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Abstract We study cooperative navigation for robotic swarms in the context of a general
event-servicing scenario. In the scenario, one or more events need to be serviced at specific
locations by robots with the required skills. We focus on the question of how the swarm
can inform its members about events, and guide robots to event locations. We propose a
solution based on delay-tolerant wireless communications: by forwarding navigation infor-
mation between them, robots cooperatively guide each other towards event locations. Such
a collaborative approach leverages on the swarm’s intrinsic redundancy, distribution, and
mobility. At the same time, the forwarding of navigation messages is the only form of coop-
eration that is required. This means that the robots are free in terms of their movement and
location, and they can be involved in other tasks, unrelated to the navigation of the searching
robot. This gives the system a high level of flexibility in terms of application scenarios, and
a high degree of robustness with respect to robot failures or unexpected events. We study
the algorithm in two different scenarios, both in simulation and on real robots. In the first
scenario, a single searching robot needs to find a single target, while all other robots are
involved in tasks of their own. In the second scenario, we study collective navigation: all
robots of the swarm navigate back and forth between two targets, which is a typical scenario
in swarm robotics. We show that in this case, the proposed algorithm gives rise to synergies
in robot navigation, and it lets the swarm self-organize into a robust dynamic structure. The
emergence of this structure improves navigation efficiency and lets the swarm find shortest
paths.

Keywords Swarm robotics - Cooperative navigation - Self-organization

1 Introduction

In this paper, we present a new algorithm for cooperative navigation in swarm robotics.
With navigation, we refer to the task of finding a collision-free path for a robotic system to
travel from one place to another. Swarm robotics is the study of large groups of relatively
simple robots that interact and cooperate with each other in order to jointly solve tasks
that are outside each robot’s own capabilities (Dorigo and Sahin 2004). Such task solv-
ing typically relies on self-organization and emergence, meaning that swarm’s organization
comes from within the system (i.e., is not imposed from outside), and comes about in a
decentralized way, from local interactions between individual robots (De Wolf and Holvoet
2005). Algorithms in swarm robotics mostly rely on cooperation and simple interactions
between robots, rather than on complex individual behaviors that require powerful sensory
capabilities. Concretely, in the context of navigation, this means that the focus is on co-
operative navigation, where robots guide each other, rather than on the use of maps (see,
e.g., Mirats Tur et al. 2009) or map-building strategies (e.g., simultaneous localization and
mapping (Durrant-Whyte and Bailey 2006)), or the use of an external infrastructure (e.g., a
communication network or a localization system (O’Hara et al. 2008)).

Many studies in the context of swarm robotics navigation consider a scenario where
robots need to move back and forth between two locations, e.g. to transport items from one
place to another. Most of this work is based on indirect communication between robots,
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and is inspired by the foraging behavior of certain types of ants in nature (Werger and
Matari¢ 1996; Wodrich and Bilchev 1997; Sharpe and Webb 1999; Garnier et al. 2007;
Fujisawa et al. 2008; Nouyan et al. 2009; Ducatelle et al. 2011a). This behavior relies on
stigmergic communication, which is a form of indirect communication through local modifi-
cation and sensing of the environment. Specifically, ants moving between the nest and a food
source leave a chemical substance, called pheromone, in the environment, which attracts
other ants and guides them to the food. The interesting aspect is that the collective process
of pheromone laying and following reinforces the most efficient paths, so that eventually the
shortest path appears as a consequence of the swarm’s collective actions (Deneubourg et al.
1990; Bonabeau et al. 1999). This is an example of emergent self-organized behavior. An
important difficulty with the use of this pheromone-based navigation model in robotics is the
practical implementation of the indirect communication, in terms of a satisfactory artificial
replacement for the chemical pheromone used by ants.

In this work, we propose a new approach for navigation in swarm robotics based on
direct communication between robots, and fully relying on cooperation and simple inter-
actions. We consider a general problem scenario where a swarm of robots equipped with
wireless communication devices needs to execute multiple tasks in a confined area. The
tasks correspond to events that need to be serviced in given locations. Each event can be
taken care of by one or more robots with the appropriate skills to service the event. For
instance, a task can consist in transporting multiple items, one at a time, from one location
to the base location of the swarm, or vice versa. Another practical example are fire events,
which require robots capable to transport water to move back and forth between multiple
water sources and fire locations.

A full solution to this class of problems involves mechanisms for detecting the events
and announcing them to the swarm, for the allocation of robots to events, and for guiding
robots with the appropriate skills to deal with a specific event to event locations. In this work
we focus on robot navigation: how can a robot navigate to event’s location after the event
has been advertised and the robot has assigned itself to the task following the reception of
event notification. At this aim, we assume that, for each event in the environment, there
is one robot T of the swarm that has detected the event and found its location. The robot
remains static at that location, and announces its presence (i.e., the presence of the task)
through periodic wireless message broadcasts. We refer to T as a target robot. A robot §
of the swarm that can service the task, needs to navigate to a given target robot 7', which
is, in the general case, outside the range of its sensors and communication devices. We
investigate how S can find 7' through cooperative support from the other robots in the swarm
when no environment maps or external localization systems are available to the robots. An
important aspect in our problem definition is that these other robots can be involved in tasks
that are independent of the navigation of S. They do not adapt their movements to guide
S in its navigation task, but they do offer help through communication. This means that
the behavior of the remaining robots of the swarm does not depend on the navigation of §
to T. In fact, these robots may be involved in any task of their own, including a different
navigation task, to another target 7', or even to the same target 7. In this way, depending
on the behavior of the different robots and the nature of the events, a variety of different
scenarios of practical interest can be obtained, and the swarm can fully exploit the existing
individual capabilities to perform multiple tasks and swarm navigation in parallel. In this
respect, our scenario significantly differs from the typical ones previously considered in
swarm navigation, in which some robots adapt their own behavior (or even stand still playing
the role of environment landmarks) to support the navigation of other robots, or, more in
general, where all robots are involved in solving a single task cooperatively.
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We deal with the described problem scenario proposing an algorithm based on mobile
wireless network communications. Each robot A coming in communication range of a tar-
get robot 7', and receiving its periodic broadcasts, stores information about 7 in a local
data structure, which we call a navigation table. This information consists of a sequence
number, indicating the relative age of the message, and a distance value, which is an esti-
mate of the navigation distance to 7. As A moves around, it updates the information in its
navigation table, and periodically broadcasts it to neighboring robots. This way, navigation
information can travel through the (possibly intermittently connected) mobile ad hoc net-
work (MANET) formed among the swarm of robots by being carried on board of the mobile
robots. A searching robot § receiving new navigation information from a robot B, compares
this new information to previously received navigation information, and moves towards B’s
location if the new information is better.

This way, navigation information spreads throughout the MANET in a wireless multi-
hop fashion, but without requiring to establish routing paths, as is common in the area of
delay-tolerant networking (DTN) (Fall 2003; Karlsson et al. 2008). On the other hand, a
searching robot S makes use of the navigation information to physically move from robot
to robot locations towards the target, similar to how a data packet follows a multi-hop route
through a MANET (Royer and Toh 1999; Di Caro et al. 2005).

The proposed algorithm is relatively simple, but very powerful and versatile. When ap-
plied in different scenarios, it can give rise to different swarm-level movement patterns,
while each time providing efficient navigation. Since the given problem description is very
general, without losing generality, we restrict our study to two scenarios, which we refer
to as single robot navigation and collective navigation. They are representative of a large
number of scenarios of both practical and theoretical interest. The two scenarios have been
implemented and studied both in simulation and using real robots, the foot-bots (Dorigo
et al. 2013; Bonani et al. 2010) (see Sect. 3.1). Simulation tests assume robots with the
characteristics of the foot-bots.

In the single robot navigation scenario, a single robot S needs to find a single target robot
T, which remains static. An example application of this scenario could be that T is indi-
cating a place where a certain task needs to be performed, and only S has the capabilities
required for this task. All other robots of the swarm execute random movements, expressing
that they are involved in other tasks, which are independent of S’s navigation. The goal is
to show that using the proposed algorithm, they can offer support to S’s navigation with-
out having to adapt their own movements. We investigate the performance of the system
with varying swarm sizes, environments, and random movement patterns. We show that the
approach is efficient, scalable, and robust to robot failures.

The collective navigation problem is essentially the frequently studied scenario in swarm
robotics, where all robots of the swarm navigate back and forth between two targets T
and T’. Compared to the single robot navigation problem of the first scenario, we show
that collective navigation gives rise to synergies, improving navigation performance. In par-
ticular, the concurrent execution of communication-based navigation by all robots lets the
swarm self-organize, and a collective movement pattern emerges in the swarm behavior.
This self-organized movement improves navigation efficiency and is robust with respect to
the swarm size. Moreover, it allows the robots to find the shortest path in cluttered envi-
ronments. This means that collective navigation based on our communication-based system
has similar properties to ant-inspired pheromone-based navigation, while avoiding the prob-
lem of how to implement stigmergic communication. Besides showing a new approach for
collective navigation, this is also an example of the general applicability of our simple nav-
igation system.
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In terms of requirements, our approach only relies on wireless message communication
between robots to find paths for navigation, leveraging on simple interactions, cooperation,
and self-organization, as is common in swarm robotics. However, to make our message-
passing approach feasible, we require some specific properties from the robots’ wireless
communication device. First of all, the device should provide line-of-sight communication,
so that communication links can be related to obstacle-free paths. Second, the device should
be able to link received messages to relative position information (angle and distance) about
their sender, so that robots can follow paths detected through communication. Similar re-
quirements were formulated in O’Hara and Balch (2004), where a network of embedded
communication nodes is used to guide a single robot to a target. Similar to that work,
we address these requirements using an infrared range-and-bearing (I'RB) communica-
tion system, of which implementations exist for various robots (Pugh and Martinoli 2006;
Gutiérrez et al. 2008; Roberts et al. 2009; Bonani et al. 2010), and in particular for the
foot-bot robots that we used in the experiments.

The rest of this paper is organized as follows. In Sect. 2, we describe the communication
aided navigation algorithm. In Sect. 3, we study the working of this algorithm in the scenario
of single robot navigation. In Sect. 4, we investigate the scenario of collective navigation:
we study how the system self-organizes, and how it is able to find shortest paths. After
that, in Sect. 5 we describe the implementation of our system on real robots, and in Sect. 6
we discuss related work. Some of the work presented here appeared earlier in conference
papers (Ducatelle et al. 2009, 2011b).

2 Communication aided navigation

In this section, we explain the communication aided navigation system. We first describe
the details of the algorithm executed by the robots. Then, we take a look at the swarm as
a whole and explain how the joint execution of the proposed algorithm by the robots can
support effective navigation.

2.1 The navigation algorithm

The navigation system we propose is loosely based on routing algorithms used in MANETS.
Using wireless communication, the robots of the swarm form a MANET among them. The
general idea is to build up navigation information through communication in this MANET,
and use it to guide a searching robot from hop to hop to its target, similar to how rout-
ing information is gathered in a MANET and used to forward data packets to their des-
tination. All robots in the swarm maintain a table with navigation information about all
known target robots. The information about a target 7' contains an estimate of the naviga-
tion distance to 7', as well as a sequence number that serves as an indication of the relative
age of the information. Each robot periodically broadcasts the content of its table to its
neighbors, which update their table based on the received information. This way, naviga-
tion information spreads throughout the swarm via wireless communication. Robots also
update the distance estimates in their table based on their own movements, using odome-
try information. This way, navigation information can travel between parts of the MANET
which are not connected through wireless communication, by being carried on board of the
mobile robots, as is common in the area of delay-tolerant networking (DTNs) (Fall 2003;
Karlsson et al. 2008), without requiring establishing and maintaining routing paths, which
could be problematic in MANETS. This is important to let the algorithm operate both in
dense and sparse robot swarms. To navigate to a given target robot 7', a searching robot §
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continuously monitors all received navigation information. Each time it receives improved
navigation information (where the quality of navigation information is defined based on its
distance and age, as explained below), it moves towards the neighbor robot that sent this
information. This way, S moves between the robots of the swarm until it reaches 7. In what
follows, we describe the different aspects of this system in detail. An overview of how they
tie together is given in Algorithm 1, which shows the sequence of actions executed by a
robot in each control step.

Algorithm 1 Communication-based navigation: the actions executed at each control step by
each robot A
1: /* Update local distance estimates */

2: for (Each target 7 in navigation table) do
3:  Update distance information d(A, T') for T based on A’s moved distance
4: end for
5: /* Process received messages */
6: for (Each received message from a neighbor robot B) do
7. for (Each target T in the message) do
8: Receive distance d’(B, T') and sequence number s'(7") from B
9: Compute d'(A,T):=d(A,B)+d (B, T)
10: /* Update navigation tables if new information is better */
11: if ((s'(T) > s(T)) OR ((s'(T) ==s(T)) AND (d'(A,T) <d(A,T)))) then
12: Replace information for T in table: s(7) :=s'(T) and d(A, T) :=d'(A, T)
13: end if
14: I* Update navigation behavior if new information is better */
15: if (A is searching for target 7') then
16: if ((s'(T) > s*(T)) OR ((s'(T) == s*(T)) AND (d'(B,T) <d*(T)))) then
17: Replace current navigation information: s*(7') := s'(T) and d*(T) :=
d'(B,T)
18: Move towards B’s position
19: end if
20: end if
21:  end for
22: end for

23: /* Send message */
24: if (Time to send update) then
25:  if (The local robot A is a target) then

26: Increase sequence number s(A) for target A in navigation table
27:  end if

28:  for (Each target T in (subset of) table) do

29: Add information s(7") and d(A, T') to message

30:  end for

31:  Broadcast message

32: end if

Navigation tables and message broadcasts The navigation information about a target T
present in a robot A’s navigation table consists of a sequence number s(7'), indicating the
relative age of the information, and a distance d(A, T'), indicating the distance traveled by
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the information between T and A. Since navigation information can only travel via line-of-
sight wireless communication or on board of moving robots, d(A, T) is an estimate for the
navigation distance between A and T. At the start of swarm deployment, all robots have an
empty table. When a robot T becomes a target robot (i.e., it discovers a target location and
starts announcing it), it puts an entry about itself in its table. In this entry, both the sequence
number s(7") and the distance d(T, T) are set to 0. At periodic intervals, robots broadcast
the content of their table to neighbors. When 7' broadcasts the information about itself, it
first increases sequence number s(7') in its table by 1. The distance d(T, T') is broadcast
without modification. Another robot A broadcasting information about 7" does not modify
s(T), so that the sequence number marks the relative time when the information left 7. The
use of sequence numbers to mark the relative age of messages was inspired by MANET
routing protocols such as DSDV (Perkins and Bhagwat 1994). The size of each robot’s
navigation table, and hence of its update messages, depends only on the number of targets
in the environment. If bandwidth is limited, robots select a subset of targets to send updates
about, in a round-robin fashion.

Processing received broadcasts Any robot A receiving a broadcast from another robot B
processes the entries for all targets 7' in the message. It reads the received sequence number
s'(T) and distance d’(B, T') from the message. On the basis of d’(B, T), it calculates a new
estimate for its own distance to T, d'(A, T), by adding the distance d(A, B) between itself
and B (as measured at message reception with the IrRB communication system). Then, A
compares the new values, s'(T) and d'(A, T), to the information about T in its own table,
s(T) and d(A, T). The new information is considered better if either s'(7T) > s(T) (the new
information is more recent), or s'(7) = s(T) and d'(A, T) < d(A, T) (the new information
is equally recent, but indicates a shorter path). In that case, the information in the table is
replaced by the new information.

Updating distance estimates 1If A moves around without receiving new updates about 7,
the distance d(A, T) in its table needs to be updated for it to remain an estimate of the nav-
igation distance to T. Therefore, as A is moving, it measures its moved distance through
odometry, and adds this to d(A, T). This way, d(A, T) grows and remains a measure of
the distance traveled by the navigation information. The direction of A’s movement is not
taken into account, so that d(A, T) is not necessarily the shortest distance to 7. However, it
is an upper bound of the shortest obstacle-free path (since A per definition moved over an
obstacle-free path). Using this mechanism, the navigation system can work in sparsely con-
nected swarms: navigation information can bridge gaps in network connectivity by traveling
on board of moving robots.

Using the received messages for navigation A searching robot S moves towards the loca-
tion of the neighbor from which it receives the best navigation information about its target
T. The information s(7) and d(A, T), received from a neighbor A, is considered better than
the information s'(7) and d’(B, T), received from a neighbor B, if s(T) > s'(T) (A’s infor-
mation is more recent), or if s(7) = s'(T) and d(A, T) < d'(B, T) (A’s navigation distance
to T is less than B’s). In case A’s information is the best, S stores s(7) and d(A, T) as
s*(T) and d*(T), respectively, and also A’s relative location L 4, as measured by the IrRB
system at the moment of message reception. Then S moves towards L, using odometry.
Note that S does not adapt its goal in case A moves: only A’s location L, at the moment
of reception of the navigation information is important. Any newly received navigation in-
formation (either from A again, or from another neighbor) is compared to s*(7") and d*(T).
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8 Swarm Intell (2014) 8:1-33

If the information received from a neighbor C is better, S moves towards C’s location Lc.
This can happen either before S had reached its previous goal L 4, or after that. In the for-
mer case, S just abandons its previous goal in favor of the new one. In the latter case, S is
faced with a period in which it has no direction to go to (between the arrival at L4 and the
reception of the new information). In this case, we consider two possible strategies: S can
either wait statically at L 4, or start performing random movements until new information is
received. We refer to the former strategy as navigation with stopping (NwS), and to the latter
as navigation with random (NwR); we compare the two strategies in Sect. 3. The repeated
moves let S follow the best navigation information through the network. When § eventually
receives a message directly from 7, it goes straight to 7 and finishes the search. Finally, we
point out that we let the searching robot S approach any location (be it that of another robot
A or of the target T') from the right (by aiming for a location slightly to the right of L,).
This is to avoid head-on collisions between robots (especially useful when two searchers
move towards each other, as in the scenario of Sect. 4).

2.2 The system’s dynamics

The proposed navigation algorithm lets a searching robot S move towards the location of
neighbors that have information about its target T that is better than what S had previously
received, where “better” information means either more recent information (higher sequence
number), or information that has traveled over a shorter path from 7 (lower estimated dis-
tance). Here, we discuss how such moves can bring S closer to 7.

The issue is relatively straightforward in scenarios where robot density is high and the
swarm forms a connected MANET including S and 7. In this case, the periodic local broad-
casting of messages by the robots of the swarm lets each new message from 7 (each new
sequence number) flood the MANET. Flooding spreads as an expanding ring from 7', and
new navigation information reaches § first over the shortest path through the network. Such
flooding mechanisms are the same as those used by reactive MANET routing algorithms to
define the shortest path for data forwarding (see, e.g. Perkins and Royer 1999). Hence, when
S moves towards the most recent navigation information, it follows the shortest path avail-
able for data routing in the MANET. Since T is continuously sending new messages (with
increasing sequence numbers), the path followed by S is constantly adapted to changes in the
MANET topology. The correspondence between the shortest path for data routing and the
shortest path for navigation depends on the density and spread of robots in the environment
(see examples in Fig. 1).

When we consider scenarios where the robot distribution is sparser, the MANET formed
among the swarm may no longer be connected. At this point, a new message sent out by
T does not immediately flood throughout the swarm: to reach disconnected parts of the
MANET, a message needs to be carried there by mobile robots. This means that mes-
sage spreading depends on a combination of robot mobility and message communica-
tion. Several studies investigated message spreading in sparsely connected MANETS (Spy-
ropoulos et al. 2004; Groenevelt et al. 2005; Zhang et al. 2007; Jacquet et al. 2010;
Klein et al. 2010). In case robot density is not extremely sparse, so that robots can com-
municate with others relatively frequently, new messages spread from T in an expanding
wave-like propagation (Jacquet et al. 2010; Klein et al. 2010). Such propagation is similar
to the form of spreading obtained through flooding (but slower, as part of the spreading is
based on robots carrying the message away from 7). As a consequence, if S goes towards
the most recent information (or the information that has traveled the shortest distance), it
moves into the direction of the expanding wave, and can therefore be expected to make
steps in T’s direction.
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Fig. 1 Shortest communication path between two robots in a MANET. The area is 20x20 m?, and the
communication range is 3 m. The searcher is placed at the botfom left and the target at the top right. The
correspondence with the shortest path for navigation depends on robot placement and density: we show an
example with 80 robots (left) and one with 200 robots (right)
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Fig. 2 Navigation information (y-axis) against the distance from the target (x-axis): on the left the sequence
number gap and on the right the estimated distance. We plot data for the case of one robot and 20 robots. The
shaded areas around the curves indicate the standard deviation. See main text for explanation

In the case of very sparse swarms, robots only occasionally meet each other. In this
situation, robot mobility is the main factor defining information spreading: each robot
A that meets T picks up a new message and carries it around the environment. If A
does not meet any other robot, its sequence number s(7') and distance estimate d(A, T)
are defined by, respectively, the time when A met 7, and the total length of the move-
ments made by A since then. When § meets A, it moves towards A if A’s navigation
information is better than what S has received before. Whether this effectively brings
S closer to T depends on the relationship between the time/distance that A has trav-
eled from T, and its real distance to 7. This obviously depends on the movement pat-
terns followed by A. Nevertheless, several studies in the MANET literature have shown
that in general, for most reasonable mobility patterns, there is a positive correlation
between the travel time/distance and the actual distance (Dubois-Ferriere et al. 2003;
Spyropoulos et al. 2008). This positive correlation has been used to support message for-
warding, e.g., based on node encounter histories (Dubois-Ferriere et al. 2003; Grossglauser
and Vetterli 2006).

To investigate more in detail the properties of this correlation and its dependence on the
number of robots in the network, we performed simulation tests considering both one and
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multiple moving robots (the specific characteristics of the robot models and of the simulation
environment are discussed in the next section). In the first set of experiments, we placed a
target robot T in the middle of an uncluttered environment of 20x20 m?, and let a single
other robot A move according to a random direction mobility model (see Sect. 3 for details
about the simulator and the mobility model). The robots have a communication range of
3 m. We did 10 tests of 10000 s each. At each time step of 0.1 s, we measured the difference
between the sequence number on board of A and the most recent sequence number sent out
by T. We call this the sequence number gap. It is the relative age of the information on
board of A, and measures the elapsed time since A last encountered 7. We also measured at
each time step the real distance between A and T'. In Fig. 2, we plot the average sequence
number gap against the real distance. The graph shows that the sequence number gap is
on average an increasing function of the distance: when A has a lower sequence number
gap, it has a higher probability of being closer to 7. This means that if a searching robot
S moves towards a robot announcing a newer sequence number, it will, in expected value,
move closer to the target. However, it must be noted that the curve in Fig. 2 levels out at high
distances from T'; also, it has a large standard deviation. This means that the information is
quite unreliable: many of S’s moves will still go in a wrong direction.

The situation improves dramatically when we increase the swarm size. We performed the
same tests with 20 randomly moving robots. In this case, we get a density of one robot per
20 m?. Even though each robot can communicate over an area of more than 28 m?, this still
corresponds to a relatively sparse network connectivity, in which a MANET with randomly
placed nodes normally does not provide end-to-end communication connectivity. This is
due to the random locations of the robots; see, e.g., Dousse et al. (2002) for a thorough
study of the relation between density and connectivity in a MANET. We get therefore in
the earlier described situation where the swarm information spreads both through mobility
and communication: the robots update each other’s sequence number when they meet, and
new sequence numbers spread faster through the area, according to a wave-like propagation.
This makes the information much more reliable. As shown in Fig. 2, the average sequence
number gap decreases, and we get a much smoother relation between the sequence number
gap and the distance to 7', with lower standard deviation. In tests with higher numbers of
robots (not shown here), both the average and the standard deviation of the sequence number
gap further decrease.

We also performed these same experiments using the estimated navigation distance
d(A, T), rather than the sequence number. This gives very similar behavior, as shown in
Fig. 2. This means that both parts of the navigation information, the sequence number and
the estimated navigation distance, are positively correlated to the actual distance to the tar-
get, and are therefore both useful navigation measures. In our algorithm we use the sequence
number and the estimated distance in combination, because this gives the best results. One
could, however, also use them separately, e.g., to get a simpler system, which uses less com-
munication bandwidth.

3 Single robot navigation

In this section, we study the single robot navigation scenario. As explained in Sect. 2, the
scenario consists of a robot § searching for a static target robot 7. All other robots of the
swarm are involved in tasks of their own, and perform movements that are unrelated to the
navigation of S. To obtain such independent movements, we use random mobility patterns.

We investigate the performance of the communication-based navigation system under
varying conditions, using experiments performed in simulation. In what follows, we first
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Fig. 3 The foot-bot robot ¥

developed within the

Swarmanoid project

5,

¢

describe the simulator and the robots we used in these experiments. After that, we study
the system in an uncluttered environment, to show its basic working. Next, we investigate
the influence of the movement patterns of the robots of the swarm, performing tests with
varying mobility models. Then, we study cluttered environments, and show that the system
can work even in highly complex environments, such as mazes. Finally, we investigate situ-
ations where two paths of different length are available, and show that our algorithm has a
preference for the shortest path.

As performance metrics, we consider the average navigation time of the servicing robot
S moving between target locations. In order to have a baseline reference of how good this
time is, in the results we also plot the navigation time of a robot following the shortest path
between the targets.'

All throughout this section, we show that our communication-based algorithm lets the
swarm support navigation in a fully autonomous way, without relying on external informa-
tion or infrastructure, and using only very simple interactions and capabilities. Moreover,
the robots of the swarm can support the searching robot’s navigation without the need to
adapt their own movements. This allows a lot of freedom in possible applications of this
approach.

3.1 The robots and the simulator

All tests presented in this and in the next section are executed using a simulated model of
the foot-bot, a small ground robot developed within the Swarmanoid project (Dorigo et al.
2013) (http://www.swarmanoid.org) on the basis of the marXbot platform (Bonani et al.
2010). The tests with real robots, presented in Sect. 5, use this same robot.

The foot-bot is shown in Fig. 3. It has a diameter of about 17 cm and it is about 29 cm
high. It moves on the ground using a combination of tracks and wheels, for increased stabil-
ity. It is quite a powerful robot, carrying various sensors and actuators, including two cam-
eras, a rotating distance scanner, a gripper, etc. For the work presented here, two of these are
particularly relevant: the infrared proximity sensors, and the IrRB module. The proximity
sensors detect obstacles at a range of a few centimeters. We use them as virtual bumpers,
to let robots turn away from nearby obstacles. The IrRB module (Roberts et al. 2009;
Bonani et al. 2010) provides local line-of-sight communication. It sends messages of 10
bytes, and has a capacity of 10 messages per second (so robots can broadcast an update

! Another reference could be the performance of a randomly moving robot. In many of the experiments this
is also shown, since this corresponds to the case where the servicing robot S is the only robot in the swarm.
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Fig. 4 Test results in an uncluttered environment for a single searching robot and an increasing number of
randomly moving robots. In the figure, the results for NwS and NwR (the two different strategies used to
deal with the temporary absence of navigation information) are reported, together with the performance that
would be obtained by following the shortest path. The shaded areas around the curves indicate the standard
deviation

every 0.1 s). Its maximum range can be of more than 5 m, but was limited to 3 m here, in
order to be able to do tests in smaller environments.

As simulation tool, we use ARGoS (Pinciroli et al. 2012), a physics-based simulator
for heterogeneous multi-robot systems. Being developed within the Swarmanoid project,
ARGoOS contains reliable physics models of this robot. It also comes with a middleware
for controlling the real robots, so that any code written for the simulator can be ported
unchanged to the robots.

3.2 Tests in an uncluttered environment

We use an uncluttered closed area of 20 x20 m?. The robots are placed in the area according
to a uniform random distribution. One of the robots is a target and remains static. A second
robot needs to navigate to this target. The remaining robots move according to a random
direction mobility model with fixed speed (Bettstetter 2001). This model is defined as fol-
lows: choose a direction 6 uniformly from ]—s, 7], turn towards 6, choose a time ¢ from
an exponential distribution with fixed average (set to 10 s here), move forward for this time
t, and then repeat this process. We use a forward speed of 0.15 m/s, both for the search-
ing and the randomly moving robots. We vary the number of robots in the swarm, from
two (no randomly moving robots) up to 92 (90 randomly moving), which corresponds to
an average robot density ranging from 0.05 to 0.23 robots/m?. In turn, considering that the
communication radius is 3 m, these settings correspond to networks with an average node
degree ranging from 0.07 to 6.4 (the average node degree is computed as w72((N — 1)/ A),
where r is the communication radius, N is the number of robots, and A is the total area).
For each data point, we make 500 independent test runs (this high number is needed because
the random initial positions of searcher and target induce a high variance). We measure the
time between the start of each test and the moment the searching robot comes in range of
the target.

The results are shown in Fig. 4. We compare the two variants of the navigation system
presented in Sect. 2, navigation with stopping (NwS) and navigation with random (NwR),
which differ in the strategy used by the searching robot when it does not have any navigation
information (respectively, waiting for new information, or performing a random movement
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according to the random direction model). The results show a large difference in perfor-
mance between the two strategies for low numbers of robots. This is because the communi-
cation network is sparse, and navigation information spreads slowly from the target, so that
the searcher often falls without information. In the extreme case with no randomly moving
robots, navigation with stopping can never reach the target. Navigation with random, on the
other hand, does find the target, through random search. The expected time for a randomly
moving robot to find a static target within a given environment is normally referred to as the
expected hitting time, ET (Spyropoulos et al. 2006). For many mobility models, including
the random direction model used here, ET can be calculated analytically (Spyropoulos et al.
2006). In our case, ET can be considered an upper bound for the performance of the naviga-
tion with random strategy. It is interesting to note that even a very low number of randomly
moving robots in the environment gives an improvement in the navigation delay compared
to ET. This confirms that even in very sparse swarms, the navigation information on board
of randomly moving robots can be useful to guide the searcher, as explained in Sect. 2.2.

For larger swarm sizes, performance improves for both strategies. This is on the one hand
because the improved connectivity in the swarm makes the navigation information more re-
liable, as pointed out in Sect. 2.2, and on the other hand because information reaches the
searcher more frequently. The latter also means that the searcher finds itself less often with-
out navigation information, so that the difference between the two strategies decreases. For
the highest numbers of robots, performance gets close to the time needed to cross the straight
line distance between the searcher’s initial position and the target. This is indicated in Fig. 4
as “Navigation shortest path”.? This gives a lower bound for the expected navigation time.
The good performance for large swarm sizes shows both the efficiency and scalability of
the system. In additional simulation experiments (not reported here) we could verify that
the navigation delay is relatively stable for swarm sizes up to 500 robots. It is also inter-
esting to note the gradual degradation of the system’s performance as the number of robots
decreases. This indicates that the navigation system does not rely on a specific minimum
number of robots.

Finally, we discuss the standard deviation of the navigation delay, as shown in Fig. 4 by
the shaded areas around the curves. This is quite large, due to the fact that the searcher and
target robots are placed randomly in the arena: the randomness of the start locations con-
tributes to the variations in delay. We opted for this approach in our tests, in order to avoid
that a specifically chosen target location could have an unwanted influence on the results.
We also point out that at each point along the curves of Fig. 4, the reported standard devi-
ation is more or less equally large as the reported average. This is in line with theoretical
results for the propagation delay of communication messages in mobile delay-tolerant net-
works under similar circumstances, which is usually exponentially distributed (see Sect. 2.2
and Spyropoulos et al. 2008). Very similar observations were made for all other tests in
this paper that use randomly chosen searcher and target locations: the standard deviation
is always close to the mean. We will in the rest of this text therefore only report standard
deviations for tests with different setups.

3.3 Tests with different movement patterns

The performance of our system depends on the movement patterns of the robots of the
swarm: this defines for a large part how and where navigation information spreads. Here we

2Given the random locations of searcher and target robots in the experiments, we show the delay to navigate
the expected length of the shortest path.
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Fig. 5 Test results with different random mobility models for a single searching robot. The left figure refers
to the case when the other robots in the swarm move according to the random waypoint model, and shows
the results for an increasing number of robots. The right figure refers to the case when the other robots move
according to the restricted random waypoint model. In this case, a swarm of 25 robots is considered and the
results show the impact of using different roaming probabilities. In both figures, the results for NwS and NwR
are reported together with the performance that would be obtained by following the shortest path

carry out experiments in the same uncluttered environment used in Sect. 3.2, using different
mobility models. We use the random waypoint model (RWP) (Johnson and Maltz 1996) and
the restricted random waypoint model (RRWP) (BlaZevi¢ et al. 2002).

Under RWP, each robot randomly chooses a location in the environment to move to, and
chooses a speed. It moves to the chosen destination with the chosen speed, and then waits
there for a fixed pause time, before choosing a new destination and speed. RWP has very dif-
ferent statistical properties compared to the earlier used random direction model (Bettstetter
et al. 2004; Nain et al. 2005). E.g., it lets robots make longer straight movements (since
robots can choose any location in the area to move to), it leads to a non-uniform stationary
distribution of robots over the area, etc. We use RWP with a fixed speed of 0.15 m/s and
a pause time of 10 s. We vary the swarm size from 2 up to 75. The results are shown in
Fig. 5 left. They are very similar to the ones obtained with random direction movement in
Sect. 3.2, showing that the differences between the mobility models has a limited impact on
the performance of the navigation algorithm.

RRWP is a variation of RWP, in which robots can choose their destinations only from pre-
defined destination areas in the environment. A fixed roaming probability p defines whether
a robot picks its new destination from its current destination area or from a different one
(roaming). To define the destination areas, we overlay the environment with a grid of 3x3
cells, where each cell is a different destination area (so, in our experiments, each point in
the environment is part of exactly one destination area). We vary p between 10~ and 1. For
low values of p, robots remain mainly within their cell, so that we get almost exclusively
local robot movements. In this case, navigation information rarely spreads between cells by
being carried on board of robots, but rather through communication between robots near
the cell boundaries. This has as a side effect that if one or more cells fall without robots,
information may not be able to travel between target and searcher for long periods of time.
Instead, for high values of p, robots are forced to leave their cell often, so that they execute
long movements through the environment and bring navigation information around quickly.
We believe that the different movement patterns obtained this way cover a large variety of
possible behaviors of the robots of the swarm. For example, the different cells may represent
different parts of a factory, where robots perform mainly local movements around assigned
work stations, or they could refer to different areas in a warehouse, where robots perform
long range movements to bring goods around. We use a swarm with 25 randomly moving
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Fig. 6 Layout of cluttered
environments used in our
experiments. Left: a simple
environment; right: a maze. The
area is 20 x 20 m? in both cases

robots, which is a relatively sparse setup, in which the MANET is normally not connected.
The results are shown in Fig. 5. The very bad results for the navigation with stopping strategy
at low values of p are due to the earlier mentioned effect that cells can fall without robots
for a long time, effectively stopping the spreading of navigation information. However, for
the navigation with random strategy, these negative effects are rather limited. For larger
values of p, we note that the higher mobility of robots improves the performance of both
algorithms, though, again, the effect is limited for the navigation with random strategy. We
can conclude from these results that if the situation is such that information can flow from
target to searcher between the robots, the actual movement patterns of the intermediate nodes
does not matter much.

In the following, all tests are executed with the randomly moving robots following the
random direction mobility model (see Sect. 3.2).

3.4 Tests in cluttered environments

Since our navigation algorithm looks for obstacle-free paths (see Sect. 2), it deals naturally
with cluttered environments. We did experiments in the two environments shown in Fig. 6.
Again, we deploy the swarm according to a uniform random distribution, and we measure
the time needed for the searcher to reach the target. The results are shown in Fig. 7. As
can be expected, navigation delays get higher as the environment gets more complex, with
the highest values measured in the maze. Also, a larger swarm is needed to bring this de-
lay down, and the system has more difficulties to reach the time required to travel over the
shortest path. Nevertheless, we get the same trends in performance as in uncluttered envi-
ronments, and with a large enough swarm, the system guides a searching robot to its target
efficiently.

‘We point out that our navigation system can also deal with dynamic obstacles. We do not
report results here, due to lack of space, but it is clear that a reactive approach such as the
one presented here has advantages in dynamic environments compared to, e.g., map-based
navigation systems.

3.5 Shortest path

In cluttered environments, a searcher may have several possible paths available to move to
its target. Since our algorithm lets a searcher move in the direction from where it receives
the navigation information that has traveled the shortest time or the shortest distance (see
Sect. 2.2), it should have a preference for the shortest path. We consider the scenario of Fig. 8
to test this property. The target is placed in the upper part of the arena, and the searcher in
the bottom part. There are two paths between them: a long one of 24 m, and a short one of
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Fig. 7 Test results in the cluttered environments of Fig. 6 for a single searching robot and an increasing
number of randomly moving robots. The left plot refers to Fig. 6 (left), and the right one to Fig. 6 (right). In
both figures, the results for NwS and NwR are reported together with the performance that would be obtained
by following the shortest path

Fig. 8 Test setup for shortest

path testing. The searcher starts ®
from the bottom (indicated by the

red circle). The target is placed

above (indicated by the blue

disk). The area is 14 x 14 m?2

(Color figure online)

12 m. We do tests with increasing swarm sizes, from three robots (1 searcher, 1 target and
1 randomly moving robot) up to 72 (70 randomly moving robots). The results are shown
in Fig. 9. We show how often the searcher chooses the short path (as a fraction of the total
number of tests), and we show the time needed for navigation. The results show that the
navigation algorithm has a clear preference for the shortest path. Also, this preference leads
to lower navigation delays (for the NwR strategy, we plotted the navigation delay separately
for the tests in which, respectively, the short or the long path was chosen).

One striking element in these results is that the probability of choosing the short path
is related to the swarm size, and that this relationship is different for the two navigation
strategies. To explain this, let us first look at the results for the largest and smallest swarm
sizes. In the scenarios with largest swarm size (70 randomly moving robots), navigation
information travels primarily through multi-hop message forwarding between robots. The
swarm is well connected, and navigation information travels equally quickly in all directions
from the target 7. Since the distance to be covered is less over the short path, the information
reaches the searcher S faster this way, letting S prefer the short path. Since S rarely finds
itself without navigation information, the behavior and performance are identical for the two
navigation strategies.

The situation is very different for the smallest swarm size (1 randomly moving robot).
Here, navigation information only travels by being carried on board of the single randomly
moving robot A. Under the navigation with random strategy, the influence of A is rather
limited, and S finds 7 mainly through random search. Under the navigation with stopping
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Fig. 9 Test results in the cluttered environment of Fig. 8 for a single searching robot and an increasing
number of randomly moving robots. For both the NwS and the NwR strategies, we show the fraction of
runs in which the searcher uses the short path (left), and the average time needed for navigation (right).
Shaded areas around the average navigation delay curves show the standard deviation (compared to other
tests, standard deviations are lower here, because searcher and target do not start from random positions; see
Sect. 3.2). For the NwR strategy, we also show the average navigation delay when splitting up the results
according to the path taken by the robots
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Fig. 10 State space representing the movement of the searching robot

strategy, on the other hand, S moves only when A brings it a new sequence number. This
means that each time A moves from T to S, S makes a step towards 7', where the step size
depends on the communication range. Whether this step is towards the short or the long
path, depends on which path was used by A to reach S. To analyze this behavior, we model
it as a random walk in a one-dimensional, discrete state space, as shown in Fig. 10: S starts
in an initial state i, and moves in discrete steps either to the left or to the right. The walk
ends when S reaches either state 0 (which means S reached T over the long path) or state
N (S reached T over the short path). Since we use a communication range of 3 m, we set
N = 24?2 12and i = 234 = 8. The model shown in Fig. 10 corresponds to a well-known
problem in probability theory, called the gambler’s ruin problem (El-Shehawey 2009). The
probability for an agent starting in i to end up in N, rather than in 0, is known to be

i m—1 k,k—1
Py(i) = ] | sz,kﬂg . )

L+ TS ifiiﬁ;

We first use this formula to model the behavior of the randomly moving robot A. In this
case, the transition probabilities between states are all equal p(i,i +1) = p(i,i — 1) =0.5,
and Eq. (1) simplifies to Py (i) = IN the probability of choosing the short path depends lin-
early on the difference in path length. This behavior of A can be compared to the movement
of S in the navigation with random strategy (since S moves mainly randomly), where the
fraction of runs using the short path is 0.67 (a very close fit, given that lﬁ = 1—82). For the
navigation with stopping strategy, the transition probabilities depend precisely on the prob-
ability of the randomly moving robot A to reach § either over the short or the long path, so
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that p(i,i +1) =4 and p(i,i — 1) = 1 — L. Plugging this in Eq. (1), we get Py (i) = 0.89,
which is very close to the observed performance of 0.92.

Scenarios with intermediate swarm sizes fall in between these two extremes. We make a
distinction between intermediate large swarm sizes (40—-60 randomly moving robots) and in-
termediate small swarm sizes (5—35 randomly moving robots). For intermediate large swarm
sizes, the performance of the two navigation strategies is identical. This means that S rarely
finds itself without navigation information, which is an indication that there is usually a con-
nected route between S and 7 in the MANET, over which information flows continuously.
However, due to the lower robot density compared to the largest swarm size, network con-
nectivity may be less than perfect. As a consequence, the connected communication route
sometimes only exists over one of the two navigation paths, and S may occasionally be
attracted towards the long path. For intermediate small swarm sizes, the performance dif-
fers between the two navigation strategies, indicating that S regularly finds itself without
navigation information. This is because at low densities, a MANET falls apart into smaller
connected clusters (Dousse et al. 2002), such that information cannot flow continuously.
However, compared to the case of very small swarm sizes (e.g., the case with only one ran-
domly moving robot), the presence of connected clusters has an important consequence. It
means that whenever S meets a robot with navigation information, it immediately also finds
a number of other robots with similar information, so that it moves longer into the same
direction before finding itself again without information. In the context of the state space
shown in Fig. 10, this could roughly be modeled by using less states (because each step
of S in a given direction will normally go on for longer than the communication range).
E.g., if we assume a step size of 6 m, we could use the same model with N =6 and i =4,
while keeping the same transition probabilities of p(i,i + 1) = lﬁ This gives a result of
Py (i) = 0.81. This preference for the short path is lower than in the case of the navigation
with stopping strategy with only 1 randomly moving robot (0.89), but higher than the case
of the navigation with random strategy with only one randomly moving robot (0.67). This
explains why navigation with random always improves the preference for the short path with
increasing swarm sizes, while navigation with stopping first decreases this preference, and
only later increases it (when end-to-end connected routes appear).

4 Collective navigation

In the collective navigation problem, all robots of the swarm navigate between target event
locations. For the experiments, we consider a basic scenario in which all robots navigate
back and forth between two targets present in the environment, 7 and 7’. As pointed out in
Sect. 1, this is a common task in swarm robotics. To follow swarm terminology, we refer to
the two target locations as nest and food source. In this case, we report results only for the
“navigation with random” strategy, as this gives the best performance. Our goal is to show
that our communication-based navigation algorithm can also be used in this scenario. How-
ever, the observed performance and properties of robot navigation are different compared
to the single robot navigation scenario, due to the specific characteristics of the collective
navigation scenario. In particular, the collective execution of the same behavior by all robots
lets the swarm self-organize, such that coordinated behavior emerges from the local inter-
actions between the individual robots. This self-organization improves the performance and
efficiency of navigation.

In what follows, we first investigate the behavior of the system in uncluttered environ-
ments, to study the self-organized behavior of the swarm. After that, we study the same
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Fig. 11 Setup for collective navigation experiments. The area is 20x20 m?. The target robots (food and
nest) are located in the top-right corner (food robot, indicated with a big blue disk) and in the bottom-left
corner (nest robot, indicated with a big red circle). Initially, half of the robots (indicated with circles) go to
the nest source, the other half (indicated with disks) go to the food source (Color figure online)

behavior in cluttered environments. Finally, we investigate what happens when two paths of
different lengths are available between nest and food source: we show that the self-organized
behavior lets the swarm select one of the two paths, with strong preference for the shortest.

As performance metrics, we use the average navigation time of the robots moving back
and forth between target locations. In addition to this basic metric, we also consider the
total “service” performed by the swarm, measured by the number of times a robot reaches
a target location, and the amount of self-organized cooperation within the swarm, measured
through hierarchic social entropy (Balch 2000). Moreover, we measure to which extent the
navigation paths followed by the robots are equivalent to the shortest ones.

4.1 Self-organized behavior in an uncluttered environment

We first use the setup shown in Fig. 11. Two robots, indicating the nest and food source,
are placed in opposite corners of the arena, at a distance of about 20 m. All other robots
are placed according to a uniform random distribution. Half of these robots initially go to
the food source, the other half to the nest. A robot that has reached its target (i.e., food
source or nest) starts moving towards the other target. A robot is said to have reached a
target when it comes within 0.5 m of it. We vary the total number of searching robots in
the swarm from two up to 60. We perform 50 independent test runs of 5000 s for each
setup. We measure the average time needed by robots to move from one target to the other.
We compare to experiments with the same numbers of robots, but where only one robot is
going back and forth between nest and food source, while the other robots of the swarm are
moving according to the random direction mobility model (as in the single robot navigation
experiments of Sect. 3).

The results of these tests are shown in Fig. 12. For both single robot navigation and col-
lective navigation, performance improves as the number of robots increases, since navigation
information spreads more easily in densely connected swarms (see Sect. 3). However, for
the collective navigation scenario, the performance improves faster (with 30 robots, naviga-
tion delay of collective navigation is about half of that of single robot navigation). Also, the
standard deviation of the navigation delay drops faster for the collective navigation scenario,
indicating a more stable performance. This is due to cooperation. When a robot moving to-
wards the food source (and hence coming from the nest) and a robot navigating towards the
nest meet, they can give each other navigation information about their respective targets.
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Fig. 12 Test results for collective navigation in the uncluttered scenario of Fig. 11. The figure reports the
observed navigation delays (average and standard deviation) for an increasing number of robots, for the case
in which all robots in the swarm go back and forth between nest and food source (collective navigation), and
for the case in which only one robot is going back and forth between nest and food while the other robots of
the swarm move according to the random direction mobility model (single robot navigation)

Fig. 13 Collective navigation
after 300 s of simulation: a
self-organized dynamic chain has
formed, with part of the robots
going to the food source (red
circles) and the others going to
the nest source (blue disks)
(Color figure online)

Moreover, if a group of robots moving towards the same target are in communication range
from each other, new information received by any of them spreads throughout the whole
group, and they simultaneously move in the same direction. These two effects make robots
form clusters moving in opposite directions. When there are enough robots, such clusters
can become large enough to cover the whole distance between nest and food source. At that
point, the swarm organizes into a stable structure, which we refer to as a dynamic chain.
Figure 13 illustrates this behavior for a typical run of collective navigation with 40 robots.
It is this behavior which causes the strong improvement in performance between 20 and 30
robots in Fig. 12. For larger swarms (50 and 60 robots), congestion of robots near the target
locations leads to a slight decrease in performance.

The dynamic chain is an example of emergent self-organized behavior: the swarm shows
organization at the global level that emerges from local interactions between individual
robots. In what follows, we investigate when this self-organization arises and how sta-
ble it is. To do this, we first need a measure for self-organization. Several authors use
entropy to measure self-organization in the context of swarm robotics (Baldassarre 2008;
Sperati et al. 2011). If X is a random variable which can take M different states, its entropy
H (X) is defined as

M
H(X)=—)_ pilog,(p:), @)

i=l1
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where p; is the probability that X is in state i (here, we refer to Shannon’s information
entropy (Shannon 1949)). Strictly speaking, this is a measure of order (or disorder), rather
than self-organization: the more a system is ordered, the more you can find it in a limited
subset of its possible states, and the lower the entropy. In principle, self-organization is
more than just an increase in order, and different measures for self-organization have been
proposed (Shalizi et al. 2004). For us, however, it is sufficient to measure whether there is
increased order in the behavior of the robots, so we stick with entropy.

To calculate the entropy H(X), we need a discrete variable X that characterizes the
swarm behavior. In Baldassarre et al. (2004), Sperati et al. (2011) the authors use the orien-
tation of the robots, discretized into four bins; the entropy based on this variable indicates
to what extent the robots move in the same direction. In our case, this measure can be used
(once the chain is formed, robots move in similar directions), but it is quite noisy, especially
when there is congestion (robots turn to avoid each other). What we really want to measure
is whether the robots move in a low number of connected clusters; that is, whether there
is order in their physical locations. To do this, we turn to hierarchic social entropy (Balch
2000), which proposes an entropy measure for a group of robots characterized by a multi-
dimensional variable. In our case, this multi-dimensional variable will be the location coor-
dinates of each robot. The idea behind hierarchic social entropy is to first cluster the robots
using hierarchic clustering based on a distance threshold /: a robot is added to a cluster if
it is within distance % of all the robots in the cluster. The division of robots into clusters
gives a discrete variable X on the basis of which entropy is calculated (the clusters form
the M different states for X, and the probabilities p; are defined by the number of robots in
each cluster). Obviously, X depends on the threshold 4: if & = 0, each robot is in a cluster
of its own, and entropy is maximal, while if & = oo, all robots fall in a single cluster, and
entropy is 0. Therefore, the notation H (R, h) is used to refer to the entropy of a group of
robots R using clustering distance /. The hierarchic social entropy S(R) is then defined by
integrating H (R, h) over all values of h:

S(R) :/ H(R,h)dh. 3)
0
We use S(R) based on the location coordinates of the robots to analyze the behavior of
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the swarm. Compared to the definition of S(R) in Balch (2000), we introduce one change,
related to the clustering: we use single linkage clustering, which means that a robot is added
to a cluster if it is within distance % of any robot in that cluster. Single linkage clustering
can find long stretched clusters (Kuiper and Fisher 1975), which enables it to detect the
chaining behavior of the swarm. In Fig. 14, we show the evolution of S(R) over the course
of example test runs with 20, 30 and 40 robots; we calculate S(R) at every time step of
0.1 s, and average it per 100 s of simulation. When the robots of the swarm move close
together, there is a drop in entropy. When the dynamic chain forms, entropy stays low for
an extended amount of time. All runs with 20 and 40 robots display patterns similar to the
ones shown here: for 20 robots, the chain never forms, while for 40 robots it forms quickly
and remains for the whole duration of the simulation. With 30 robots, varying patterns have
been observed. In some runs, including the example here, the chain forms after a while. In
other runs, it does not form. Interestingly, when it does form, it usually stays for the whole
test duration. This suggests that the chain is stable with respect to perturbations.

In Fig. 15, we study the stability of the chain. For increasing numbers of robots, we
perform each time 50 test runs, and measure in which fraction of those runs a stable dynamic
chain appears. We consider the chain stable if for the last 1000 s of the test S(R) remains
below 0.2 (these thresholds were set empirically; see Fig. 14 to understand how they allow
distinguishing scenarios where a stable chain has formed from others). The graph shows a
clear phase transition around 30 robots: with less robots, the system never self-organizes,
with more it always does. Such phase transitions are typical of self-organizing systems in
physics and in biology, and have also been observed in swarm robotics (Baldassarre 2008).
They indicate that within a given range of a control parameter, the self-organizing behavior
is robust and takes place independently of perturbations in the system (e.g., loss of robots
due to failures, or the arrival of new robots).

Finally, in Fig. 16, we show how frequently the targets are reached by the robots. This in-
dicates how many items the swarm could fransport between the two locations. Increasing the
swarm size, one could expect a sub-linear performance improvement, because more robots
can transport proportionally more items (linear improvement), but there is also increased
congestion. In our system, increased swarm size also gives more cooperation, which leads
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Fig. 18 Test results in the cluttered environments of Fig. 17. The left plot refers to Fig. 17 (left), and the
right one to Fig. 17 (right). The plots report the observed navigation delays (average and standard deviation)
for an increasing number of robots, for the case in which all robots in the swarm go back and forth between
nest and food source (collective navigation), and for the case in which only one robot is going back and forth
between nest and food while the other robots of the swarm move according to the random direction mobility
model (single robot navigation). The NwR strategy has been used in all the reported experiments

to a super-linear increase in performance between 10 and 40 robots (the slope of the perfor-
mance curve increases between each two measurement points). Above 40 robots, congestion
makes the performance growth decrease.

4.2 Cluttered environments

In this section we consider the cluttered environments of Fig. 17. The nest and food source
are placed in the same locations as in the uncluttered environment, but now obstacles have
been placed between them. We compare again single robot navigation and collective navi-
gation. We report the average navigation delay in experiments with varying swarm sizes in
Fig. 18. As in the case without obstacles studied in Sect. 4.1, collective navigation is more
efficient than single robot navigation. However, as the environment gets more complex, its
advantage gets smaller. This is because the swarm has more difficulties to form and maintain
the dynamic chain around the obstacles. This also results in a more unstable performance
(high standard deviation). We illustrate this in Fig. 19, where we show the evolution of the
hierarchic social entropy over time for a typical test run with 40 robots in the scenario of
Fig. 17 (right). The entropy is low for certain stretches of time, indicating that the dynamic
chain is formed, but also goes up again, showing that the chain gets lost sometimes. These
results show that the self-organized behavior works in the presence of obstacles, but that
it has difficulties when the environment becomes too complex. In such environments, the
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Fig. 20 Shortest path finding performance in the cluttered environment of Fig. 8. The left figure shows the
navigation delay versus number of robots for each individual test, as well as the average per swarm size (25
tests per swarm size). The choice of path in each test is shown by the point symbols. The right figure shows a
snapshot of the dynamic chain formation observed during one of the simulation experiments

algorithm still works, but it loses the advantage obtained through self-organization, and the
performance becomes comparable to that obtained in single robot navigation.

4.3 Shortest path finding

As in the case of single robot navigation, we investigate the behavior of the system in case
two paths of different length are available between nest and food source. We use the envi-
ronment of Fig. 8, where we now place a nest and a food source in the locations that were
previously used for searcher and target. The two locations are connected by a short path of
length d; = 12 and a long path of length d; = 24. We vary the swarm size from five to 70
robots, and perform 25 tests of 5000 s for each size. We measure the average time a robot
needs to navigate between the target locations. We also observe which path each robot takes
to reach its target: the short or the long one. We combine this per test run, to calculate the
percentage of robots using the short path, p;. If p; > 90 %, we say the swarm uses the short
path, if p; < 10 % it uses the long path, and otherwise it uses both.

Figure 20 shows the result of each individual test, as well as the average per swarm
size. As in the case of single robot navigation, the robots have a preference for the short
path. Also, this preference leads to efficient navigation, as those runs that use the short
path usually experience a lower navigation delay (with exception for swarm size 70, where
congestion starts to play a major role).

It is interesting to observe the evolution of the preference for the short path for increas-
ing swarm sizes. For swarm size 5, the preference for the short path is rather modest. For 10
robots, the preference is already much stronger, but it is starting from swarm size 15 that the
results start to look different: in all runs, all robots always use the short path, and navigation
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delay is very low and equal over all runs. This highly efficient navigation behavior is due
to the self-organized formation of the dynamic chain. On the one hand, we observe here the
same improvement of navigation efficiency as in uncluttered environments (see Sect. 4.1).
On the other hand, there is also a second effect, namely that the dynamic chain makes the
collective navigation lock onto one of the paths: once the swarm forms the chain on one
path, it will normally not change to the other path anymore. This means that the normal
preference for the short path (as observed in single robot navigation) is further reinforced
by the chain formation, such that the short path emerges as a stable solution chosen by the
swarm for navigation. Between 15 and 30 robots, there are enough robots to form the chain
over the short path, but not over the long path. This makes the swarm always choose the
short path. Starting from 35 robots, the chain can also be formed over the long path (verified
in separate tests not shown here), and we start to observe this from swarm size 40. While
the robots’ general preference for the short path normally makes the chain form there, fluc-
tuations due to the robots’ random initial distribution, or due to collisions and congestion,
let the chain occasionally choose the long path. Such amplification of fluctuations (where
one of several system-level states are chosen based on small differences in the initial states
of the system components) is a typical phenomenon observed in self-organizing systems in
nature (Prigogine and Stengers 1984). We also conducted tests placing the targets at differ-
ent locations, so as to reduce the difference between d, and d; (swarm size 50). This led to
proportional changes in the number of runs choosing the short path.

5 Implementation on real robots

We implemented the communication-based navigation system on real foot-bots (Bonani
et al. 2010). Since this is the robot used as model in the simulation experiments, the robot
characteristics (IrRB capacity, robot speed, etc.) are the same as described in Sect. 3.

In a first experiment, we used an arena of 10 x 4 m?, which is largely uncluttered, except
for a wall of 1.4 m on the side. Figure 21 shows a photograph of the arena, as well as an
image of how it was reproduced in simulation. We placed a source and target robot in this
arena, in the locations of the two robots shown in the figure. Due to the small size of the
arena, we limited the communication range of the IrRB system to 2.5 m. We carried out tests
similar to the ones reported in Fig. 12: we compare single robot navigation (1 searcher, all
other robots perform random movements) and collective navigation (all robots are searchers)
in tests with increasing swarm sizes (from one moving robot, up to 10). For each swarm
size, we run one single long experiment of 30 minutes, in which the searching robot(s) go
back and forth many times. We also reproduce the same experiments in simulation. We
report the average time needed for navigation between the source and target. The results are
shown in Fig. 22. Both in reality and in simulation, the data show the same trend as in the
earlier results of Fig. 12: navigation delay improves and gets more stable (lower standard
deviation) with increasing numbers of robots, but for collective navigation, there is a faster
improvement thanks to the chain formation. This chain formation was also observed visually
by us.

Moreover, although there are some quantitative differences between simulation and real
robots results, the trends are qualitatively the same (both for the average and the standard
deviation).

In a second experiment, we did tests similar to the ones of Sect. 4.3. We used an arena
of 3.10 x 4.35 m?, with in the middle an obstacle of 0.75 x 1.75 m2. The target and source
were placed on either side of the obstacle, at about two thirds along the long edge of the
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Fig. 21 Arena used in the real
robot experiments: photograph
(left) and as reproduced in
simulation (right). The
photograph was taken from the
position of the camera icon in the
right image. In this image, the
circle and the disk symbols
indicate, respectively, the
position of food and nest robots
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Fig. 22 Experimental results for single and collective navigation using real robots in the scenario of Fig. 21
(left). The average navigation delay is reported for an increasing number of robots. The results obtained in
simulation considering the equivalent scenario of Fig. 21 (right) are also reported to show the good corre-
spondence between simulation and real robot behavior. For the collective navigation scenarios, we also show
the standard deviation, both for simulation and for real robots

arena, such that a long and a short path were available among them. Figure 23 shows a
photograph of the arena, as well as an image of how it was reproduced in simulation. Due to
the small size of the arena, we restricted the communication range of the robots to 1.5 m. We
ran tests with increasing numbers of moving robots, from one up to eight, for both single
robot navigation and collective navigation, and reproduced the same tests in simulation.
Each test lasted 40 minutes, but for the collective navigation, we split this up into 4 times 10
minutes. This is because the chain formation makes the robots’ choice for either the short
or the long path stable for long time, such that consecutive trips between source and target
cannot be considered as independent samples; in single robot navigation, on the other hand,
the correlation between consecutive trips of the searching robot is limited, such that all trip
times gathered during a single run of 40 minutes give enough independent test samples.
The results are shown in Fig. 24. We report the average delay needed to move between
source and target, and the fraction of robots following the short path. The correspondence
between simulation and real robots is good, qualitatively, although quantitatively there are
some differences. The trip time results show that the difference between single robot and
collective navigation is limited in this case, due to the small size of the arena which causes
more congestion. This also results in a high standard deviation on the navigation times. On
the other hand, the choice for the shortest path shows a strong difference between the two
navigation scenarios: while single robot navigation leads to a preference for the short path
that increases linearly with the number of robots, collective navigation has a faster increasing
preference for the short path, due to the chain formation (compare to Fig. 20).
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Fig. 23 Arena used in the real
robot experiments with obstacle:
photograph (left) and as
reproduced in simulation (right).
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Fig. 24 Experimental results for single and collective navigation using real robots in the cluttered scenario
of Fig. 23 (left). In the left figure, the observed average delay for the navigation between source and target is
reported for an increasing number of robots. For collective navigation, we also show the standard deviation
(both for simulation and for real robots). The right figure shows the fraction of robots following the short path.
The results obtained in simulation considering the equivalent scenario of Fig. 23 (right) are also reported to
show the good correspondence between simulation and real robot behavior

Finally, we point out that in previous work (Ducatelle et al. 2009), we implemented the
navigation algorithm on e-puck robots (Mondada et al. 2009), fitted with an IrRB commu-
nication board (Gutiérrez et al. 2008). The capacities of these robots and their IrRB system
are limited compared to those of the foot-bots: each robot could send only 2 bytes per sec-
ond, with significant packet loss, and very noisy range and bearing estimates. Nevertheless,
the navigation system worked fairly well. We refer to Ducatelle et al. (2009), where we re-
port results from these tests. Finally, in some other tests using the foot-bot robots, reported
in Ducatelle et al. (2011b), we observed frequent robot failures, and we tested adding robots
to and removing robots from the swarm, with the navigation algorithm adapting easily to
such changes. All these tests show the general robustness, adaptivity and scalability of the
algorithm.

Videos of these experiments as well as of similar experiments used for the pa-
per (Ducatelle et al. 201 1b) can be seen in on-line supporting material at: http://www.idsia.ch/
~gianni/SwarmNavigation/videos.html. Moreover, a general illustration of the behavior
of the algorithm, both in simulation and using real robots, can be found in the video
cooperative-navigation.mp4 included in the web site of the publisher as Elec-
tronic Supplementary Material.
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6 Related work

In this paper, we have presented an algorithm for communication based cooperative nav-
igation in swarm robotics. The works closest related to ours are situated in the areas of
communication-based navigation, and cooperative navigation in swarm robotics.

Several works are related to ours because of the way they use communication to guide
navigation. One setup that has been studied extensively over the past few years is to fit the
environment with a network of wireless communication nodes, which guide a single robot
to a target (Batalin and Sukhatme 2007; O’Hara et al. 2008). The communication nodes
may be wireless sensor nodes, which sense the local environment and take this sensed in-
formation into account when planning a path (Li and Rus 2005), or nodes without sensors,
which use only communication for path planning (O’Hara and Balch 2004). Many of these
approaches use communication links to define obstacle-free paths, e.g., using infrared com-
munication (O’Hara et al. 2008), so that they can use network routing algorithms to define
navigation paths. An important difference with our approach is that most of these works
assume that the communication network that guides the mobile robot is static and embed-
ded in the environment; they do not foresee the possibility that mobile robots guide each
other’s navigation. Some works do use mobile robots, e.g., to deploy the static communica-
tion nodes (Batalin and Sukhatme 2004), or to fill gaps in the sensor network (Witkowski
et al. 2008). The closest approach to ours is Sgorbissa and Arkin (2003), where a navigat-
ing robot gets support to move around obstacles from a few mobile explorer robots, using
line-of-sight communication. Different from our work, however, these few explorer robots
are dedicated to support the single robot’s navigation task. The authors do not consider the
possibility that a whole swarm of mobile robots guide each other’s navigation, where each
robot may be involved in a task of its own and is not dedicated to support the navigation of
the others.

Within the context of swarm robotics, most work on cooperative navigation is based on
indirect stigmergic communication (Werger and Matari¢ 1996; Wodrich and Bilchev 1997;
Sharpe and Webb 1999; Russell 1999; Sugawara et al. 2004; Garnier et al. 2007; Fujisawa
et al. 2008; Mayet et al. 2010; Nouyan et al. 2008, 2009 Ducatelle et al. 2011a), rather than
on direct communication as in our algorithm. This approach is typically inspired by the be-
havior of certain types of ants, where individual ants mark their paths using a chemical sub-
stance, called pheromone, and follow these pheromone trails to find their way between the
nest and a food source (Bonabeau et al. 1999). The joint pheromone laying and following ac-
tions of the ants of a colony reinforce the most efficient paths, and lets the swarm as a whole
self-organize to find shortest paths (Deneubourg et al. 1990). An important problem for the
application of such approaches in robotics is how to physically implement pheromone. A
common solution is to mark the trail with a chain of robots (Werger and Matari¢ 1996;
Nouyan et al. 2009). Compared to our system, this has the disadvantage that some of the
robots remain static and cannot take part in navigation. Moreover, the system is vulnera-
ble to failures of robots in the chain, making it less robust. Other approaches include the
use of alcohol (Russell 1999; Fujisawa et al. 2008), phosphorescent paint (Mayet et al.
2010), or light encoding of pheromone using an overhead projector (Garnier et al. 2007;
Sugawara et al. 2004), which are interesting, but in practice might be rather hard to detect
and follow reliably or to implement. A general disadvantage of all these pheromone-inspired
swarm navigation algorithms is that they crucially assume that all robots move between two
targets. Our algorithm can also work in this situation, with properties that are similar to
other swarm navigation methods; in particular, it lets the swarm self-organize, and displays
emergent shortest path finding behavior, as shown in Sect. 4. However, it is also very gen-
eral and usable in a wide range of different situations. We have illustrated the single robot
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navigation task in Sect. 3, but many other different scenarios could easily be addressed with
this algorithm. One work that is somewhat similar to ours in the context of the single robot
navigation task, is pheromone robotics (Payton et al. 2001), where robots spread out over an
area and indicate the direction to a goal robot using infrared communication. Compared to
our work, however, this approach requires robots to adapt their movements to cooperate in
the search for the target, and it cannot deal with situations of sparse robot density (it requires
the robots of the swarm to form a connected network).

Finally, there are a number of cooperative swarm navigation algorithms that do not imple-
ment pheromone-based navigation. Vaughan et al. (2002), propose a method based on direct
communication, partially inspired by the bee waggle dance: robots inform each other about
the way to a target by exchanging a list of landmarks, in the form of waypoint coordinates.
Like pheromone-based methods, however, also this approach assumes that all robots of the
swarm navigate back and forth between two targets. Also in Gutiérrez et al. (2010), robots
use direct communication to help each other navigate between a nest and a food source.
Here, the robots exchange the estimated position of targets (nest or food source), and a
robot searching a target can move directly towards the indicated location. However, since
the only navigation information used are target locations, the method would not be able
to indicate obstacle-free paths in cluttered environments. Sperati et al. (2011) address the
collective navigation problem with neuro-evolution. Interestingly, they find a swarm-level
behavior that is similar to our dynamic chain, though based on very different individual
robot behavior (using visual feedback, robots turn around in local dynamic chains; these
chains merge and grow and may eventually include the targets). However, this behavior was
not designed to generalize to scenarios that are radically different from the one for which
it was developed, namely a collective navigation scenario in an uncluttered environment.
Finally, Schmickl and Crailsheim (2008) propose a navigation method inspired by trophal-
laxis, which is the behavior of social insects to pass food to each other. In this method, the
food corresponds to navigation information, which is exchanged through local direct com-
munication. The authors evaluate their method in the context of a foraging task performed
by alarge swarm of simulated robots. It is not clear whether this method would be applicable
in other contexts, such as the single robot navigation task, or in small swarms, and whether
it would be usable on real robots.

7 Conclusions and future work

We have presented a navigation system for robotic swarms. It consists of a simple and flexi-
ble algorithm that can be used in different contexts in which robots need to collectively find
navigation paths toward one or more locations in the environment, where the locations can
represent sites associated to tasks or events to deal with. We have studied in depth, both in
simulation and using real robots, two specific but at the same time paradigmatic scenarios.
In the first one, we have shown how the navigation algorithm allows robots of a swarm to
guide a single robot to a target location, without the need to adapt their own movements. In
the second scenario, we have investigated how the system can be used for collective naviga-
tion between two targets, a common task in swarm robotics. We have shown that coopera-
tion improves navigation performance, and that when enough robots are present, the swarm
self-organizes into a dynamic structure that supports efficient navigation and is robust to
perturbations and robot failures. Moreover, we have shown that collective navigation has a
preference for short paths, similar to pheromone mediated navigation in ant colonies. In tests
with real robots, we have shown the feasibility of the approach and the good correspondence
between simulation and real-world results.
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In future work, we aim to investigate the performance of the current system in more com-
plex scenarios. Moreover we will investigate single robot navigation with different, realistic
robot movement patterns, and study the dynamic chain behavior in complex cluttered envi-
ronments. Future work will also include performing more extensive tests with real robots to
confirm all results from simulation. After that, we will integrate this system in other scenar-
ios of swarm deployment, e.g., where the swarm performs tasks to support human activities.
Many such scenarios require navigation. Moreover, the swarm communication we use for
navigation can be extended to carry more information, e.g., for task allocation, planning,
etc.
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