model, and iteratively adds the interrelationships
that form the encompassing complex tasks until the whole task relationship graph has been
modeled.

‘We model an atomic task as a restricted Petri net called state machine. In a state machine,
every transition has exactly one pre- and one post-condition, and all markings consist of
a single token. We model each atomic task using the same Petri net, which consists of a
sequence of states. Transitions between these states are triggered by external events.

We model a complex task on the basis of the models of its atomic subtasks, which form
subnets in the Petri net of the complex task. Interrelationships between these atomic subtasks
are modeled by adding conditions between state transitions of the atomic tasks. Adding
conditions to the state transitions implies that more than one token can be in a given marking.
This effectively turns the state machine into a full Petri net whose state is distributed; as a
result, the Petri net can model concurrency.

Figure 7 shows a Petri net model of a complex task Tsequential that consists of two atomic
subtasks with a sequential interrelationship (the matching high-level model is depicted in
Fig. 6b). The two atomic subtasks 71 and 1, are subnets of the overall net (designated by
dashed lines in Fig. 7). The sequential interrelationship is such that subtask 7| needs to be
completed before 7o becomes available. We model this interrelationship by adding a place
work available to the model, which receives a token each time t; has been completed. We
make this place a condition for 7; to transition from wait available to available. As a result,
7> cannot become available before 7| has been completed at least once.

In the example, all places have a capacity of 1 and all transitions have a weight of 1. The
capacity of the condition work available models, for example, the capacity of a cache site

@ Springer

Swarm Intell (2015) 9:1-22 11

that stores material transferred from 7 to 7, (see Pini et al. 2011, 2013 for an example of
a task with such a cache site). Accordingly, this capacity could be higher than 1 in order to
model a bigger cache site. More complex interrelationships can be modeled by adding more
conditions, for example, a blocking interrelationship between t; and 17 (see Sect. 4).

3.3 Using the model in experiments

In an experiment, a complex task is abstracted using a group of TAMs. These TAMs are
controlled using the control framework described in Sect. 2.3. More specifically, the low-
level model of a complex task is implemented on the coordinator that centrally controls all
TAM:s in the experiment. State changes of this model are triggered by events that happen at
the TAMs, and may result in commands that change the behavior of one or multiple TAMs.
For example, if a TAM reports to the coordinator that its task has been completed, the model
switches state, which in turn causes the TAM in question to switch off and other TAMs to
become available. As such, the low-level model serves as a “blueprint” for the software that
controls the behavior of the individual TAMs.

Note that the high-level model is not directly required for experimentation other than
being a convenient high-level description of a given complex task that serves as a basis for
classifying and comparing it.

4 Demonstration

In this section, we demonstrate the use of the TAM. We show how a complex task can be
abstracted using several TAMs and how the researcher can leverage the control framework
to conduct an experiment.

The task that the robots have to tackle is a complex task that consists of three atomic
subtasks. We perform two demonstrations: in the first demonstration, 6 e-puck robots have to
tackle a single instance of the complex task; in the second demonstration, 20 e-puck robots
have to tackle 6 instances of the complex task.

We assume that the task to be performed by the robots is a disaster response task as it
might occur after a nuclear accident. The specific disaster response task Tesponse 1S a complex
task that consists of two subtasks with a sequential interrelationship: (1) Topen, the task of
opening the reactor airlock and (2) Trepair, the task of repairing something inside the reactor.
The task topen requires two robots to act concurrently on the airlock. To this end, each robot
executes one of two atomic subtasks, Tief; Or Trignt. After the airlock has been opened, it has to
be kept open by the robots until a third robot has entered the reactor chamber. Once the third
robot is in the reactor chamber, the robots of Topen can leave. The third robot can then work
on the task Tyepair- The disaster response task Tresponse is completed once the reactor has been
repaired by completing Trepair. Figure 8 gives a visual representation of its task relationship
graph described using UML 2.x activity diagrams.

In order to abstract Tresponse using a group of TAMs, we have to transform its high-
level model into a low-level model based on a Petri net. This low-level model can then be
implemented on the coordinator. Figure 9 shows the reduced version of this Petri net.® We
model each atomic task using a subnet of the same structure: 5 places and 5 transitions model

6 By convention, the places of a Petri net can be omitted in order to visualize better the structure of the
net (Petri and Reisig 2008). The full version of the Petri net and instructions for simulating it can be found in
the supplementary online material (Brutschy et al. 2013).

@ Springer

12 Swarm Intell (2015) 9:1-22

4 N\
’Uesponse

4 A
’E)pen

SGEE
end

start

ﬂight

AN J

Fig. 8 High-level model of the complex task Tresponse- Each of the atomic tasks has to be tackled by a single
robot

’_7-T€é1_)b’_nse - - - ‘I
T i
il il i

: : work !
: starts
Tieft

i r-T-TTST---oTTToT TS 1 :

P : work |_| work |!

: becomes : starts ends |
H . [€- 2 T I
H available \ L : !
HE I [e e ! . ! |
: ! robot X ! |
: 21| arrives 7:’617‘“7’ H 1
||\~~~ -----------------" ! N H 1

P work : v i

[starts [V robot '

: : 7 leaves : |
: A o

7:'ight
2
. ") i
becomes —>| transitions of atomic tasks ;

: : available [!
i —>E| initial transitions
P

Fig.9 Low-level Petri net model of the example task Tresponse (reduced version without places) (see Footnote
6). Please note that, as the initial marking cannot be visualized in the reduced version, we denote transitions
that can fire at the start of the demonstration using a double border. The weight of all edges is 1 unless indicated
otherwise. Edges that are internal to the functioning of an individual TAM are represented using dashed lines.
Edges labeled a and ¢’ model the concurrent interrelationship: a robot that is ready to work on 7jef can start
working once a robot arrives to work on Tjgn¢ (and vice versa). Edges labeled using Greek letters model the
sequential interrelationship: once tief; and Tyjghy have been completed, Trepair becomes available (edge); a
robot that arrives to Work on Trepair allows the robots in Trjgnt and 7jef; to leave (edge B); once these robots
have left, work can start on repair (€dge y); once work on Trepqir finishes and the robot leaves, Tright and Tjeft
can become available anew (edge §). Dotted/dashed boxes indicate task boundaries

the internal state of an atomic task. The transitions of the three atomic tasks Tieft, Tright, and
Trepair are described in Fig. 9 (labeled using Arabic numerals).

The two atomic tasks Tieft and Tygne are subtasks of the complex task Topen and have a
concurrent interrelationship. This interrelationship is modeled such that work on the tasks

@ Springer

Swarm Intell (2015) 9:1-22 13

: T 7:epa.i'r
. ldisaster

(a) (b)

Fig. 10 a We use three TAMs to abstract Tresponse, With each TAM abstracting one of the three atomic
subtasks Tleft, Tright> and Trepair (see also Fig. 8). Dotted lines indicate the complex tasks Topen and Tresponse -
The white numbers in the black circles designate the order of execution. b Close-up of the TAMs taken during
one of the demonstrations. A robot already entered into the TAM that abstracts task 7jef;. The TAM signals the
robot to wait by changing the color of its LEDs to pink. The TAM abstracting Tyjgh signals the approaching
robot that its associated task is available by its green LEDs. The third TAM, abstracting Trepair, is still idle as
its sequential interrelationship with the complex task Topen requires that Tief; and Trighe are completed before
Trepair €an become available (Color figure online)

can only start when both robots are present, and each robot can leave only after both robots
completed their work (edges labeled using Latin letters in Fig. 9).

The complex task 7open and the atomic subtask Trepair have a sequential interrelationship.
This interrelationship is such that the robots that completed zpe, must wait for a robot to
arrive for Trepair. Furthermore, the arriving robot has to wait for the others to leave before it
can start to work on Trepair (€dges labeled using Greek letters in Fig. 9).

AS Tresponse consists of, in total, three atomic subtasks, we use three TAMs to abstract a
single instance of Tresponse, With each TAM abstracting one of the three atomic subtasks. We
use the control framework described in Sect. 2.3 to implement the low-level model. Note that
in the following we use the term “TAM t,” interchangeably with the term “task z,”. Fig. 10a
illustrates how a single instance of Tresponse 1S abstracted using three TAMs.

We use e-puck robots in the configuration shown on the right side of Fig. 2. All robots
use an instance of the same controller: by default, robots perform a random walk. If a robot
perceives a TAM using its camera, it tries to enter into it in order to start working on the
associated task. The robots follow a simple greedy strategy to select tasks, that is, every robot
tries to work on any available task it encounters. Upon completion of the task, the robot
leaves the TAM and starts again to perform a random walk.

Both demonstrations have been recorded using an overhead camera. Additionally, we
recorded all the available data from the TAMs using the coordinator. Videos and data are
available in the supplementary online material (Brutschy et al. 2013).

4.1 Single-instance demonstration

The first demonstration illustrates how the design of the control framework can be leveraged
to collect detailed data from each TAM.

@ Springer

14 Swarm Intell (2015) 9:1-22

idle TAM
(no task)

busy TAM/ available TAM/
waiting robot approaching
robot

Fig. 11 Snapshot of the single-instance demonstration, taken with an overhead camera in the same situation
as shown in Fig. 10a. The arena is a 4m? square. A single instance of the task Tresponse, abstracted using three
TAM:s, is placed in the center of the arena. We use 6 e-puck robots

T T
Tegne [v |
Trepair | | N

0 10 20 30 40 50 60 70 80 90
Time (seconds)
) . Waiting for : P4 Waiting for
D Unavailable D Available related task . Working Vi robot to leave

Fig. 12 Evolution of the task tresponse over time in terms of state changes of its subtasks. The times shown
are the result of an exemplary execution of a single instance of Tresponse

We use a 4m? square arena. The three TAMs are configured as shown in Fig. 10b and
placed in the center of the arena. Figure 11 shows a snapshot that illustrates the arena and the
position of the TAMs. At the beginning of the demonstration, 6 e-puck robots are randomly
positioned in the arena. We set the duration of 7jer; and Tyjgne to 10 s and of Tyepair to 20 s.
The demonstration terminates as soon as task Tresponse has been completed once. Figure 12
illustrates how Tresponse €vOlves over time.

The coordinator implements the model of the task, and governs the state of each TAM.
Additionally, each TAM reports all events and changes in sensory data to the coordinator,
which facilitates data collection during an experiment. The ability to record task-related data
enables the study of algorithms that leverage this kind of data. For example, we can collect
various task-related metrics such as the time it takes until a robot arrives to work on a task,
or the time a robot working on a task has to wait for a partner—data that are not trivial to
obtain when using ad hoc solutions for task abstraction. Furthermore, the TAM (and thereby
the coordinator) can record the identity of each robot.

@ Springer

Swarm Intell (2015) 9:1-22 15

Fig. 13 Snapshot of the
multi-instance demonstration,
taken with an overhead camera.
The arena has dimensions of
2.7mx2.2m. The six task
instances have been placed at
random locations in the arena.
We use a swarm of 20 e-puck
robots. The black-and-white tags
on top of the robots are used for
tracking the robots using a
ceiling-mounted tracking
system (Stranieri et al. 2013)

The demonstration illustrates how the TAM broadens the range of tasks that can be studied
in an experiment. First, any task-related time can be closely controlled and modified during
an experiment. For example, the object transport task studied by Pini et al. (2011) can be
completed by the robots in two ways: individually by traveling through a corridor or collec-
tively by partitioning the task and exchanging objects at a cache site. By abstracting the cache
site using a set of TAMs, Pini et al. could vary the advantage of using the cache site over
using the corridor. Without the TAM, this kind of study would require modifying the length
of the corridor, which might incur unintended changes in the environmental parameters (e.g.,
the robot density would change).

Second, the capability of identifying robots enables tasks that are specific to robots. An
example is the task studied by Brutschy et al. (2012): robots specialize in one of two possible
task types. As each robot has its individual level of specialization, the duration of a task might
be different for each robot. A study of this type would not be possible without the capability
of the TAM of communicating with the robots.

4.2 Multi-instance demonstration

Extending upon the first demonstration, the second demonstration illustrates how the
researcher can use the TAM to conduct experiments involving larger swarms and several
instances of complex tasks. Again, we use the control framework to record detailed data such
as the number of successful task executions per atomic subtask. In this demonstration, we
use 18 TAMs and 20 e-puck robots.

We use a rectangular arena with dimensions of 2.7mx 2.2 m. Six instances of Tresponse are
placed at random locations in the arena. At the beginning of the demonstration, 20 e-puck
robots are randomly positioned in the arena. Again, we set the duration of Tjef and Tyjght to 10's
and of Tyepgir to 20 s. The demonstration terminates after 5 min. Figure 13 shows a snapshot
that illustrates the setup of the arena and the position of the TAMsS.

In terms of data collection, we record the same data as in the first demonstration, but for
many robots and several task instances, thereby illustrating how the researcher can record
large amounts of data over several task instances and/or experiments. The demonstration also
illustrates how the centralized recording of data allows researchers to correlate it from the
TAMs with the data of an external tracking system—if necessary, in real time.

@ Springer

16 Swarm Intell (2015) 9:1-22

In terms of experimental setup, the demonstration illustrates how to deploy several
instances of the same complex task, and how the central coordinator can control a large
number of TAMs in parallel, using the scalable mesh network to communicate with the TAMs.

5 Tasks studied in the literature

In this section, we review the literature with respect to the tasks studied. We describe the
task studied by each work using the high-level model presented in Sect. 3, and group works
according to similarities in their high-level model.

This review serves two purposes. First, it allows us to substantiate the claim we made in
Sect. 1: the use of ad hoc solutions for task abstraction limits the complexity of the tasks that
can be studied. As we will show, the hierarchical structure of the majority of tasks studied
in the swarm robotics literature is relatively simple: tasks are either atomic or consist of a
single complex task. However, real-world tasks commonly exhibit a higher complexity than
this. Second, by modeling each task using the high-level model, we demonstrate how to use
this model to abstract various complex tasks. This, in turn, outlines how these tasks could
be abstracted using the TAM. Note that we refrain from detailing how to use the TAM for
each work; see Sect. 4 for an example of how to pass from the high-level model of a task to
abstracting it using the TAM.

Please note that we focus on works in which real robots perform atomic or complex tasks
that can be represented using the TAM. This excludes for example many spatially organizing
behaviors and navigation behaviors.

5.1 Atomic tasks

There are several works that study tasks that are atomic. Atomic tasks cannot be decomposed
into subtasks and can be readily abstracted using a single TAM. See Fig. 6a for the high-level
model of an atomic task.

Matari¢ et al. (2003) studied emergency handling by a group of robots. Emergencies
are atomic tasks that appear in the environment and have to be attended by a single robot.
Brutschy et al. (2012) studied atomic tasks with the additional requirement that the robots
must individually specialize on one type of task, while adhering to an optimal allocation at
the level of the swarm.

5.2 Complex tasks consisting only of atomic subtasks

Complex tasks that consist exclusively of atomic subtasks are commonly studied in the liter-
ature. As mentioned in Sect. 3, we distinguish these tasks according to the interrelationship
between their subtasks. Complex tasks whose atomic subtasks have the same type of inter-
relationship differ only in the number of these subtasks. Note that, while the exemplary
high-level models referenced in the following have two subtasks, they can be easily extended
to a higher number of subtasks.

A complex task whose subtasks have a sequential interrelationship requires that subtasks
are executed in a given order—see Fig. 6b for the high-level model of such a task. A commonly
studied problem that involves complex tasks of this type is foraging for food or energy. In this
problem, robots must balance energy consumed by the process of foraging with the energy
provided by the collected food items (Krieger and Billeter 2000; Li et al. 2004; Labella et al.
2006). The subtasks of the foraging task exhibit a sequential interrelationship which lies in

@ Springer

Swarm Intell (2015) 9:1-22 17

’Eucket
7;7(1111 ’7;7(””151\1
7_retrieve %eposit T 7_retrieve 7-deposit
start end

Fig. 14 High-level UML model of bucket-brigading tasks: the overall task tpycker Of transporting an object
is partitioned into a sequence of N complex tasks. Each complex task consists of two atomic subtasks for
retrieving and depositing the object

the fact that robots first have to collect an item in the environment and then transport it to a
predefined drop-off location. The same type of complex task has been studied in the form of
a “waste cleanup” scenario (see, e.g., Parker 1998). Please note that in this simple version
of the foraging problem, robots do not need to collaborate in order to complete a single task
instance. Ijspeert et al. (2001) studied a task with a sequential interrelationship. The goal of
the robots is to pull sticks from the ground. The length of the sticks is such that a robot cannot
pull it from the ground in a single motion; instead, a second robot has to continue the pulling
motion in order to complete the task.

A complex task whose subtasks have a concurrent interrelationship requires that subtasks
are executed at the same time—see Fig. 6c for the high-level model of such a task. Commonly
studied complex tasks with this type of interrelationship among their atomic subtasks are
collective transport tasks (Donald et al. 1997; Kube and Bonabeau 2000; Grof3 and Dorigo
2009). Typically, all robots execute the same action, that is, the subtasks have a concurrent
interrelationship.

5.3 Nested complex tasks

Nested complex tasks are tasks that have some subtasks that are complex tasks as well. An
example of such a task is the disaster response task presented in Sect. 4. Note that, as tasks
can be arbitrarily nested, the high-level model of such a task can have various shapes.

The majority of the works that study nested complex tasks consider the same type of
task: “bucket brigading”. Bucket brigading is a special case of a foraging task: robots divide
a transportation task over a longer distance into multiple smaller subtasks. Each subtask
consists of transporting an object for a limited distance and subsequently transferring it to a
robot working on the next subtask. Hence, the overall task is a sequence of foraging tasks, and
each foraging task consists of a sequence of two atomic tasks. Figure 14 shows the high-level
model of a bucket-brigading task. Many works study complex tasks in the form of bucket
brigading. Most works use fixed partition sizes (Fontan and Matari¢ 1996; Goldberg and
Matari¢ 2002). Brutschy et al. (2014) studied self-organized allocation to such tasks with
two partitions of fixed size. The work published by Pini et al. (2014) is, to the best of our
knowledge, the only one that studied tasks with sequential interrelationships and dynamic
partition sizes.

Complex tasks that consist of multiple levels of nested complex tasks are rarely studied in
the literature, most likely due to the complexity and cost of the experiments needed to study
them. In the following, we outline two works that study such a task; we refer the reader to
the respective publication for details on each subtask. In the context of Swarm-bots project,’
Nouyan et al. (2009) studied task allocation in a collective transportation task—see Fig. 15a

7 http://www.swarm-bots.org/.

@ Springer

http://www.swarm-bots.org/

18

Swarm Intell (2015) 9:1-22

(a)

Le gen d 7TS’wa7'm-bots

s

warm-bots

(b)

start z end

T. Exploration

7. Build chain

T, Use chain

T,, Maintain chain

T, Transport object
while seeing chain

T, Transport object

without seeing
chain

Le gen d 775'wa7'rmznm'd

Eye-bot exploration
Food-bot chain
Seed chain

Chain landmarks
Bring Hand-bot
Align to shelf
Climb shelf

Return Hand-bot

Pﬁ;ﬂp\]eﬁ“ﬂm\‘n\]m\]

/%warmanoid

end g

Fig. 15 High-level UML model of two tasks with multiple levels of nested complex tasks: a Task stud-
ied by Nouyan et al. (2009) in the context of the Swarm-bots project; b Task studied by the Swarmanoid
project (Dorigo et al. 2013). Atomic tasks with dashed lines represent tasks where the number of tasks on the
same level is more than three or can vary

@ Springer

Swarm Intell (2015) 9:1-22 19

for the high-level model of this task. The complexity of the task lies in the fact that robots
first establish a chain of landmarks between source and nest, which is subsequently used by
other robots to navigate while collectively transporting an object from the source to the nest.

One of the most complex tasks found in the swarm robotics literature has been presented
by the Swarmanoid project:® a swarm collectively explores an environment, identifies an
object to retrieve, and uses self-assembly and collective transport to retrieve it (Dorigo et al.
2013)—see Fig. 15b for the high-level model of this task.”

5.4 Discussion

The review of the literature shows that the vast majority of works consider tasks without or
with a limited number of interrelated subtasks. Moreover, to the best of our knowledge, most
of the works that consider nested complex tasks tackle tasks that exhibit only one type of
interrelationships, namely sequential bucket-brigading tasks. We speculate that the restriction
to tasks with a low number of interrelated subtasks is due to the costs involved in studying
such tasks: performing real-robot experiments for these tasks requires considerable effort and
resources, as illustrated by the two studies that consider multiple levels of nested complex
tasks. As aresult, swarm robotics systems are to date incapable of tackling complex tasks that
consist of a large number of interrelated subtasks; a fact that limits the possible application
of swarm robotics to real-world problems.

From this insight, two directions for future research are discernible: one, the development
of group behaviors and collective decision processes that allow a swarm to tackle tasks of
this kind, and two, the development of robotics hardware that is sufficiently capable, cost-
effective, and robust to apply a swarm of robots to such tasks. The TAM enables researchers
to work towards the first direction.

6 Conclusions

In this paper, we proposed a new approach to abstract complex tasks in swarm robotics
research. This approach is based on a novel physical device, called the TAM. The purpose
of the TAM is to abstract stationary single-robot tasks to be performed by the e-puck robot.

Complex multi-robot tasks, on the other hand, have to be modeled as a collection of
single-robot subtasks before they can be abstracted using a group of TAMs. We presented
a collection of tools for modeling complex tasks as their constituent single-robot subtasks
and the interrelationships between them. Additionally to the modeling tools, we presented
a framework that allows researchers to control large groups of TAMs and implement the
interrelationships identified by the model. As a result, all complex tasks that can be modeled
with the proposed tools can be abstracted using groups of TAMs.

The TAM, used together with the proposed modeling tools and control framework, enables
research on cooperative behaviors for complex tasks using large swarms of robots. Further-
more, experiments can be conducted using simple, cost-effective robots such as the e-puck.
These experiments would otherwise require costly solutions such as specialized robots or ad
hoc task abstractions.

For demonstration purposes, we abstracted an example task, first by modeling it at a
high level, then at a low level, and finally by conducting two demonstrations involving e-

8 http://www.swarmanoid.org/.

9 See http://youtu.be/M2nn1X9Xlps for a movie describing the swarm and its task.

@ Springer

http://www.swarmanoid.org/
http://youtu.be/M2nn1X9Xlps

20 Swarm Intell (2015) 9:1-22

puck robots and several TAMs. The demonstrations illustrate how the TAM can be used to
abstract complex multi-robot tasks in a real-robot experiment, and how the proposed control
framework can facilitate the researcher’s job of conducting experiments.

We reviewed the swarm robotics literature with respect to the tasks studied. Our review
shows that only a few works study tasks with a large number of interrelated subtasks—a
limitation that, as we speculate, is due to the ad hoc fashion in which most works abstract
tasks. We are confident that the TAM will allow the research community to advance swarm
robotics beyond tasks of this limited complexity.

Even though we developed the TAM for the e-puck robot, the design can be easily adapted
to other robotic platforms. To this end, we released all the components of the TAM as open-
source, thereby allowing other research groups to adapt the TAM to their research.

The variety of tasks that can be studied using the TAM is documented by the various
works that rely on it for task abstraction (Pini et al. 2011, 2013; Brutschy et al. 2012;
Castillo-Cagigal et al. 2014; Brambilla et al. 2014). Immediate future work will be targeted
at replicating some of these experiments with larger swarms of e-pucks using up to 50 TAMs.

Acknowledgments The authors would like to thank Alvaro Gutiérrez and Manuel Castillo-Cagigal for their
help with designing the electronics of the TAM. The research leading to the results presented in this paper has
received funding through the ERC Advanced Grant “E-SWARM: Engineering Swarm Intelligence Systems”
(ERC Grant Agreement No. 246939). Arne Brutschy, Manuele Brambilla, Marco Dorigo, and Mauro Birattari
acknowledge support from the Belgian FR.S.—FNRS of Belgium’s Wallonia-Brussels Federation.

References

Acerbi, A., Marocco, D., & Nolfi, S. (2007). Social facilitation on the development of foraging behaviors in a
population of autonomous robots. In F. Almeida e Costa, L. Rocha, E. Costa, 1. Harvey, & A. Coutinho
(Eds.), Advances in artificial life (Vol. 4648, pp. 625-634)., Lecture notes in computer science Berlin:
Springer.

Banzi, M. (2008). Getting started with Arduino. Sebastopol, CA: O’Reilly Media.

Beni, G. (2005). From swarm intelligence to swarm robotics. In E. Sahin & W. M. Spears (Eds.), Swarm
robotics (Vol. 3342, pp. 1-9)., Lecture notes in computer science Berlin: Springer.

Berman, S., Haldsz, A., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allocation
in swarms of robots. IEEE Transactions on Robotics, 25(4), 927-937.

Brambilla, M., Brutschy, A., Dorigo, M., & Birattari, M. (2014). Property-driven design for robot swarms: A
design method based on prescriptive modeling and model checking. ACM Transactions on Autonomous
and Adaptive Systems, 9(4), 17:1-17:28.

Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm
engineering perspective. Swarm Intelligence, 7(1), 1-41.

Brutschy, A. (2014). The TAM: A device for task abstraction in swarm robotics research. Technical Report
TR/IRIDIA/2010-015.005, Belgium: IRIDIA, Université Libre de Bruxelles.

Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M., & Birattari, M. (2013). The
TAM: Abstracting complex tasks in swarm robotics research—supplementary online material. Retrieved
from http://iridia.ulb.ac.be/supp/IridiaSupp2012-002/.

Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2014). Self-organized task allocation to
sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-Agent Systems, 28(1),
101-125.

Brutschy, A., Tran, N.-L., Baiboun, N., Frison, M., Pini, G., Roli, A., et al. (2012). Costs and benefits of
behavioral specialization. Robotics and Autonomous Systems, 60(11), 1408—1420.

Campo, A., Garnier, S., Dédriche, O., Zekkri, M., & Dorigo, M. (2011). Self-organized discrimination of
resources. PLoS One, 6(5), e19888.

Castillo-Cagigal, M., Brutschy, A., Gutiérrez, A., & Birattari, M. (2014). Temporal task allocation in periodic
environments: An approach based on synchronization (Vol. 8667). InProceedings of the 9th Interna-
tional Conference on Swarm Intelligence (ANTS’14) (pp. 182—193). Lecture Notes in Computer Science
Berlin/Heidelberg, Germany: Springer.

@ Springer

http://iridia.ulb.ac.be/supp/IridiaSupp2012-002/

Swarm Intell (2015) 9:1-22 21

Donald, B. R., Jennings, J., & Rus, D. (1997). Information invariants for distributed manipulation. The Inter-
national Journal of Robotics Research, 16(5), 673-702.

Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.

Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., et al. (2013). Swarmanoid:
A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine,
20(4), 60-71.

Fontan, M. S., & Matari¢, M. J. (1996). A study of territoriality: The role of critical mass in adaptive task
division. In P. Maes, M. J. Matari¢, J.-A. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats
4: Proceedings of the Fourth International Conference of Simulation of Adaptive Behavior (pp. 553-561).
Cambridge, MA: MIT Press.

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., et al. (2014a). An
experiment in automatic design of robot swarms: AutoMoDe-Vanilla, EvoStick, and human experts
(Vol. 8667). In M. Dorigo, M. Birattari, S. Garnier, H. H. M. M. de Oca, C. Solnon, & T. Stiitzle (Eds.),
Proceedings of the 9th International Conference on Swarm Intelligence (ANTS’14) (pp. 25-37). Lecture
Notes in Computer Science, Springer: Berlin/Heidelberg, Germany.

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., & Birattari, M. (2014b). AutoMoDe: A novel approach
to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2), 89-112.

Gauci, M., Chen, J., Li, W., Dodd, T. J., & GroB, R. (2014). Self-organized aggregation without computation.
The International Journal of Robotics Research, 33(8), 1145-1161.

Goldberg, D., & Matari¢, M. J. (2002). Design and evaluation of robust behavior-based controllers. In T. Balch
& L. E. Parker (Eds.), Robot teams: from diversity to polymorphism (pp. 315-344). Natick, MA: A. K.
Peters.

GroB, R., & Dorigo, M. (2009). Towards group transport by swarms of robots. International Journal of Bio-
Inspired Computation, 1(1-2), 1-13.

Gutiérrez, A., Campo, A., Dorigo, M., Amor, D., Magdalena, L., & Monasterio-Huelin, F. (2008). An open
localisation and local communication embodied sensor. Sensors, 11(8), 7545-7563.

Ijspeert, A.J., Martinoli, A., Billard, A., & Gambardella, L. M. (2001). Collaboration through the exploitation
of local interactions in autonomous collective robotics: The stick pulling experiment. Autonomous Robots,
11(2), 149-171.

Jakobi, N., Husbands, A., & P., & A. Harvey, 1., (1995). Noise and the reality gap: The use of simulation
in evolutionary robotics (Vol. 929). In F. Mordn, A. Moreno, J. J. Merelo, & P. Chacén (Eds.), Swarm
Robotics (pp. 704-720). Advances in Artificial Life, Springer: Berlin/Heidelberg, Germany.

Kernbach, S., Nepomnyashchikh, V., Kancheva, T., & Kernbach, O. (2012). Specialization and generalization
of robotic behavior in swarm energy foraging. Mathematical and Computer Modelling of Dynamical
Systems, 18, 131-152.

Krieger, M. J. B., & Billeter, J.-B. (2000). The call of duty: Self-organized task allocation in a population of
up to twelve mobile robots. Robotics and Autonomous Systems, 30(1-2), 65-84.

Kube, C., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autonomous Systems,
30(1-2), 85-101.

Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2006). Division of labour in a group of robots inspired by
ants’ foraging behaviour. ACM Transactions on Autonomous and Adaptive Systems, 1(1), 4-25.

Li, L., Martinoli, A., & Abu-Mostafa, Y. S. (2004). Learning and measuring specialization in collaborative
swarm systems. Adaptive Behavior, 12(3-4), 199-212.

Matarié, M. J., Sukhatme, G. S., & @stergaard, E. H. (2003). Multi-robot task allocation in uncertain environ-
ments. Autonomous Robots, 14, 255-263.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The e-puck, a robot
designed for education in engineering. In P. J. S. Gongalves, et al. (Eds.), Proceedings of the 9th Con-
ference on Autonomous Robot Systems and Competitions (pp. 59-65). IPCB: Instituto Politecnico de
Castelo Branco, Portugal.

Nouyan, S., GroB, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot
colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695-711.

Parker, L. E. (1998). Alliance: An architecture for fault tolerant multi-robot cooperation. IEEE Transactions
on Robotics and Automation, 14, 220-240.

Petri, C. A., & Reisig, W. (2008). Petri net. Scholarpedia, 3(4), 6477.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A modular,
parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271-295.

Pini, G., Brutschy, A., Frison, M., Roli, A., Birattari, M., & Dorigo, M. (2011). Task partitioning in swarms
of robots: An adaptive method for strategy selection. Swarm Intelligence, 5(3—4), 283-304.

@ Springer

22 Swarm Intell (2015) 9:1-22

Pini, G., Brutschy, A., Scheidler, A., Dorigo, M., & Birattari, M. (2014). Task partitioning in a robot swarm:
Retrieving objects by transferring them directly between sequential sub-tasks. Artificial Life, 20(3),
291-317.

Pini, G., Gagliolo, M., Brutschy, A., Dorigo, M., & Birattari, M. (2013). Task partitioning in a robot swarm:
A study on the effect of communication. Swarm Intelligence, 7(2-3), 173-199.

Rumbaugh, J., Jacobson, L., & Booch, G. (2004). The unified modeling language reference manual (2nd ed.).
Upper Saddle River, NJ: Pearson Higher Education.

Sperati, V., Trianni, V., & Nolfi, S. (2008). Evolving coordinated group behaviours through maximisation of
mean mutual information. Swarm Intelligence, 2(2), 73-95.

Spiteri Staines, A. (2010). Petri nets applications. In Intuitive transformation of UML2 activities into fun-
damental modeling concept petri nets and colored petri nets (pp. 673—-694). Rijeka, Croatia: InTech
Europe.

Stranieri, A., Turgut, A., Francesca, G., Reina, A., Dorigo, M., & Birattari, M. (2013). IRIDIA’s arena tracking
system. Technical Report TR/IRIDIA/2013-013, Belgium: IRIDIA, Université Libre de Bruxelles.

@ Springer

	The TAM: abstracting complex tasks in swarm robotics research
	Abstract
	1 Introduction
	2 Using a TAM to abstract a stationary atomic task
	2.1 TAM concept and design goals
	2.2 Implementation of the TAM
	2.3 Control framework
	2.4 Reliability experiments

	3 Using a group of TAMs to abstract a complex task
	3.1 High-level model
	3.2 Low-level model
	3.3 Using the model in experiments

	4 Demonstration
	4.1 Single-instance demonstration
	4.2 Multi-instance demonstration

	5 Tasks studied in the literature
	5.1 Atomic tasks
	5.2 Complex tasks consisting only of atomic subtasks
	5.3 Nested complex tasks
	5.4 Discussion

	6 Conclusions
	Acknowledgments
	References

