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a b s t r a c t

In this work, we study behavioral specialization in a swarm of autonomous robots. In the studied swarm,
robots have to carry out tasks of different types that appear stochastically in time and space in a given
environment. We consider a setting in which a robot working repeatedly on tasks of the same type
improves its performance on them due to learning. Robots can exploit learning by adapting their task
selection behavior, that is, by selecting with higher probability tasks of the type on which they have
improved their performance. This adaptation of behavior is called behavioral specialization. We employ
a simple task allocation strategy that allows a swarm of robots to behaviorally specialize. We study the
influence of different environmental parameters on the performance of the swarm and show that the
swarm can exploit learning successfully. However, there is a trade-off between the benefits and the
costs of specialization. We study this trade-off in multiple experiments using different swarm sizes.
Our experimental results indicate that spatiality has a major influence on the costs and benefits of
specialization.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Division of labor is a concept that is common in the organization
of large groups of individuals such as humans or social insects
[1,2]. In division of labor, as defined for social insects by Beshers
and Fewell, ‘‘(a) each worker specializes in a subset of the complete
repertoire of task types performed by the colony, and (b) this subset
varies across individual workers in the colony’’ [1]. In artificial
systems, a common way to obtain division of labor is to let
individuals adapt their behavior so that they predominantly work
on a subset of the available task types—this is called behavioral
specialization [3]. Behavioral specialization is known to increase
the overall performance of an individual because of different
reasons, one of them being learning. In some types of learning, an
individual can acquire experience by repeatedly performing a task,
which may improve the efficiency of the individual for tasks of the
same type [4]. The individual can exploit this increased efficiency
by adapting its task selection behavior, that is, by selecting with
higher probability tasks of the type for which it has improved its
performance.
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In this work, which is an extension of [5], we study the costs
andbenefits of behavioral specialization in a swarmof autonomous
robots. The robots of the swarm must perform two types of tasks.
The tasks appear stochastically in time and in space and have to be
carried out by the robots at the location where they appear. The
spatial and temporal distributions of the tasks and their types are
unknown to the robots. The robots can improve their performance
on a certain type of task by repeatedlyworking on tasks of the same
type (i.e., they learn). Learning is implemented using a simplified
model that captures the relevant aspect of learning: robots get
better in task performance upon repetition. This simplified model
allows us to draw general conclusions on behavioral specialization
without implementing a specific learning technique.

The robots of the swarm should adapt their behavior to work
predominantly on a single type of task for two reasons: first, to
learn to perform it more efficiently, and second, to fully exploit the
resulting performance improvement. However, even though the
exploitation of the performance improvement achieved through
learning is clearly a benefit, specialization also entails certain
costs [4]. An example of such costs is the time a specialized
robot spends searching for a suitable task. For example, a fully
specialized robot will work predominantly on tasks of a single
type. An unspecialized robot, on the other hand, can work on the
first task it encounters. In this example, depending on the amount
of tasks of each type that are available in the environment, the
specialized robot might spend more time searching for a suitable
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task than the unspecialized robot. Consequently, specialized robots
can be less efficient than unspecialized robots when the tasks of
the type in which they are specialized appear rarely. Therefore,
specialization might be less advantageous in environments where
the amount of tasks of each type and their spatial distribution
frequently change.

In this work, robots face a task allocation problem: a robot
must decide whether to engage in a task that it encounters
in the environment. We employ two different strategies for
task allocation. Robots using the selective strategy behaviorally
specialize by selectively working on a specific type of task, thereby
exploiting the performance improvement achievable through
learning. Robots using the greedy strategy work on any task they
encounter. We study the trade-off between costs and benefits of
specialization by comparing the performance of the two strategies.

This article is organized as follows. In Section 2, we review
related work. In Section 3, we describe how we model learning in
the studied system. In Section 4, we describe the two different task
allocation strategies that we use to study the costs and benefits
of specialization. In Section 5, we describe the experimental setup
that we use in our study. In Section 6, we describe the experiments
and we report and discuss the results. In Section 7, we summarize
the contributions of this work and present some directions for
future research.

2. Related work

Specialization can be observed inmany animals [6,7]. Especially
animals that live in large groups, such as social insects, depend on
specialization to efficiently organize the individuals of the group
[1,6]. Most works that study specialization in social insects focus
almost exclusively on specialization as a means of increasing task
performance by reducing costs that are not directly related to the
task execution itself, such as traveling between tasks [4]. In most
of these works, individuals repeatedly perform a subset of tasks
without improving in the actual execution of the tasks [7].

Specialization is widely studied usingmodels that do notmodel
embodiment, that is, the interactions between the physical body of
the individuals and the environment. Such models are commonly
used when studying the behavior of insect colonies [7,4]. Diwold
et al. [8] studied the effect of the spatial organization of tasks
on specialization by using agent-based models. In their work,
they use reinforced response thresholds to attain specialization of
individuals. The authors found that the studied systems achieve
best performancewhen tasks are spatially separated. Note that the
simplified model employed by the authors neither models spatial
relationships between agents nor the cost of movement, that is,
the model does not consider either losses of performance due to
interference among multiple robots or losses due to time spent
for traveling between tasks. Recently, Richardson et al. [9] studied
a similar, threshold-based system that models spatiality using a
statistical mechanics approach. The authors report that the more
unequally labor is distributed among individuals, the higher is the
resilience of the colony to external shocks.

A way of improving task performance, other than by reducing
costs not directly related to the task execution itself, is learning.
Higher vertebrates are known to exploit this type of improvement
by behavioral specialization [10]. On the other hand, it is disputed if
improvements of this kind can be observed in social insects [11]. In
robotics, improving performance by learning is certainly possible,
albeit complex to implement. See [12] for a survey of works on
learning in multi-agent systems.

Even though some works exist that study specialization in
terms of adapting behavior, few actually model or simulate
spatiality and costs of specialization. Li et al. [13] studied
division of labor and specialization in an initially homogeneous

swarm, using a microscopic model that represents robots as
separate probabilistic finite-state machines. In their work, robots
behaviorally differentiate by assuming different roles in a stick-
pulling experiment. The study confirms the observation that, in
social insect colonies, specialization usually does not occur if the
number of tasks is larger than the number of individuals. Hsieh
et al. [14] extended the work of Li et al. by studying the system
using a macroscopic analytical model based on continuous-time
differential equations. Their results show that specializationmight
not be advantageous if the task-related parameters of the problem,
such as the number of tasks in the environment, are known. If,
on the other hand, there exists some uncertainty about these
parameters, specialization is advantageous. Jones andMatarić [15]
studied a foraging problem in which each individual specializes
in foraging for one of two possible food types. The study shows
that after a transition period the ratio of individuals specialized on
either of the two food types matches the ratio of the food types in
the environment. Murciano et al. [16] studied a system in which
agents can specialize in foraging for one of two types of objects by
learning an affinity for these types. The work uses reinforcement
learning for adapting the behavior of the robots so that the ratio of
robots specialized in foraging for either type of object matches the
ratio of object types present in the environment.

A task frequently considered in studies on division of labor and
specialization in a multi-robot system is foraging for energy. A
common scenario is the study of two opposing behaviors: resting
and foraging. The behaviors exhibit different costs and benefits
in terms of energy: resting consumes little energy and does not
yield energy, while foraging consumes large amounts of energy
but can possibly yield energy by harvesting food items. The robots
have to adapt their behavior in order to optimize their collective
energy level. Labella et al. [17] found that, in their system, robots
effectively divide into active and passive foragers. Liu et al. [18]
studied a similar system that employs four different foraging
strategies. Also this system exhibits an effective division of labor.
Recently, Ikemoto et al. [19] proposed an adaptive mechanism for
division of labor in a swarm of robots. The mechanism proposed
divides the swarm into distinct groups that behaviorally specialize
in a certain task.

3. Model of tasks, learning, and forgetting

In this section, we describe the type of tasks that must be
executed by the robots of the swarm, and the effect that learning
has on the performance of the robots.

We consider an instance of the single task/single robot task
allocation problem [20]. That is, a task is carried out by a single
robot, and a robot can work on a single task at a time. Also, robots
can carry out tasks independently of each other.

The experimental environment that we consider consists of an
arena that can be explored by the robots. A certain number of
tasks are situated in specific locations within the arena. Robots can
carry out a task when they are at the location of the task. Tasks
appear stochastically with spatial and temporal distributions that
are unknown to the robots. The goal of the swarm is to maximize
its performance, measured as the number of tasks completed in a
given period of time.

More specifically, we consider an environment in which robots
can choose between two tasks: blue tasks and green tasks, denoted
by τx with x ∈ {b, g}. To carry out a task, a robot has to reach the
location of the task and stay there for a given amount of time, after
which the task is completed.

While carrying out tasks, robots learn. To implement learning,
we use a simplemodel that captures its most relevant effect on the
performance of the robots: a robot that repeatedly performs a task
of a certain type will become more efficient in performing other
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tasks of the same type. This simplemodel allows us to drawgeneral
conclusions on behavioral specialization without implementing
any specific learning technique.

We also implement a form of forgetting: if a robot has improved
its performance on a given task, and then either starts to work on
another type of task or does not work on any task for some time, it
loses part of its performance improvement for the first task type.

It is important to note that even though we refer to learning
and forgetting with terms borrowed from studies of memory
in humans or other animals, learning and forgetting can result
from other processes. Examples are the morphological adaptation
caused by muscle growth and loss (hypertrophy and atrophy) or
the acquisition or loss of specialized tools. We keep our model of
learning and forgetting deliberately coarse so that it can be used to
describe any process that can cause improvement or degradation
of task performance.

3.1. Learning

In our system, each time a robot executes a task, the robot
improves its performance on that type of task by a given amount.
This amount is not constant. We model the improvement in task
performance analogously to what can be observed in natural
systems: it increases rapidly for the first repeated executions
of tasks of the same type, and reaches a plateau with further
repetitions [11]. The improvement in task performance consists of
a reduction of the task completion timewx, that is, the time it takes
to complete a task of type τx:

wx(nx) =

wstd if nx = 0

wstd −
wstd

k (1 + e−nx+c)
if 0 < nx ≤ nmax

(1)

with x ∈ {b, g}. The meaning and effect of the parameter k and
the constant c will be explained in the following. The counter nx is
incremented on the completion of a task of type τx, while, at the
same time, the opposing counter ny for task type τy, with y ≠ x, is
decremented (this is a form of forgetting; it is explained in detail
in Section 3.2). Both counters are limited to the interval [0, nmax].
For example, if a robot has exclusively worked on tasks of type τb
its counters are nb = nmax and ng = 0.

The standard task completion time is denotedwithwstd; it is the
time a robot takes to perform a task τx, when its nx = 0. Note that
in this work we use the same wstd for both task types in order to
reduce the number of parameters of the system.

The factor k is used to vary the maximal time gain attainable
through learning. This gain of learning is reached after a robot
has successively completed nmax tasks of the same type. For
convenience, we refer to the resulting minimal task completion
time attainable by a fully learned robot as wmin = wx(nmax). Note
that the parameter k is independent of wstd, for example, k = 1.25
always results in a maximal time gain of 80%.

The constant c = nmax/2 renders the function wx(nx) point-
symmetric on the median of the interval [0, nmax], that is, a robot
reaches 50% of the time gain attainable through learning after
performing nx = nmax/2 tasks of type τx.

Fig. 1 shows a graphical representation of the learning model.
In the rest of the article, we refer to a specific setting of nb and

ng as the learning state of a robot. The learning state thus designates
the state of learning of a robot with respect to the two task types.
Furthermore, we refer to the state nx = nmax as the maximal
learning state for tasks of type τx (i.e., the robot has learned the best
task execution possible), and to the state nx = 0 as the unlearned
state for tasks of type τx (i.e., the robot has not learned anything
for this task type). In this article, we assume that the robots of the
swarm are homogeneous at the beginning of the experiment with
nb = ng = 0, that is, all robots are initialized to the unlearned
state.

Fig. 1. The graph shows the effect of learning on the task completion time wx for
different values of the parameter k. Learning takes effect when a robot repeatedly
works on the same type of task. Here, the standard task completion time in the
unlearned state wstd is 120 s. The parameter k influences the time gain of learning.
The values k = {1.25, 1.67, 2.5, 5} shown here correspond to 20%, 40%, 60% and
80% of wstd at nmax , respectively.

3.2. Forgetting

In our learning model we also include the degradation of task
performance, which we call forgetting. We implement forgetting
as follows. First, when improving its performance on a certain
type of task τx due to learning, a robot forgets what it learned
previously about the other task type, that is, upon incrementing nx,
we decrement ny, with y ≠ x. Second, a robot that keeps searching
for tasks of a certain type gradually decreases its performance
for both task types, that is, upon traveling for a distance df , the
counters nb and ng are both decremented by 1 (to aminimumof 0).
This mechanism causes the robots to return to an unlearned state
over time.

Forgetting can be observed in many natural systems, as it can
improve the efficiency of individuals. Individuals have to spend
energy in order to maintain adaptations, be it muscle- or memory-
based. In case these adaptations are not advantageous in the
current situation of the individual, it is beneficial for the individual
to discard them to save energy. It has been shown that forgetting
can also improve the performance of artificial systems such as
robotic swarms [21].

4. Task allocation strategies

In this section, we explain the two strategies that are used
by the robots of the swarm for allocating tasks. Robots using
the selective strategy select among the tasks they encounter. This
allows the robots to specialize in a certain type of task in order to
exploit the performance improvement available through learning
(see Section 3). Robots using the greedy strategy do not select
among the tasks but work on any task they encounter.

4.1. Selective strategy

Robots using behavioral specialization adapt their behavior so
that they work selectively on a certain type of task. Behavioral
specialization therefore depends on the strategy used by the
robots to allocate tasks. In this work, the robots employ a simple
stochastic strategy to decide whether to accept a task they
encounter in the environment. The strategy is fully distributed and
requires no communication between robots, as it depends only
on the robots’ memory of the previously completed tasks. In the
following, pg denotes the probability that a robot accepts a task of
type τg upon encountering it. The robot computes pg as a function
of the memory counterm of previously completed tasks:

pg(m) =
1

1 + e−γm
, (2)



4 A. Brutschy et al. / Robotics and Autonomous Systems ( ) –

with γ being a parameter that defines the steepness of the
probability curve, referred to as task acceptance modifier. As the
name indicates, γ influences the probability with which a robot
accepts tasks of the same type: higher values of γ require a
lower amount of tasks to be completed in order to reach the
maximum probability, that is, the function pg(m) approximates
a step function. The memory counter m of completed tasks is
initialized to 0 at the beginning of the experiment. The robot
increments m upon the execution of a task of type τg , and
decrements it upon the execution of a task of type τb. The value
of m is limited to the interval [−10, 10]; therefore, a robot has to
perform 20 tasks of type τb to change from being fully specialized
in τg (m = 10) to being fully specialized in τb (m = −10).

Note that, because in this article we only consider two different
types of tasks, we can compute the probability of the robot to
work on tasks of type τb as pb = 1 − pg . As a result, robots that
worked repeatedly on one type of task adapt their behavior so that
they reject with an increasing probability tasks of the other type.
A robot reaching a state in which it works exclusively on a single
task type τx is called a specialist for τx (i.e., px ≃ 1 and py ≃ 0, with
y ≠ x). Analogously, a robot that has no behavioral preference in
task acceptance is called a generalist (i.e., pb = pg ≃ 0.5).

If a robot does not accept to work on a task it encounters, it
continues searching for tasks by performing a random walk. In
order to prevent dead-locks in the form of robots specialized in a
type of task that is not available in the environment, robots forget
their behavioral specialization while searching. This functionality
is implemented by decreasing |m| whenever the robot traveled for
a distance d̂f . More specifically, m is decremented by 1 in case of
m > 0 and incremented by 1 in case of m < 0. As a result, the
probability px of a robot approaches 0.5 for both tasks, that is, the
robot returns to a generalist behavior while searching for tasks. In
order to reduce the number of parameters of the system, we set
the forgetting distance d̂f of the selective strategy to the forgetting
distance df of the learning model.

The function described in Eq. (2) leads to the specialization of
the robot to a specific task as follows. By performing a task of
type τx, a robot increases its probability px to execute again tasks
of this type. This causes the robot to repeatedly work on tasks of
the same type (if available), thereby becoming a specialist for this
type of task. Conversely, if a robot travels for a distance d̂f without
performing any task or if it performs tasks of the other type τy, with
y ≠ x, the probability of accepting tasks of type τx decreases.

4.2. Greedy strategy

Robots using the greedy strategy start to work on any task they
encounter. Therefore, they do not behaviorally specialize on any
of the task types and do not exploit the performance improvement
available through learning.When a robots uses the greedy strategy,
the probability to accept tasks is pb = pg = 1. Note however
that, even though task allocation in the greedy strategy is random,
robots can still improve their performance by learning; this is the
case when a robot happens to work predominantly on tasks of the
same type.

The greedy strategy provides a performance reference for
comparison with the selective strategy. As robots using the greedy
strategy do not specialize behaviorally, the direct comparison
between the results of swarms using the two strategies allows
us to evaluate the performance improvement available through
behavioral specialization.

5. Experimental setup

In this section, we describe the setup of the experiments
that we use to evaluate the costs and benefits of behavioral
specialization. In the following, we describe the robots we use for

Fig. 2. The e-puck robot. Left: A picture of the real robot. Right: The e-puck as
represented in simulation.

the experiments, as well as themethod used to represent the tasks
that have to be performed by the robots. We assume the model
of learning and forgetting presented in Section 3. Additionally, we
present details about the simulation environment, the controller
of the robots, and the arena employed in the experiments. Finally,
we discuss the metrics we use for measuring diversity and
specialization in the swarm.

5.1. Robot

In the experiments presented in this paper, we simulate the
commercial robot called e-puck.1 The e-puck is a small wheeled
robot, designed to be a research and educational tool for university
students [22]. The e-puck features 8 infra-red proximity sensors
that can also beused as light sensors, a forward-facing color camera
(with a resolution of 640 × 480 pixels), 8 red LEDs and the wheel
actuators. In the experiments presented in this article, we employ
the wheel actuators (with a maximum speed of smax = 8 cm/s),
the proximity sensors for obstacle avoidance, and the camera for
the detection of tasks. Note that the e-puck does not have any
manipulation capabilities (Fig. 2).

5.2. Task abstraction

In order to overcome the lack of manipulation capabilities of
the e-puck, we abstract the tasks that the robots can perform with
a device called task allocation module (TAM) [23]. Fig. 3 illustrates
the basic functionality of a TAM. Each TAM features a light barrier
and two RGB LEDs. The LEDs can be perceived by a robot using
its color camera. The robot can navigate to the TAM and enter
it. The presence of a robot can be detected by the TAM using
its light barrier. Upon the detection of a robot, the TAM reacts
by changing the color of its LEDs following a user defined logic.
TAMs can represent the interaction between the e-puck robot and
the environment in many different settings, for example tasks that
need to be executed by the robots [5] or material that needs to be
transported [24].

In our experiments, each TAM represents one of the two types
of tasks, τb and τg . The type of the task is encoded by the color of
the LEDs of the TAM. Thus, a robot can perceive which type of task
a TAM represents. If a robot enters a TAM, it is considered to work
on the corresponding task. The TAM acknowledges the robot’s
presence by temporarily changing the color of its LEDs to red. The
robot remains inside the TAM for the timewx required to complete
the task. This time is, in general, different from robot to robot, as
it depends on the robot’s learning state, regulated by the learning
model explained in Section 3. After the robot has completed the
task and has left, the TAM stochastically selects the type of the next
task (i.e., the color). Thus, a TAM is always representing a task, that
is, there are no idle TAMs.

1 http://www.e-puck.org/.

http://www.e-puck.org/
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Fig. 3. A device, called task allocation module (TAM), used for abstracting the tasks
that have to be performed by the robots. Left: A photo of the real device. Right:
Functional schematics of a TAM. The light barrier detects a robot entering into the
TAM. Upon the detection of a robot, the TAM reacts by changing the color of its
LEDs following a user defined logic. In our experiments, the different task types are
encoded by the LED color of the TAM.

Wecan change the distribution of task types in the environment
by modifying the probability with which a TAM selects the type
of a new task. Note that a change of this probability affects the
distribution of the tasks only after a certain amount of time has
elapsed, as a TAM only generates a new task after the previous task
has been completed. We refer to the ratio of the blue tasks in the
environment as task ratio, defined as r = |τb|/T with T = |τb|+|τg |
being the total number of TAMs, which equals the total number of
tasks concurrently available in the environment.

5.3. Simulation tools

In the following we describe the tools we employ to simulate
a swarm of e-puck robots and the tasks represented by the TAMs.
More specifically, we describe the simulation framework used, the
controller of the robots, and the arena.

5.3.1. Simulation framework
The work presented here has been carried out using the ARGoS

simulation framework [25]. ARGoS is a discrete-time physics-
based simulation framework developed within the Swarmanoid
project [26].2 ARGoS is open source and can be freely used for other
research projects.3 It can simulate various robots at different levels
of detail. The experiments presented in this work are carried out
in a 2-dimensional kinematics-based simulation. ARGoS simulates
the whole set of sensors and actuators available on the e-puck.
The TAM, including its sensors and actuators, is also simulated in
ARGoS.

5.3.2. Robot controller
In our experiments, the two task types τb and τg are represented

by the TAMs using blue or green LEDs, respectively. The robots
can perceive tasks within a limited distance using their camera,
and recognize their type by their color. Fig. 4 shows the behavior
of the robots when using the selective strategy. A robot performs
a random walk to search the environment for tasks that need
to be executed. In case the robot encounters another robot or
static obstacles, it performs an obstacle avoidance maneuver (the
corresponding state has been omitted from Fig. 4). When a robot
perceives a task τx, it applies its associated task allocation strategy
as described in Section 4. In case the robot uses the selective
strategy, it has an associated probability px to start to work on
the perceived task (see Eq. (2)). In case the robot uses the greedy
strategy, it starts to work on any task it perceives. Each robot is
subject to the learning and forgetting mechanisms described in
Section 3. The controller is behavior-based, that is, it is composed
of several modules, each of which controls a distinct behavior of
the robot. All the robots of the swarm use an instance of the same
controller and start in an unlearned state (see Section 3).

2 http://www.swarmanoid.org/.
3 http://iridia.ulb.ac.be/argos/.

Fig. 4. Finite state machine describing the behavior of the robots when using the
selective strategy. Light rectangles represent actions executed by the robot, dark
rectangles show the effect of learning and forgetting on the robot. A robot accepts
a task it encounters with probability px (see Eq. (2)).

Fig. 5. Representation of the arena with e-pucks at random initial positions. Tasks
are represented by the TAMs which are located at the boundaries of the arena,
with a total of T = 24 tasks concurrently available in the environment. Each
TAM stochastically selectswhich type of task it represents, that is, task types appear
stochastically in time and space.

5.3.3. Environment
The environment consists of an obstacle free, hexagonal arena

(see Fig. 5). The tasks to be performed are represented by TAMs at
the boundaries of the arena. Each of the six sides of the arena
consists of 4 TAMs, for a total of T = 24 tasks concurrently available
in the environment. The distance between a TAM and the one
facing it on the opposite side of the arena is 104cm. This distance
is such that a robot that leaves a TAM cannot directly perceive
the tasks of the TAM situated diametrically. This guarantees that
a robot has to spend some time searching before encountering
another task.

5.4. Measures of diversity and specialization

In the followingwedescribe themeasureswe use for evaluating
diversity and specialization in the swarm.

5.4.1. Diversity in the learning states
In the context of this article, we define the diversity of a swarm

in terms of the diversification of the learning states among the
robots of the swarm (see Section 3.1). This allows us to compare
the diversity of a swarm using the selective strategy, that exploits
the improvements available through learning, to the diversity of
a swarm using the greedy strategy, that does not exploit the
improvements available through learning. In order to measure
the diversity in the swarm, we use the hierarchic social entropy,
as initially proposed by Balch [27]. The hierarchic social entropy
is based on hierarchical clustering of the robots and the simple
social entropy, which in turn is based on Shannon’s information
entropy [28].

http://www.swarmanoid.org/
http://iridia.ulb.ac.be/argos/
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The simple social entropy H measures the diversity of a swarm
depending on a classification of the robots. Let Ch be a given
classification of a swarmR ofN robots intoM possibly overlapping
subsets ci, with h being a parameter of the classification method,
which is explained in the following. The simple social entropyH for
the classificationCh can be computed as follows. Let the proportion
of robots in the ith subset be pi = |ci|/N . We compute H (i.e., the
Shannon index) of the classification Ch as

H(Ch) = −

M
i=1

pi log pi. (3)

The value of the simple social entropy H depends on the
classification Ch and therefore on the method used to derive this
classification. We employ a method that classifies the robots on
the basis of a distance, computed using a given distance metric.
We consider two robots to belong to the same classification Ch if
the distance between them is smaller than a threshold distance h.

In this article it is relevant to cluster robots according to their
learning state as defined in Section 3.1. Therefore, the distance
metric should reflect the diversity between two robots of the
swarm. To this end, we define the distance metric d as the
Euclidean distance between the learning state of two robots ρ1 and
ρ2:

d(ρ1, ρ2) =


(nb1 − nb2)

2 + (ng1 − ng2)
2 , (4)

with nb and ng being, for both robots, the number of tasks,
performed in the last nmax executions, of type τb and τg ,
respectively.

As mentioned above, H(Ch) is the simple social entropy for a
classification of robots derived using the parameter h. In order
to remove the dependency of the simple social entropy on this
parameter, we can integrate over it and obtain the so-called
hierarchic social entropy:

D(R) =


∞

0
H(Ch) dh . (5)

The value of the hierarchic social entropy D(R) measures the
diversity of a swarm, with higher values designating a higher
diversity and D(R) = 0 indicating a swarm that is completely
homogeneous. See [27] for more detailed information about the
hierarchic social entropy.

5.4.2. Specialization
As behavioral specialization in the swarm is not covered by the

hierarchic social entropy, we require another measure in order
to quantify the change in behavior of the robots. We define two
measures that differ in the way they measure the behavior of the
robots. The first onemeasures specialization in terms of transitions
in the sequence of tasks performedby a robot,while the secondone
measures specialization in terms of the internal task acceptance
probability of a robot. The former is referred to as F measure, and
the latter is referred to as P measure.

The F measure is based on the frequency of switches between
task types in the sequence of tasks completed by a robot. It has
been developed by Gautrais et al. in their study of specialization in
insect colonies [7]. The individual measure Fi is a value in the range
[−1, 1], representing the degree of specialization of a robot i. For
a sequence of Ni tasks, it is computed as Fi = 1 − (2Si/Ni), where
Si is the number of times the robot i switched between task types.
The value of Fi is 1 for a fully specialized robot, 0 for random task
allocation, and −1 for systematic switching between task types. F
is the average over the values of Fi of all robots of the swarm. Table 1
reports some examples of task sequences, the corresponding value
of F , and the interpretation of this value. The F measure allows one

Table 1
Examples for the value of the F measure for different task sequences.

Task sequence F Interpretation

τgτgτgτgτgτgτgτg 1 Fully specialized robot
τgτbτgτbτgτbτgτb ∼−1 Systematic switching
τbτbτgτbτgτgτgτb 0 Random task allocation

to compare the behavior of the robots depending on the sequence
of tasks performed. It is independent of the underlyingmechanism
used by the robots to select the type of the next task to tackle.

The P measure is based on the internal probability of a robot
to accept a task when encountering it. We consider a robot to be
specialized in a task of type τx if its probability px of accepting a task
of this type, as defined by Eq. (2), is greater or equal to 0.95. P(τx)
is the number of robots specialized in task type τx according to this
definition. As the P measure depends on the internal probability
of a robot to accept a task, it is only applicable to the selective
strategy.

Previous works have used measures of specialization different
from the ones described above. Li et al. define specialization as
positive diversity, that is, diversity that increases the performance
of the swarm [13]. They base their specialization measure on
the hierarchic social entropy by correlating it with the global
performance of the swarm. This measure cannot cope with (a) the
whole swarm specializing in the same task and (b) specialization
leading to reduction in performance. O’Donnell and Jeanne also
measure specialization using the Shannon index [28], but base it
on the proportion of the tasks executed by an agent over thewhole
set of tasks available [29]. They define specialization as diversity
in task acceptance, similarly to Li et al., but do not correlate
diversity to performance. The measure cannot detect differences
in the order of task acceptance as the one proposed by Gautrais
et al. [7], that is, it cannot distinguish between the case of a robot
switching constantly and a robot working exclusively first on one,
and then on another task. The shortcomings of the measures used
in [13,29] and their different focus led us to use the F measure
proposed by Gautrais et al. in conjunction with the P measure for
quantifying the behavioral specialization of the robots using the
selective strategy.

6. Experiments

In this section, we describe the experiments that we performed
to study the costs and benefits of behavioral specialization. Addi-
tionally, we present and discuss the results of these experiments.

For our experiments, we use the following parameter settings.
For each experimental condition we conduct 20 randomly seeded
runs, for a duration of tmax = 10,000 simulated seconds each.
In general, we measure time t in seconds. The ratio r of blue
tasks is 0.5 unless mentioned otherwise, that is, there is an equal
probability of encountering one of the two types of tasks. The
standard task completion time wstd is set to 120 s for both task
types. The gain parameter of the learning model (Eq. (1)) is set to
k = 1.25, with wmin = 24 s. This results in a 80% gain in task
completion time at the maximal learning state, which is reached
after nmax = 12 consecutive executions of the same task type. The
forgetting distance is df = 300 cm.

The swarm is composedofN=18 e-pucks, randomlypositioned
in the arena at the beginning of each experimental run. The
maximum speed smax of the robots is set to 8 cm/s. The robots use
the controller described in Section 5.3.2 and one of the twopossible
strategies described in Section 4. In case of the selective strategy,
the task acceptance probabilities pg and pb are both initialized to
0.5, respectively; thus, all robots start in the unlearned state. The
task acceptance modifier of Eq. (2) has been determined by trial
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Table 2
Default parameters of the experiments.

Param. Meaning Value

N Number of robots 18
T Number of concurrent tasks 24
r Task ratio 0.5
e Number of experimental runs 20
tmax Experiment duration 10,000 s

wstd Completion time if unlearned 120 s
wmin Completion time if fully learned 24 s
nmax Tasks required to be fully learned 12
k Learning curve parameter (gain) 1.25
df Forgetting distance 300 cm

smax Maximum wheel speed 8 cm/s
p̂g , p̂b Initial task acceptance probabilities 0.5
m Memory counter of completed tasks [−10, 10]
γ Task acceptance modifier 1

Fig. 6. Performance, defined as the total number of tasks completed in the
preceding 1000 s, shown for each strategy over time. Performance is measured
every 1000 s. Data collected over 20 experimental runs.

and error in preliminary experiments and is set to γ = 1 (see on-
line supplementary material [30]).

In general, we give a non-parametric description of data by
reportingmedian and interquartile range (IQR) in the plots. In case
we give numerical results in the text, we report the quartiles of the
distribution in the format 25%/50%/75%. In case the observations
are normally distributed, we provide a parametric description
by reporting mean and standard deviation. In this case, and
when it is necessary to determine if the difference between two
values is statistically significant, we additionally report the results
of a Welch’s t-test. Table 2 summarizes all parameters of the
environment, the learning model, and the robots.

6.1. Static environment

In the first set of experiments we employ a static environment,
that is, the task ratio remains constant throughout this set. We use
this set to study the basic properties of the system: Howdo the two
strategies perform, and does specialization occur?

To answer these questions, we first assess if the selective task
allocation strategy presented in Section 4.1 successfully exploits
the performance improvement available through learning. To do
so, we compare the performance of the selective strategy to the
performance of the greedy strategy. Performance is defined as
the amount of tasks completed in the preceding 1000 s; and
we measure it every 1000 s. Fig. 6 shows the evolution of the
performance of each strategy over time. In the plot, we report the
median of the observation and the interquartile range (IQR). As it
can be seen, after an initial period in which the swarm specializes,
the selective strategy performs better than the greedy strategy.
The observation of the performance for a given value of t is

Fig. 7. Histograms reporting, for both strategies, the number of times robots have
completed a task in wx seconds, collected at the steady state (5000 s ≤ t ≤

10,000 s). Data collected over 20 experimental runs. Top: almost all robots using
the selective strategy complete their task at the minimal task completion time,
wmin = 24. Bottom: robots using the greedy strategy mostly complete tasks at high
task completion times.

distributed normally (see supplementary on-linematerial [30]); in
the following we therefore report the mean(std). The performance
at the end of the experiment is 296.3(10.0) and 146.9(7.8), in case
of the selective strategy and of the greedy strategy, respectively.
The performance of the two strategies is significantly different
starting from t = 2000 (Welch’s t-test with α = 0.05).

Next, we study to which degree the robots learn to work on a
certain type of task. Fig. 7 reports, for both strategies, the number
of times robots have completed a task in wx seconds, collected
at the steady state (5000 s ≤ t ≤ 10,000 s). As the time wx
robots spend working on a task decreases with learning, a high
amount of low task completion times indicates a high degree of
learning in the swarm. Fig. 7 (top) shows that for robots using the
selective strategy, most tasks have been completed at the minimal
task completion time, wmin = 24. This indicates that most robots
work at the maximal learning state for one of the two task type,
that is, the robots exploit learning to the full extent. Fig. 7 (bottom)
shows that robots using the greedy strategymostly complete tasks
at high task completion times. This indicates that there is poor
or no learning in the swarm. As task allocation is random when
using the greedy strategy, some robots happen to improve their
performance temporarily by repeatedly working on the same task
type, thereby completing their tasks in shorter time. Nevertheless,
as this behavior is not systematic, the greedy strategy cannot
exploit the advantages offered by learning in a consistent manner.

Additionally, we study to which degree the robots behaviorally
specialize in one of the two tasks. Fig. 8 shows a scatter plot of the
total number of completed tasks per type for each robot during the
course of the experiment.We also report the value of the hierarchic
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Fig. 8. Scatter plot of the total number of completed tasks per type for each
robot, collected during the course of 20 experimental runs. Top: a swarm using the
selective strategy effectively separates into two behaviorally distinct groups: one
working mostly on τb , and another working mostly on τg . Bottom: The behavior
of the greedy strategy is more homogeneous: the variability of the number of
completed tasks of both types is much smaller than for the selective strategy. D
indicates the value of the hierarchic social entropy; higher values of D indicate
higher differentiation among the learning state of the robots of the swarm.

social entropy D as defined in Section 5.4. Fig. 8 (top) shows that
when using the selective strategy, the swarm effectively separates
into two behaviorally distinct groups: one working mostly on
τb, and another working mostly on τg . Fig. 8 (bottom), on the
other hand, shows that the behavior of the swarm using the
greedy strategy is more uniform: the variability of the number
of completed tasks of both types is much smaller than for the
selective strategy. Comparing the hierarchic social entropy D, the
robots using the selective strategy have a low hierarchic social
entropy than the robots using the greedy strategy, which have a
much higher hierarchic social entropy (D = 4.22/22.18/47.22 and
D = 155.30/190.65/238.25, respectively). This reflects the degree
of learning in the swarm as shown in Fig. 7: In case of the selective
strategy, the robots fall into two distinct groups; differently, in case
of the greedy strategy, random task allocation results in diverse
learning states in the swarm.

Figs. 7 and 8 highlight the diversity and specialization observed
in the swarm. The results explain the difference in performance
observed in Fig. 6: even though all robots equally benefit from
the advantages of learning, only the strategy that behaviorally
specializes can successfully exploit these advantages.

Fig. 9. Performance, defined as the total number of tasks completed in the
preceding 1000 s, shown for each strategy over time. Performance is measured
every 1000 s. Data collected over 20 experimental runs. The initial task ratio is
r = 0.5, and is changed to 0.2 at t = 5000 s (gray vertical line).

6.2. Time-variant environment

In the second set of experimentswe assesswhether the benefits
of behavioral specialization are affected by changes in the task
ratio. To this end, we use an environment in which the task ratio
changes over time. The initial task ratio is r = 0.5; when the
experiment reaches half of its total duration, the task ratio is
changed to r = 0.2, that is, tasks of type τg are predominant.

Again, we compare the performance of the selective strategy to
the performance of the greedy strategy. Performance is defined
as the amount of tasks completed in the preceding 1000 s; and
we measure it every 1000 s. Fig. 9 shows the evolution of the
performance of each strategy over time. In the plot, we report
the median of the observation and the interquartile range (IQR).
The observation of the performance for a given value of t is again
distributed normally (see supplementary on-line material [30]);
in the following we therefore report the mean(std). Comparing
the performance of the two strategies, we can make the following
observations. At t = 5000 s, the performance is 279.0(14.8) and
137.4(5.1) for the selective and the greedy strategy, respectively.
This clearly replicates the results of the first experimental set. At
the end of the experiment, on the other hand, the performance
of the two strategies is 290.6(14.4) and 248.5(7.2), again for
the selective and the greedy strategy, respectively. The results
show that, at the end of the experiment, the selective strategy
reaches a performance comparable to its performance before the
change of the ratio, while the greedy strategy almost doubles its
performance. In all cases with t ≥ 2000, the performance of the
two strategies is significantly different in favor of the selective
strategy (Welch’s t-test with α = 0.05). We speculate that the
increase in performance of the greedy strategy is due to the fact
that one type of task is predominant in the environment. If a single
task type is predominant in the environment, it is more likely that
a robot working on random tasks works more often on the same
type of task, thereby benefiting from the effect of learning.

In order to study the cause of the observed changes in
performance, we evaluate the results by using the metrics F
and P . Both measures are computed every 1000 s for the
preceding 1000 s. The measures are not normally distributed (see
on-line supplementary material [30]); we therefore report the
interquartile range (IQR).

Fig. 10 (top) reports the specialization measure F for both
strategies. The F measure confirms that robots using the selective
strategy specialize well, as the value of F is close to 1 before
the change of the task ratio. Note that F never reaches 1, which
would be the case if there were no transitions at all. This is due
to the fact that the selective strategy is based on a stochastic rule.
Therefore, a robot may perform a task of one type even if it is fully
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Fig. 10. Specialization in the swarm. Top: F measure for both strategies. Bottom: P
measure for the selective strategy only. Both measures are computed every 1000 s
for the preceding 1000 s. Data collected over 20 experimental runs. The initial task
ratio is r = 0.5, and is changed to 0.2 at t = 5000 s (gray vertical line).

specialized in the other. After t = 5000 s the value of F changes:
it decreases as the number of transitions per robot increases. This
indicates that some of the robots using the selective strategy de-
specialize from their current task type and specialize in the other
type. At the end of the experiment, the swarm reaches again a
high degree of specialization. Differently, the greedy strategy does
not lead to specialization of the robots; the value of F is ∼0 for
the first part of the experiment, that is, task allocation is random.
The higher value of F for the greedy strategy in the second part of
the experiment reflects the higher availability of tasks of type τg
in the environment. As robots are more likely to encounter tasks
of type τg , the number of transitions in the task sequence of a
robot decreases, and the value of F increases in turn. This confirms
our speculation above: the performance of the greedy strategy
observed in Fig. 9 is a result of the reduced number of transitions,
which lets the robots benefit more frequently from the effect of
learning.

Fig. 10 (bottom) reports, for the selective strategy only, the
number of robots specialized in the two types of tasks, using the
measure P . The plot shows that before the change of the task ratio,
approximately half of the swarm is specialized in one of the two
task types and the other half on the other task type, whichmatches
the task ratio. At time t = 5000 s the task ratio is changed to
r = 0.2 in favor of τg . As it can be seen in the plot, some of the
robots de-specialize from τb and subsequently specialize in τg . At
the end of the experiment, the number of robots specialized in τb
and τg is 4 and 14 respectively, again matching the task ratio.

In summary, we can say that the benefits of behavioral
specialization depend on the distribution of the tasks in the
environment.

6.3. Periodically changing environments

The results presented above indicate that changes in task ratio
have a strong effect on the benefits of behavioral specialization.
In the third experimental set, we therefore aim at studying this
effect more closely by periodically changing the ratio of tasks as
follows. Every 1t seconds, we alternate the task ratio between
two values, r1 and r2. 1t is taken from the set {100, 1200, 5000} s,
and the two ratios r1, r2 are taken from the interval [0.1, 0.9] in
steps of 0.1. We only evaluate the cases in which r1 > r2; as we
alternate between the two ratios, cases in which r1 < r2 would
give analogous results. We conduct 20 experiments for each of
the possible combinations of the parameters 1t , r1, and r2. Fig. 11
shows the result for environments that change frequently (every
1t = 100 s, left), moderately often (every 1t = 1200 s, middle)
and rarely (every 1t = 5000 s, right).

Fig. 11 (left) shows that in case of frequent changes in task ratio,
the selective strategy performs significantly better than the greedy
strategy in all tested cases (Welch’s t-test with α = 0.05). This is
due to the fact that the period between changes of the task ratio is
shorter than the standard task completion time (1t < wstd). This
results in an environment that remains effectively well-mixed: as
changes in task ratio only have an effect after a task has been
completed, all types of tasks are available in the environment at
any given time. Thus, the robots using the selective strategy can
fully exploit learning.

Fig. 11 (middle) shows the case inwhich the ratio changes every
1t = 1200 s = 10wstd. This ensures that the ratio changes
after most robots using the selective strategy have behaviorally
specialized in a given task type. Therefore, among the three
considered cases, this is themost difficult for the selective strategy.
The plot shows that differences in performance between the
selective strategy and the greedy strategy are generally smaller
than in the case of1t = 100 s. In case one of the two ratios is close
to the extremes of task distribution (i.e., r = 0 or 1), the greedy
strategy performs significantly better than the selective strategy.
This suggests that in environments in which the task ratio can
change abruptly from one extreme to the other, strategies using
specialization are not advantageous.

Fig. 11 (right) shows the case in which the ratio changes every
1t = 5000 s, which is the setting we adopted in the set of
experiments presented in Section 6.1 (for r1 = 0.5 and r2 =

0.8). The plot shows that the selective strategy is significantly
better than the greedy strategy across the whole range of the
ratio, excluding the extreme cases. This suggests that strategies
using specialization are advantageous in environments that rarely
change. This is consistent with the results presented in Section 6.1.

Upon analyzing all three plots in Fig. 11, we notice that they
are approximately symmetric across the diagonal. This indicates
that the impact of the ratio change on the performance of the
selective strategy does not depend on the absolute value of the
two ratios, but rather on the difference between the two ratios
|r1 − r2|. This difference defines how many specialists need to
re-specialize after a change so that the distribution of specialists
matches again the distribution of tasks. The second factor that
influences the difference in performance is the absolute distance
of one of the ratios from the equal task distribution (|r − 0.5|).
Differently from what we might expect, this is not due to an
environment disadvantageous for the selective strategy. Quite on
the contrary, the difference in performance is smaller because the
greedy strategy benefits from the effect of learning in case one
of the task types is more common than the other. As mentioned
above, this effect can also be observed in Fig. 9.

In summary, we can conclude that behavioral specialization
is advantageous in most cases of time-variant task distributions.
Nevertheless, in the worst case, strategies employing behavioral
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Fig. 11. Performance difference between the selective and the greedy strategy for environments in which the task ratio alternates between two values, r1 and r2 . Task ratio
changes every 1t = 100 s (left), 1200 s (middle), and 5000 s (right). The difference in performance is represented by shades of gray, with indication of which strategy is
better and whether the difference is statistically significant or not (see symbols in the legend). Data collected over 20 experimental runs.

Fig. 12. Performance measured as the total number of tasks completed by the end
of the experiment, shown for each strategy for different swarm sizes N ∈ [1, 40].
Data collected over 20 experimental runs.

specialization can exhibit drastic changes in performance. This
confirms the speculation from our previous work [5] that
behavioral specialization might be sensitive to changes in task
distribution, and is prone to failure in the most extreme cases.

6.4. Scalability

In the next set of experiments we study whether a strategy
exploiting behavioral specialization scales well. To this end, we
run 20 experiments for each swarm size N ∈ [1, 40] (in steps
of 1) without changing the size of the arena, again for a duration
of tmax = 10,000 simulated seconds each. Fig. 12 shows the
total number of tasks completed by the two strategies. The swarm
size has a strong impact on the performance of both strategies
due to an effect commonly known as interference [31]: with
increasing robot density, the individual performance decreases
as robots increasingly interfere with each other. As a result, the
performance of both strategies in Fig. 12 plateaus for a large
number of individuals.

Additionally, the increasing number of robots of the swarm has
a strong effect on the performance of the selective strategy even for
smaller numbers of individuals. Fig. 12 shows that the performance
peaks around N = 20 and reduces to the performance of the
greedy strategy for swarm sizes N > 24. Considering that the
total number of tasks concurrently available in the environment
is T = 24, we speculate that the advantage of specialization
depends on the relation between the swarm size and the number
of concurrent tasks. As we did not test for different values of T , the
evidence for such a dependency is non-conclusive andwarrants for
further examination. A possible explanation for such a dependency

could be competition among robots: if competition for tasks is
high, which is the case when there are more robots than tasks
available in the environment, robots might go without working on
a task for a long time, forgetting their behavioral specialization in
the process.

The selective strategy fails gracefully because its worst
performance is comparable with the performance of the greedy
strategy. This result is in accordance with the finding presented by
Li et al. [13].

In order to study the range of swarm sizes around the peak
in performance more closely, Fig. 13 reports the F measure and
the hierarchic social entropy D for N ∈ [20, 30]. As we can
see in Fig. 13 (left), the value of F for robots using the selective
strategy decreases for increasing N until it reaches the level of
the greedy strategy. This indicates that the number of transitions
in the task sequence increases for robots of larger swarms. This
is most likely due to the fact that the robots forget experiences
previously learned while continuously searching for tasks due
to over-competition. This is confirmed by Fig. 13 (right): The
diversity of the robots using the selective strategy increases around
N = 25, which indicates that some of the robots can maintain
specialization, while others cannot. For larger swarm sizes, the
diversity of the robots using the selective strategy decreases again,
as competition becomes so high that none of the robots of the
swarm can specialize in a specific type of task.

6.5. Costs and benefits of specialization

In the last set of experiments we study whether specialization,
which clearly has benefits in terms of task performance, entails
costs that hinder the performance of the swarm. The assumption
is that a robot specialized for a certain task spends more time
searching for it. Thus, specialists might be less efficient than
generalists, which spend less time searching for a suitable task
to perform. In order to study the trade-off between costs and
benefits, we vary the costs (search time of the robots) and benefits
(the minimal task completion time in the maximal learned state).
We vary the search time of the robots by changing the wheel
speed s used while searching from 10% to 100% of the maximum
speed smax, in steps of 10%. This corresponds to changing the
size of the environment and therefore the distance between tasks
without affecting robot density, which would entail changes in
performance due to interference [31]. We vary the minimal task
completion time wmin from a minimum of 10% to a maximum of
100%of the standard task completion timewstd, in steps of 10% (k =

{10, 5, 3.34, 2.5, 2.0, 1.67, 1.43, 1.25, 1.11}). The observation of
the total number of completed tasks at the end of the experiment
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Fig. 13. Specialization and diversity shown for each strategy for different swarm sizes N ∈ [20, 30], collected over 20 experimental runs. Left: F measure, indicating the
number of transitions in the task sequence of a single robots. Right: hierarchic social entropyD, with higher values indicating higher diversity among the robots of the swarm.

Fig. 14. Performance for different search speeds and task completion times at the maximal learning state, collected over 20 experimental runs. Left: observed mean of the
number of completed tasks for the selective and greedy strategy (white and dark surface, respectively); Standard deviation < 5% for all tested cases (not shown). Right:
difference in number of tasks completed by the two strategies (shades of gray), with indication ofwhich strategy is better andwhether the difference is statistically significant
or not (see symbols in the legend).

is distributed normally (see supplementary on-line material [30]).
The standard deviation is < 5% for all tested cases, therefore in
the following we report only the mean. Fig. 14 (left) reports the
mean of the total number of completed tasks, using the selective
strategy (white surface) and the greedy strategy (dark surface),
for different values of the search speed s and of the minimal task
completion time wmin. Fig. 14 (right) shows, for all combinations,
the difference between the mean number of tasks completed by
the two strategies by the end of the experiment (shades of gray),
and if this difference is statistically significant or not (see symbols
in the legend).

The plot on the left of Fig. 14 shows that the greedy strategy
is less affected by changes of the two parameters. The change of
the minimal task completion time has almost no effect on the
performance of the greedy strategy as it does not behaviorally
specialize and thus does not benefit from the effects of learning
in a consistent manner. Moreover, the performance of the greedy
strategy is only slightly affected by the search speed as the number
of tasks concurrently available in the environment remains
constant and robots using this strategy accept every task they
encounter. The performance of the selective strategy, on the other
hand, varies considerably in relation to the value of the two
parameters, highlighting costs and benefits of specialization. The
plot on the right shows that when the minimal task completion

timewmin is greater than 80% of thewstd or thewheel speed s is 10%
of the maximum speed smax, the greedy strategy performs better
than the selective strategy.

This confirms our assumption that robots specializing in a
certain task are prone to losing efficiency due to high costs
of behavioral specialization, for example, longer search times.
Behavioral specialization is therefore not to be considered in terms
of benefits only, as it is affected by external factors such as task
availability and the spatial distribution of the tasks, which might
lower its benefits considerably.

7. Conclusions

Behavioral specialization is common in the organization of large
groups of individuals such as humans or social insects, as it has
many advantages, an important one being that it allows individuals
to exploit improvements in task performance due to learning.
However, specialization can also entail costs: specialists may need
to spend more time searching for their tasks than generalists.

To study behavioral specialization, we considered a system
in which robots can perform two types of tasks, available in
the environment with spatial and temporal distributions that are
unknown to the robots. Robots improve their task performance
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upon repetition: this simplified learning model allows us to draw
general conclusions on behavioral specialization without the need
of implementing an actual learning technique.

We employed two simple task allocation strategies to study
the system: a strategy in which robots select among the available
tasks in order to exploit learning by behaviorally specializing in a
certain type of task, and another strategy inwhich task allocation is
random. We studied the system in simulation-based experiments,
focusing on its response to changes in the distribution of task types.
Additionally, we studied its behavior under various conditions
that affect the costs and benefits of specialization. Results indicate
that spatial effects, such as interference among robots, have a
major influence on the costs and benefits of specialization. We
identified cases in which the costs of specialization overcome its
benefits. A task allocation strategy that does not use specialization
is preferable in these cases. The results also suggest that behavioral
specialization is not advantageous in environments that are highly
time-variant, as specialists may not be fast enough to adapt to
changes in the distribution of tasks.

There are several possible directions for future research.
One is the study of specialization in swarms of heterogeneous
robots, where benefits and costs of specialization are linked
to morphological differences between robots. These differences
can be explicit (e.g., different capabilities or equipment) or
implicit (e.g., heterogeneity due to production tolerances of
the hardware [17]). Another direction is the implementation of
learning as an actual improvement of the task-related performance
of the robots as opposed to the modeling of the improvement in
an abstract way as presented in this paper. A third possibility for
future research is to study the influence of different characteristics
of the task types on the benefits of specialization, such as tasks
that exhibit dependency among them (e.g., task types that require
a certain order of execution or task types that require concurrent
cooperation of multiple robots, similar to the study presented by
Li et al. [13]).
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