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Abstract

When selecting a resource to exploit, an insect colony must take into account at least two constraints: the resource must be
abundant enough to sustain the whole group, but not too large to limit exploitation costs, and risks of conflicts with other
colonies. Following recent results on cockroaches and ants, we introduce here a behavioral mechanism that satisfies these
two constraints. Individuals simply modulate their probability to switch to another resource as a function of the local
density of conspecifics locally detected. As a result, the individuals gather at the smallest resource that can host the whole
group, hence reducing competition and exploitation costs while fulfilling the overall group’s needs. Our analysis reveals that
the group becomes better at discriminating between similar resources as it grows in size. Also, the discrimination
mechanism is flexible and the group readily switches to a better suited resource as it appears in the environment. The
collective decision emerges through the self-organization of individuals, that is, in absence of any centralized control. It also
requires a minimal individual cognitive investment, making the proposed mechanism likely to occur in other social species
and suitable for the development of distributed decision making tools.
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Introduction

Survival of animal groups strongly depends on their ability to

select resources that can sustain their population. The decision-

making process is usually a combination of exploration and

information pooling that leads the group to focus its activity on one

or a subset of all the available resources. As reviewed in [1,2],

several types of organization exist that can lead group members to

reach a consensus. The final decision can be made by only one

individual who occupies a dominant position in the group [3], or it

can be the result of a cooperation between all or a part of the

group members [4].

Self-organized decision-making processes pertain to this last

category [2]. In the literature, one mechanism is frequently used to

explain consensus decision making in groups[5,6]: the probability

for an individual to select a given option (for instance, a food

source) increases non linearly with the number of conspecifics that

select the same option. This creates a positive feedback as more

and more individuals tend to make the same choice, and

eventually leads to a consensus between members of a group, in

a fully distributed way. Well-known examples of these decision-

making processes are the collective selection of the richest food

source by bees [7] or ants [8]. Insects exploiting richer sources

tend to recruit more individuals, biasing the group’s choice toward

the most rewarding option.

However, more is not always better. Large and rich resources

are more likely to attract competitors, adding an extra cost for the

defence of the resource [9–11]. Moreover, individuals may be

forced to spread over a larger space to occupy the whole resource,

hence impairing intra-group cooperation or reducing the benefits

of group living [12,13]. In all these situations, it is more

advantageous for groups to select resources that correspond

closely to their needs, and to avoid oversized ones. But this task

requires to evaluate the overall needs of the group in addition to

the capacity of the available resources. This may be particularly

difficult to achieve with a large population, or if individuals have

low cognitive abilities [14].

Here we propose and investigate a decentralized mechanism to

discriminate between several resources the one that best fits a

group’s needs. Our approach requires no explicit communication,

minimal cognitive and sensing individual capacities, and is based

solely on local interactions between neighboring individuals.

Our starting point is a model proposed by Amé et al. [15] to

explain the collective choice behavior of cockroaches when they

select one shelter out of several identical ones. Amé et al. ’s model is

based on the assumption that the rate Qi of cockroaches leaving

shelter i per second decreases with the density Di~Xi=Si of

individuals (Xi) in the shelter (of capacity Si):

Qi~
h

1zrD2
i

, ð1Þ

where parameters h and r determine the minimum and maximum

values of the rate Qi depending on Di. From this rate Qi, we can

directly derive the probability per-unit-time that an individual
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leaves a shelter. The model predicts that, when each shelter is

sufficiently large to house all the cockroaches, the group will

aggregate in only one of them. If shelters are too small the model

predicts that the group will use two or more shelters equally.

Amé et al. restrict their study to the case of identical shelters.

Moreover, although they show that the probability per-unit-time

for an individual to leave an aggregate is a function of the

aggregate’s size, they do not indicate how cockroaches could

estimate the density of conspecifics in a shelter.

We propose here a broader perspective, in which shelters can be

seen as resources for cockroaches and the shelters’ surfaces

correspond to the capacities of the resources. The total surface of

the cockroaches’ bodies corresponds to the group needs. Building

on this equivalence, we generalize the model of Amé et al. to study

the behavior of a group when resources of different capacities are

available in its environment. These resources can be shelters, as in

the case of cockroaches, but more generally they can correspond

to any source of supply or support such as food sources, nest site,

resting site, etc.

For two resources, the model therefore becomes:

dX1

dt
~{X1Q1zm1(1{X1=S1)(N{X1{X2)

dX2

dt
~{X2Q2zm2(1{X2=S2)(N{X1{X2)

8>><
>>:

ð2Þ

where X1 and X2 are the average number of individuals at the two

resources, S1 and S2 are the capacities of the resources, N is the

total number of individuals, and m1 and m2 are the probabilities for

an individual to encounter each resource during a random walk in

a limited space. The factor (1{Xi=Si) models the saturation of

the resources when their maximum capacity is reached. The

equations are composed of a positive term that reflects the average

number of new individuals using the resource and a negative term

reflecting the average number of individuals that leave the

resource.

Interestingly, the generalized model predicts that the group

selects the smallest resource available that is large enough to

sustain the group (see Fig. 1), therefore avoiding both undersized

and oversized resources. This collective behavior follows from a

simple modulation of the individuals’ probability per-unit-time to

leave as a function of the density of individuals at the resource.

To validate this theoretical prediction, we set up real world and

simulated robotics experiments (see Materials and Methods for full

details). Unlike abstract models based on equations, realistic

simulations require very complete specifications of the individuals

and their behavior. These simulations allow us to study the

collective behavior in a wide range of conditions, varying group

size and resource sizes. Physical robots provide a validation of our

simulation results and demonstrate the feasibility of the collective

behavior in real world systems.

We placed a group of 10 e-puck robots [16] in a circular arena

(1 m radius), searching for resources during one hour (see Fig. 2

and 3). The role of resources was played by two cardstock discs

over which robots could move freely. Using infrared sensors

directed to the ground, robots could detect when they were at a

resource. In addition, 8 infrared sensors disposed around the body

of the robots allowed them to detect obstacles such as arena

borders or other robots in a range of 10 cm or less. The target

resource, having a capacity matching the group size, could host all

the robots involved in the task. Its dimensions were obtained using

simulations (radius of 0:25 m). The other resource was either

larger or smaller. Following the predictions of our mathematical

model, we expected the robots to gather on the target resource.

As in the model, robots decide to stay at or leave a resource as a

function of the density of robots already present. However,

computing the density of a region is a non-trivial task for

individuals that have limited perception and cognitive abilities

Figure 1. Simulations of the extended model. Resource 1 has a
carrying capacity matching the group size while the radius of resource 2
varies (represented with a log-scale). The figure reports the proportion
of simulations (+ 95% CI) that end with the choice of resource 1 (1000
trials). We consider as chosen the resource occupied by the largest
number of individuals. When the two resources have a sufficiently
different size, the group decisively selects resource 1. When resources
have similar size, the model predicts the random choice of one of the
resources. Simulations are produced with a discrete event model based
on the system of equations 2 in which individuals probabilistically move
between the environment and the resources.
doi:10.1371/journal.pone.0019888.g001

Figure 2. The experimental setup. In a circular arena of 1 m radius,
the two resources are represented by cardstock discs (radius of 0:25 m
and 0:45 m) fixed to the ground.
doi:10.1371/journal.pone.0019888.g002
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because it requires knowledge of both the surface of the region and

the number of conspecifics present in the region. To estimate the

region’s surface, individuals might localize themselves in their

environment and build an internal representation of the region

[17,18]. Another possibility would be to rely on Buffon’s needle

method, which involves marking of the environment [19–21].

Moreover, to count the number of conspecifics in the region,

robots should keep track of their encounters and avoid double-

counting.

Here, robots have very limited capabilities. They can only

perceive whether or not they are on a resource, and locally detect

obstacles or other robots. They are not endowed with sufficient

perceptual or cognitive abilities to measure the size of the

resources nor to count the total number of robots.

To solve the problem of density estimation, we use therefore a

method that takes inspiration from a recent study of emigrating

ants Temnothorax albipennis [22]. These ants rely on the rate of

encounters with other ants to evaluate the density of individuals in

a cavity: the more contacts they have with other ants, the greater

their estimated value of the density. Using this simple mechanism,

it is possible to implement the collective selection process described

previously.

The behavior of the robots is therefore a combination of the

cockroaches’ and the ants’ behavior [15,22]. The robots’

controllers are implemented as probabilistic finite state machines

[23]. When a robot is not at a resource, it performs a random walk

with obstacle avoidance till a resource is found again. When at a

resource, the robot also performs a random walk, trying to remain

there by turning around upon encountering borders. Every 30 s,

the robot can decide with the probability per-unit-time derived

from Q to leave the resource. The density D is estimated by the

number of collisions with others robots measured during this time

interval. The parameters h and r are obtained using a genetic

algorithm designed to favor a fast and stable collective choice of

the target resource (see Materials and Methods).

Results

Collective discrimination
In a first set of experiments, we assess the robots’ capability to

discriminate between two different resources. The robots are

offered a target resource that provides enough space for the group,

while the area of the other one is 3:24 times larger. The average

number of robots found at each resource is reported in Fig. 4A.

The experiments start with robots randomly scattered in the

environment and last one hour. At the end of all the trials, robots

have collectively selected the target resource (in the following, we

consider as chosen the resource occupied by the largest number of

individuals). In the first moments, robots could be found at the

large resource because it is most likely to be discovered first.

However, the low density of robots at this resource prevented them

from remaining there. On the contrary, the target resource, once

discovered by the robots, provided them higher densities and

therefore longer staying times. Finally, robots were able to

discriminate between resources of different sizes, choosing the

one that best fits the group size.

Accuracy and scalability
The second set of experiments sheds light on the discriminatory

power of the group. In order to allow a large number of

replications, we rely here on simulations that were validated

against the first set of experiments (see Fig. 4B, and Videos S1, S2).

We first introduce a target resource in the environment. In

successive tests, we add resources of growing size and observe

which one is chosen by the simulated robots. The size of the

presented resources varies from 0:04 to 4 times the area of the

target resource. With 10 robots, we observe that the group

successfully recognizes the target resource when the other resource

is smaller or larger by a factor of 0:73 or 1:73 (see inset of Fig. 4C).

When the resources do not differ enough, the robots are not able

to discriminate them anymore. They are instead making random

choices. We measure the difference in resource size needed to

observe selection of the target resource for a growing number of

robots. To allow comparison of results, we scale the environment

size and the duration of the trials with respect to the number of

robots used (see Materials and Methods). As the number of robots

grows, we see a rapid increase in the discriminatory power (see

Fig. 4C). With 10 robots, a minimum difference of 73% is

necessary to observe selection of the target resource, while 100
robots only require a difference of 31%: larger groups of robots

discriminate between resources more accurately. We also report

the median time the robots need for making their collective

decision in Fig. 4D. The decision time grows linearly with the

number of robots involved in the task (r2~0:97).

Adaptivity
The third set of experiments shows the adaptivity of the robots’

collective choice when a better opportunity appears in the

environment. We first perform experiments with 10 robots and

then explore the impact of increasing the group size with

simulations. Experiments start with a single resource in the

environment, which is 3:24 times bigger than the target resource.

As this is the only option available, robots aggregate at this

resource (see Fig. 5A and B). After five minutes, we add a target

resource inside the arena. With 10 robots, the group adapts its

choice to the new settings and selects the target resource. It takes

on average 720 s to observe this adaptation, which we continue to

observe in simulation with larger groups of robots. This is shown in

Fig. 5C, where we report the median time of adaptation with

respect to the number of simulated robots. With 100 robots,

adaptation occurs after 3:13|106 s. Adaptation time grows

exponentially with the number of robots involved (r2~0:96).

Discussion

Our results illustrate how simple interactions can lead a group

to collectively choose amongst resources one that closely matches

Figure 3. The e-puck robot used in our experiments. It has a
cylindrical body and moves with two motorized wheels. Perception of
obstacles or other robots is achieved through infrared sensors
distributed around the body. A sensor directed toward the ground
allows perception of resources.
doi:10.1371/journal.pone.0019888.g003
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its needs. The collective discrimination arises from the interplay of

several factors. On the one hand, individuals prefer to stay at

resources where their density is higher. This positive feedback

strongly favors the selection of smaller resources where higher

densities can be achieved. On the other hand, it is more difficult to

join a resource where the density is high. This negative feedback

favors the selection of larger resources that can host additional

individuals. Moreover, smaller resources are less likely to be

discovered and if one is selected the group may be forced to split

[15]. Because of this, competition may happen with any other

resource found by these excluded individuals. In our model, these

factors balance each other out in one case: when the capacity of a

resource matches the size of the group.

This collective behavior can be achieved by agents with very

limited perceptual and cognitive abilities, as demonstrated by our

robotics implementation. In our experiments, robots can only

detect when they are at a resource site, and they are neither able to

measure the capacities of the different resources nor to evaluate

the number of robots using them. Moreover, the robots do not

communicate any information explicitly, and solely rely on the

detection of nearby robots to make decisions. As a consequence,

the collective discrimination process does not require to centralize

information, nor to refer to a leader.

We found that the accuracy of the discrimination increases with

the group size: larger groups are able to detect proportionally

smaller differences between two resources. Similar results have

been observed in various biological systems. Groups of Gasterosteus

aculeatus fish for instance, when their size increases, become better

at discriminating phenotypic differences in pictures of conspecifics

[24] or at selecting a route where risks of predation are reduced

[25]. In Temnothorax albipennis ants, when environmental constraints

limit the number of scouts able to visit potential nests before

Figure 4. Collective discrimination between two different resources. (A and B) We use a target resource of ideal dimensions and a larger
resource. The figures show the number of robots (median + 95% CI) at each resource as a function of time in reality and in simulations respectively
(35 trials). Initially robots find the larger resource more easily, and then their collective choice changes quickly in favor of the target resource. (C)
Discriminatory power of the collective behavior as a function of the group size. The inset shows the choice of the target resource by a group of 10
simulated robots when the other resource has different sizes. When the two resources have similar dimensions, the robots are not able to
discriminate them properly, and we observe a random choice of the resource (binomial test, pv0:05). The main plot shows the minimum resource
size difference necessary to observe discrimination. This minimum difference decreases with the group size (binomial test with 100 trials, pv0:05). A
linear regression performed on the data indicates a significant improvement of the discriminatory power (r2~0:76, t-test pv0:001). (D) Median time
to make the collective decision in function of the group size. We report the first time when the target resource contains most robots. The time grows
linearly with the number of robots involved in the task (r2~0:97, t-test pv0:001).
doi:10.1371/journal.pone.0019888.g004

Figure 5. Adaptivity of the collective choice. (A and B) Ten robots are presented a single large resource and gather in it. After five minutes
(dashed line) a target resource is introduced in the environment. Figures show the number of robots (median + 95% CI) at each resource as a
function of time in reality and in simulations respectively (35 trials). We observe a quick adaptation of the collective choice towards the target
resource after its introduction. (C) The median adaptation time (plotted in log scale) grows exponentially with the number of robots involved (100
trials). We considered that the choice was reverted as soon as there were more robots at the target resource than at the large resource.
doi:10.1371/journal.pone.0019888.g005
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colony emigration, the probability of selecting the best available

site decreases [26,27]. In our model, as well as in these biological

examples, the better accuracy with increasing group sizes can be

explained by the ‘‘many wrongs’’ principle [13,28], an application

of the more fundamental statistical phenomenon known as the law

of large numbers. It states that, in any system able to pool

individual estimations of a quantity (here the density at a given

resource), the confidence interval of the mean value of this

quantity (i.e., the accuracy of the estimation) decreases with the

number of individuals.

We also observed that the collective choice is flexible. If the

group has selected a resource, it is able to switch for a better one

introduced afterwards. The ability to adapt in changing environ-

ments is triggered by the initial low density of individuals at the

primary resource. This favors the exploratory behavior of

individuals that are thus able to find the better resource after its

introduction.

It is worth noting that the spatial component of our model, and

in particular the exploratory behavior of robots, has a major

impact on the dynamics of the discrimination process. We found

for instance that the time to make a decision grows linearly with

the number of robots involved in the task. But we also showed that

the adaptation time increases exponentially with the group size. In

our simulations, the setup is scaled with respect to the target

resource corresponding to the group size but the speed of the

robots is kept constant. Therefore, the time for individuals to

switch between resources grows linearly with the size of the

environment and the group size, and so does the time to make a

decision. Similarly, the random walk of the robots is not modified

when the resources and the environment were enlarged. In

adaptation experiments with large groups of robots, this increased

the probability that robots, initially grouped at a less suitable

resource, came back toward it, thus reducing the probability to

find the more suitable resource.

The simplicity of our theoretical model and of its robotics

implementation suggests that a similar mechanism could exist in

nature. For instance, this mechanism may explain the pattern of

shelter selection in the den-dwelling Caribbean spiny lobster.

Indeed, individuals of this species tend to aggregate under shelters

maximizing their density when predation risks are high, and they

select shelters that are scaled to their group size [29]. In the ant

Temnothorax albipennis, nests are scaled according to the size of the

colony [30] and ants select new nest sites that match their colony

size [31]. Although collective decisions and resource selection

processes have been long studied in social insect species, such as ants

[8, 32 33], bees [7,34] and cockroaches [35], the effects of density at

the resource have been neglected. In all these studies, animals are

presented with several feeders containing various food quantities,

often in the form of a sucrose solution. However, feeders in these

experiments are always of identical and small size, thus masking

possible effects of density at the resources. Though, density of

conspecifics is information that could be used by social animals to

evaluate to which extent a resource is exploited [36] or has been

secured against competitors. The collective discrimination mecha-

nism we introduced here, relying on local estimates of the density at

a resource, could help them to achieve a compromise between the

benefits associated with small and large resources and the costs of

their exploitation. To assess this question, it would be interesting to

reproduce classical experiments of food source selection by using

food patches of different dimensions, or to evaluate during field

observations the relationship between the size of a group and the

size of the resources it exploits.

Recent studies have highlighted the mechanisms that animal

societies use to solve complex problems through simple and highly

distributed interactions [5,6,12,13,37]. They have attracted a lot of

attention from the computer science, the operational research and

the robotics communities because their distributed nature gives

them several advantages over centralized control algorithms

[38,39]. They are often stated as more robust (several copies of

each component exist), scalable (no communication bottleneck)

and cost effective (identical components are easier to mass

produce). In this context, we believe that our results open

interesting perspectives for the development of distributed resource

management systems, especially when group’s needs and/or

resource availabilities are dynamical and difficult to evaluate.

Materials and Methods

Experimental setup
The environment in which experiments take place is a circular

arena of 1 m radius (see Fig. 2). Since robots’ perception relies on

measures of infrared light, the arena is enclosed in a room without

window to prevent natural light from entering the setup. Two

compact 18 watt fluorescent lamps placed 2 m above the arena

shed light in the room. The role of resources is played by two dark

cardstock discs fixed to the ground. One resource, called the target

resource, has a carrying capacity that matches the number of

robots (0:25 m radius). The other resource is larger than the target

by a factor of 1:8 (0:45 m radius). We recorded the experiments

with a camera placed above the setup. Data was extracted from

the videos using a tracking system designed at the IRIDIA

laboratory that identified how many robots were at each resource.

Robotic platform
We use e-puck robots (see Fig. 3) designed by Francesco

Mondada and Michael Bonani at the École Polytechnique

Fédérale de Lausanne (EPFL), Switzerland [16]. E-pucks are

modular, robust and inexpensive robots designed for research and

educational purposes. The robots have a cylindrical body (3:5 cm

radius) and move using a differential drive system made of two

wheels directly fixed to the shafts of stepper motors. Perception of

the environment is achieved using infrared sensors. Robots

perceive obstacles and other robots by periodically sending 8
infrared beams in opposite directions. The intensity of reflected

infrared light informs the robots about nearby objects. Moreover,

robots perceive resources using an infrared sensor directed to the

ground. Additional information and free software regarding the e-

puck robot are available at www.e-puck.org.

Simulator
Simulation results were obtained using the Twodeepuck simulator,

a fast multi-robot simulator coded in C++ initially designed by

Anders L. Christensen and Laurent Bury at the IRIDIA

laboratory [40,41]. Motion of the robots is simulated with

standard two dimensional kinematics as described in [42]. In

order to accurately reproduce real world experiments, we have

systematically sampled the data output of the robot’s infrared

sensors. We gathered the signal intensity perceived when the robot

was presented another robot or a wall. To get a complete picture

of the sensor’s output, we tested an exhaustive set of distances and

angles. With this data at hand, we created models of the sensors

output. The data fed to the controllers in simulation corresponds

closely to what happens in reality.

Robotic controller
Robots are controlled by a finite state machine. In the following

we summarize the possible behavioral states. The controller is

initialized in the Explore state.

Self-Organized Discrimination of Resources
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N Explore. The robot performs a random walk in the

environment. An obstacle avoidance subroutine is triggered

when needed. The robot switches to the Stay state when it

encounters a resource.

N Stay. The robot performs a random walk inside the resource.

Every 30 seconds, the robot decides with probability per-

unit-time Q to leave the resource and enter the Explore state. If

the robot finds itself outside the resource it switches to the

BackToResource state.

N BackToResource. The robot performs a U-turn then keeps

turning on the spot until it detects the resource again. If the

robot finds itself in the resource it switches to the Stay state. If 5
seconds have elapsed and the robot still does not perceive the

resource, it switches to the Explore state.

Parameters tuning
The parameters h and r determine when robots make the

decision to leave the resources. For a robot, the probability per-

unit-time Q to leave a resource is expressed as h= 1zrD2
� �

, where

D is an estimate of the robot density in the neighborhood. If the

resource is crowded, D&1, and Q&h=(1zr). If the resource is

empty, D&0, and Q&h. Therefore the parameters h and r
determine the maximum and minimum rate of robots leaving a

resource. From this rate, we directly derive (they are equal) the

probability per-unit-time Q of a single robot to leave a resource.

To ensure an effective collective behavior (robots’ batteries get

discharged in less than 3 hours), we tune these parameters with a

simple generational genetic algorithm [43]. We define a genotype

as a vector of two real values to be assigned to h and r. We run the

genetic algorithm for 1000 iterations, during which we breed new

generations of 64 genotypes. The genetic algorithm loop consists

in the evaluation, the selection and the reproduction of the

genotypes.

To evaluate the fitness of a given genotype, we parameterize the

controller of 10 simulated robots with the genotype. We run 50
simulated experiments with a target resource and a larger resource

(0:3 m radius). We also run 50 experiments with a target resource

and a smaller resource (0:2 m radius). The fitness of the evaluated

genotype is computed as an indicator of the ability of the robots to

make a choice that is fast, lasting, and in favor of the target

resource:

fitness~n:(1{s)=T :d=T :c,

where n is the proportion of experiments in which a collective

choice of the robots occured, s is the average starting time of the

choices, d is the average duration of the choices, T is the total

duration of an experiment and c is the proportion of choices made

in favor of the target resource.

After evaluation, we rank the genotypes according to their

fitness and create a new generation. The best 5% genotypes are

cloned. Then, genotypes are picked randomly from the best 70%

and mutated with a probability of 0:2 or reinitialized randomly

with a probability of 0:07. A mutation consists of adding to the

genotype random values drawn from Gaussian distributions. For

h, we use a Gaussian with m~0 and s~0:1. For r, we use a

Gaussian with m~0 and s~1:1. During evolution, all vector

component values are constrained to remain within the ranges

½0,1� for h, and ½0,109� for r.

The analysis of the results reveals that the collective behavior of

a group of 10 robots in our experiments is the most effective when

h~1 and r~600.

Scaling the setup when group size increases
Simulated experiments involve up to 100 robots. Because larger

groups of robots span over a larger surface and need more

resources, we have to scale the size of the arena and the size of the

resources with respect to the group size considered. Also, since the

robots do not move faster and the arena is enlarged, we have to scale

the duration of the experiments. In order to make meaningful

comparisons of the results accross different group sizes, we ensure

that for any size of the target resource a single robot alone in the

setup spends the same proportion of the experiment duration

looking for the resources. To this end, we keep a constant ratio

between the size of the target resource and the size of the arena [44],

and that same ratio is also used to scale the duration of the

experiments. Therefore, the whole scaling procedure depends solely

on the size of the target resource. The size of the target resource is

identified using simulations in which resources of various sizes are

presented to the robots. The target resource is the one constantly

preferred by the group. For each group size considered, Table 1

summarizes the target resource size, arena size and experiments

duration we used to parameterize our experiments.

Supporting Information

Video S1 Collective discrimination with a large re-
source and a target resource. The video shows a simulated

experiment in which 10 robots are randomly placed in an

environment with a target resource and a larger resource. After

one hour, the group of robots has selected the target resource.

(MP4)

Video S2 Collective discrimination with a small re-
source and a target resource. The video shows a simulated

experiment in which 10 robots are randomly placed in an

environment with a target resource and a smaller resource. After

one hour, the group of robots has selected the target resource.

(MP4)
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Table 1. Parameters’ values.

Group size
Target resource
radius (m)

Arena radius
(m)

Experiment
duration (s)

10 0:250 1:000 3600:0

20 0:334 1:335 4804:6

30 0:385 1:541 5546:3

40 0:440 1:761 6340:0

50 0:476 1:905 6858:6

60 0:502 2:010 7235:3

70 0:519 2:078 7479:3

80 0:544 2:177 7837:6

90 0:570 2:279 8204:5

100 0:578 2:312 8323:1

Summary of the main parameters’ values used in our experiments with respect
to the group size considered.
doi:10.1371/journal.pone.0019888.t001
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