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Abstract. We introduce a simple model of self-propelled particles connected
by linear springs that describes a semi-rigid formation of active agents without
explicit alignment rules. The model displays a discontinuous transition at a
critical noise level, below which the group self-organizes into a collectively
translating or rotating state. We identify a novel elasticity-based mechanism that
cascades self-propulsion energy towards lower-energy modes as responsible for
such collective motion and illustrate it by computing the spectral decomposition
of the elastic energy. We study the model’s convergence dynamics as a function
of system size and derive analytical stability conditions for the translating state
in a continuous elastic sheet approximation. We explore the dynamics of a ring-
shaped configuration and of local angular perturbations of an aligned state. We
show that the elasticity-based mechanism achieves collective motion even in
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cases with heterogeneous self-propulsion speeds. Given its robustness, simplicity
and ubiquity, this mechanism could play a relevant role in various biological and
artificial swarms.

S Online supplementary data available from stacks.iop.org/NJP/15/095011/
mmedia
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1. Introduction

Collective motion (CM) is observed in a broad range of biological systems, including bird
flocks, fish schools, herds of quadrupeds, insect swarms and groups of bacteria [1–6]. In recent
years, these systems (referred to here, generically, as swarms) have been the subject of intense
research [7–10]. In theoretical studies, several models have been introduced to analyse their
dynamical properties, their ability to process information collectively, and the components that
are necessary to produce CM. In parallel, research in control theory and robotics has developed
various decentralized control algorithms that mimic the CM observed in nature to achieve a
similar level of coordinated collective behaviour in groups of autonomous robots [9–11].

From the perspective of physics, swarms represent a unique class of systems that combine
the familiar setup of an ensemble of trajectories in space with new dynamical properties and
concepts. Indeed, on one hand swarms can be modelled as a collection of moving particles with
imposed kinetic energy and effective forces that determine their motion. On the other hand, these
interactions can be non-central, non-additive, non-local and non-distance-dependent, and we
can typically identify no conserved quantity. Swarms also share a property that is characteristic
of many living systems: energy is injected at the smallest scale, at the level of each individual
agent or particle. These properties, together with a growing number of experiments and potential
applications, have made CM an exciting new field of research at the interface between physics
and biology. However, despite intense recent research activity, there is still no comprehensive
understanding of the underlying mechanisms that can lead groups of self-propelled agents to
self-organize and move in a common direction.
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The prevailing paradigm in the theory of CM has been strongly influenced by the seminal
work of Vicsek et al [12]. This paper introduced a minimal model for flocking, the Vicsek
model, that has become a referent in the field [8–10]. It describes a group of point particles
advancing at a fixed common speed, only coupled through alignment interactions that steer
each agent towards the mean heading direction of all particles within a given radius [12, 13].
As the amount of noise is decreased, the system undergoes a dynamical phase transition at
a critical noise level, below which particles self-organize and start moving in a common
direction. In this framework, a swarm can be viewed as a fluid of self-propelled spins with
aligning interactions, described by an extension of the XY-model [14] where spins advance
in their pointing direction rather than remaining affixed to a lattice. In the same spirit of the
Vicsek model, but using a continuous description rather than agent-based simulations, Toner and
Tu [15, 16] introduced a hydrodynamic theory of active fluids. In a different context, for swarm
robotics studies, several control rules have been designed to achieve CM by implementing
consensus algorithms that converge to a common heading direction [11].

While most of the work on CM has focused on systems with aligning interactions, some
studies have considered agents that do not explicitly exchange information on their orientation.
In [17], for example, CM is driven by escape–pursuit interactions only; in [18], by inelastic
collisions between isotropic agents; and in [19, 20], by short-range radial forces that are
coupled to the agents’ turning dynamics. In [21], CM is achieved due to local pairwise repulsive
interactions between soft deformable self-propelled spherical particles. Given that Vicsek-like
algorithms rely on explicit alignment rules to achieve CM [12, 22–24], it was initially surprising
that other models could self-organize without including such rules. One can argue that these
models must include an indirect effect that produces an effective, implicit aligning interaction
between individual agents in order to achieve CM, thus reducing the dynamics again to reaching
consensus in the heading direction. An example of implicit aligning dynamics is found in [18],
where inelastic collisions tend to align post-collision trajectories due to the conservation of
momentum. Despite these studies, it remains unclear if the same underlying mechanism is
responsible for the emergence of CM in all these cases and whether or not the mechanism
leading to CM must involve explicit or implicit aligning interactions.

In this paper, we introduce a mechanism for CM that is based on a novel paradigm: the
emergence and growth of regions of coherent motion due to standard elasticity processes. We
explore this mechanism by introducing a simple two-dimensional active elastic sheet (AES)
model where the individual agent motion is determined by attraction–repulsion forces only and
no orientation information is exchanged between agents. Rather than considering an active fluid
where particles can flow with respect to each other, we consider here a two-dimensional active
solid or active crystal by describing a configuration of self-propelled agents that act as an elastic
membrane, where interacting neighbours remain coupled by linear elastic forces throughout the
dynamics, regardless of the amount of strain in the system.

The paper is organized as follows. In section 2, we introduce our AES model. In section 3,
we characterize its typical dynamics and stationary solutions, focusing on the self-organization
process that leads to CM and on the order–disorder transition observed at the critical noise. In
section 4, we describe the energy cascading mechanism responsible for CM in the AES model
and characterize its convergence dynamics. Section 5 presents an analytical linear stability
calculation that provides a necessary condition for algorithms to sustain CM. Section 6 explores
three examples of the AES dynamics: an elastic ring-shaped configuration with oscillating
radius, the propagation of an angular perturbation on a group of aligned agents, and a variation
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of the AES model where each agent has a different self-propulsion speed. Finally, in section 7
we discuss potential applications and present our conclusions.

2. Active elastic sheet (AES) model

We consider a system of N agents moving on a two-dimensional plane. The position Exi

and orientation θi of each agent i are evolved according to the following set of overdamped
dynamical equations:

Ėx i = v0 n̂i +α [( EFi + Dr ξ̂r) · n̂i ] n̂i , (1)

θ̇i = β [( EFi + Dr ξ̂r) · n̂⊥

i ] + Dθ ξθ . (2)

Here, v0 is the forward biasing speed that induces self-propulsion (injecting energy at the
individual particle level) and parameters α and β are inverse translational and rotational
damping coefficients, respectively. Unit vector n̂i points parallel to the heading direction of
agent i and unit vector n̂⊥

i points perpendicular to it. The total force over agent i is given by the
sum of linear spring-like forces

EFi =

∑
j∈Si

−
k

li j

(∥∥Eri j

∥∥ − li j

) Eri j∥∥Eri j

∥∥ , (3)

Eri j = Ex j − Exi (4)

with equilibrium distances li j and spring constants k/ li j . We chose to define the stiffness of
each spring as inversely proportional to its natural length li j in order to mimic the elastic
response of equivalent physical springs of different lengths. Each set Si contains all agents
that interact with agent i . All Si sets are chosen at t = 0 from the local neighbourhood of agent
i and remain constant throughout the integration. We note that the AES model is similar to a
spring–mass model of an elastic sheet [25], with inert masses replaced by self-propelled agents
that can only turn or move forward or backwards. For zero noise (Dr = Dθ = 0), each agent
simply turns at a rate proportional to the projection of elastic forces perpendicular to its heading
direction and moves forward or backwards driven by the projection of these forces parallel to
its heading direction and by the self-propulsion term v0. We introduce sensing noise (errors in
the measured forces) by adding Dr ξ̂r to EFi , where Dr is the noise strength coefficient and ξ̂r is a
randomly oriented unit vector. We introduce actuation noise (fluctuations in the agent dynamics)
by adding Dθξθ to the heading direction of each agent, where Dθ is the noise strength coefficient
and ξθ a random variable with standard, zero-centred normal distribution of variance 1.
We also tested cases where ξθ followed a homogeneous distribution in the [−π, π] interval,
finding equivalent results (data not shown).

We designed the AES model to explore CM under conditions that are very different from
those in the Vicsek model. Firstly, in the Vicsek case agents only exchange information on their
relative heading angle, while in the AES model they only know the relative positions of their
neighbours. We define here as explicit alignment interactions those that depend directly on the
relative angle between agents. We define as implicit alignment any other interaction that does
not use information on relative heading angles but still tends to align the agents indirectly. Note
that the elastic forces that produce alignment in the AES model are fundamentally different
from ferromagnetic-like aligning interactions. Indeed, they are caused by elastic deformations
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that result from integrating misaligned trajectories over time. They will thus continue to act as
long as the lattice remains deformed, regardless of the relative angle between agents. Therefore,
no direct algebraic relationship can be established between the relative angle and the turning
dynamics. Secondly, the Vicsek model displays internal flows that allow agents to interact with
different neighbours over time. In fact, long range order cannot be achieved by the Vicsek
dynamics if agents always interact with the same neighbours [13, 15]. This result is established
for equilibrium systems by the Mermin–Wagner theorem [26] and has been shown to extend to
this non-equilibrium case: even relatively small systems do not display CM if interactions are
only local and neighbours do not change over time [27]. In contrast, we show below that the AES
model achieves CM despite having agents that interact with a fixed set of neighbours. Finally,
while both models describe overdamped systems, in the AES model the angular equation of
motion (2) gradually changes the heading angle instead of instantaneously switching it to
the next desired heading direction [12, 23, 24]. We show below that this, apparently small,
difference is essential for achieving CM in the AES model.

3. Numerical dynamics and stationary solutions

In this section we present numerical simulations that characterize the typical dynamics and
stationary solutions of the AES model.

We integrated equations (1) and (2) numerically using a standard Euler method, which
yields the expressions

Ex t+1
i = Ex t

i +

{
v0 n̂i +α

[(
EF t

i +
Dr

√
1t

Eξr

)
· n̂i

]
n̂i

}
1t, (5)

θ t+1
i = θ t

i +

{
β

[(
EF t

i +
Dr

√
1t

Eξr

)
· n̂⊥

i

]
+

Dθ
√
1t

ξθ

}
1t, (6)

where 1t is the numerical time-step. Note that Dr and Dθ are divided here by
√
1t in order to

properly take account of the accumulation of noise over time [28]. The degree of alignment in
the system is monitored by computing the usual polarization order parameter, defined as

ψ =
1

N

∥∥∥∥∥
N∑

i=1

n̂i

∥∥∥∥∥ . (7)

If all agents are perfectly aligned, we have ψ = 1; if they are instead randomly oriented or
rotating about the group’s barycentre, we have ψ = 0.

All simulations in this paper were carried out using: α = 0.01, β = 0.12, v0 = 0.002
and 1t = 0.1, unless otherwise noted. We also tested other parameter combinations without
finding any significant qualitative difference in the resulting dynamics. Four examples of these
explorations are presented in figure 2 below.

Figure 1 presents three different simulation runs of the AES model. Row A displays the
dynamics of N = 91 agents forming an hexagonal active crystal. At time t = 0 (panel A1),
agents are placed with random heading directions on a perfect hexagonal lattice, separated
by dA = 0.65. Nearest neighbours are connected by springs of natural length l = dA and
spring constant k/ l = 5/0.65. We include here only sensing noise by setting Dθ = 0 and
Dr = 0.5

√
0.1 ≈ 0.158. Results remain qualitatively unchanged for other low enough values of
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Figure 1. Snapshots of three different AES simulations obtained by integrating
equations (5) and (6). (A) hexagonal active crystal at t = 0 (A1), 240 (A2), 400
(A3) and 1700 (A4). (B) rod-like active crystal at t = 0 (B1), 240 (B2), 400
(B3) and 1700 (B4). (C) arbitrarily shaped active solid (here a square with two
holes) at t = 0 (C1), 240 (C2), 400 (C3) and 1300 (C4). In row (C), each agent is
coloured according to the degree of local alignment of its local neighbourhood,
with ψ loc

= 1 indicating full alignment and ψ loc
= 0, no alignment. Simulation

videos can be found in the supporting information, videos 1–3, available at
stacks.iop.org/NJP/15/095011/mmedia.

Dθ and Dr . As time advances, individual self-propulsion deforms the lattice, producing elastic
forces that in turn affect the agent dynamics. Growing regions of coherent motion develop,
eventually deforming the whole structure (A2 and A3) until the group starts translating or
rotating collectively. The displayed case converges to a rotating state (A4) with an axis of
rotation that does not coincide with its barycentre. The group therefore translates while rotating.
In general, rotating solutions are often observed in our AES simulations. Note, however, that
these states will always have higher elastic energy than translating ones, because AES structures
must rotate like a solid body, where agent speeds grow linearly with the distance to the centre of
rotation. If all agents have the same preferred speed v0, those in the inner and outer shells must
be slowed down or sped up by elastic forces. Consequently, rotating states like the one on panel
A4 have higher stored potential energies and are metastable. They are less frequently observed
and, if integrated long enough and with high enough noise, they will eventually transition to a
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Figure 2. Snapshots of four AES simulations exploring different α and β

combinations. Noise is set to Dr = 0.158 in row A and to Dr = 0.079 in
rows B, C and D. All other parameters are the same as on figure 1(A).
(A) α = 0.1 and β = 0.12 at t = 0 (A1), 500 (A2), 1000 (A3) and 3000 (A4). (B)
α = 0.0017 and β = 0.12 at t = 1000 (B1), 3000 (B2), 6000 (B3) and 9000 (B4).
(C) α = 0.01 and β = 1.2 at t = 300 (C1), 600 (C2), 1300 (C3) and 1900 (C4).
(D) α = 0.01 and β = 0.0038 at t = 1000 (D1), 2000 (D2), 4000 (D3) and
6000 (D4). All simulations were started from the same initial condition (with
random orientations and all virtual springs at their natural length), shown on
panel A1. Each agent is coloured according to the degree of local alignment of
its local neighbourhood, with ψ loc

= 1 indicating full alignment and ψ loc
= 0,

no alignment. Simulation videos can be found in the supporting information,
videos 4–7, available at stacks.iop.org/NJP/15/095011/mmedia.
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lower-energy, translating state. We chose to display a rotating state on panel A4, however, to
illustrate its rich dynamics, which cannot be attained by the Vicsek model. We point out that
rotating solutions of the AES system are very different from those in [29–31], where interacting
agents can change and do not have to rotate collectively like a solid body. In those systems, no
simple argument can show which state has higher potential energy and it cannot be determined,
a priori, which is stable or metastable.

Row B presents the dynamics of an elastic rod comprised of N = 118 agents arranged into
three rows. At t = 0 (B1), randomly oriented agents are positioned with distances to nearest
neighbours dB = 0.32 (within each row) and d∗

B = 0.58 (between rows). All agents separated by
a distance d < 1 are then linked by springs of natural length d and spring constant k/ l = 1/d.
Noise is the same as in row A. Here again, after the initial transient period, larger and larger
regions of coherent deformation emerge (B2 and B3) until CM is reached and the rod starts
moving (B4). Note that the first bending mode has here the largest final deformation, thus
favouring a collective heading that is perpendicular to the rod’s axis. This observation opens
the interesting possibility of controlling the direction of self-organized CM by changing the
shape of the agent formation.

Row C displays N = 891 agents forming an arbitrary square-like structure with two holes.
We refer to this case as an active solid due to the lack of regularity in agent positions. Agents
are initially distributed homogeneously within the predetermined shape of the structure, with
random positions and orientations. All agents separated by d < 1 are then linked by springs of
natural length d and spring constants k/ l = 5/d. Noise is set here to zero, but we verified that
the same qualitative dynamics is observed for small enough Dr and Dθ values. To highlight the
ordered regions, we define the measure of local order

ψ loc
i =

1

C(Si)

∥∥∥∥∥∥
∑
j∈Si

n̂ j

∥∥∥∥∥∥ , (8)

where C(Si) denotes the cardinality of set Si . If agent i and all the neighbours it interacts with
are aligned, ψ loc

i = 1; if they are isotropically oriented, ψ loc
i = 0. We colour each agent in the

elastic solid according to its ψ loc
i value, following the scale displayed on the figure. At t = 0,

agents are randomly oriented and ψ loc
i values are typically small (C1). As time advances and

the elastic sheet deforms, aligned regions of coherent motion (with ψ loc
i close to 1) appear and

grow (C2 and C3). Finally, the whole structure starts moving collectively when agents become
sufficiently aligned (C3).

We carried out additional simulations to explore the effects of parameter changes on
the dynamics described above. In order to reduce the number of parameters, we first write
equations (1) and (2) in non-dimensional form by expressing them in terms of the characteristic
units of length and time, l and l/v0, respectively (considering here cases where all springs have
the same natural length l). We find

dEx ′

i

dt ′
= n̂i +A [( EF ′

i + D′

r ξ̂r) · n̂i ] n̂i , (9)

dθi

dt ′
= B [( EF ′

i + D′

r ξ̂r) · n̂⊥

i ] + D′

θ ξθ (10)
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with

EF ′

i =

∑
j∈Si

(
1 −

∥∥Er ′

i j

∥∥) Er ′

i j∥∥Er ′

i j

∥∥ , (11)

Er ′

i j = Ex ′

j − Ex ′

i . (12)

Here Ex ′
= Ex/ l, t ′

= v0 t/ l, D′

r =
√
v0/ l Dr/k and D′

θ =
√

l/v0 Dθ are non-dimensional
variables. With this rescaling, the deterministic part of the dynamics depends only on the two
non-dimensional parameters: A= αk/v0 and B = βkl/v0. These control the extent to which
elastic forces will result in translation and rotation, respectively. In figure 1(A) they are A= 25
and B = 195.

Figure 2 presents runs with the same hexagonal active crystal setup displayed in figure 1(A)
(using k = 5, l = 0.65, v0 = 0.002 and Dθ = 0), but with four other parameter combinations.
We show that CM emerges in a broad range of situations and requires no fine-tuning. Row (A)
corresponds to a case with a higher A value (A= 250, B = 195), computed using α = 0.1,
β = 0.12 and Dr = 0.158. This increases the rigidity of the elastic structure, which does not
appear to hinder the convergence to CM. Row (B) displays a case with lowerA value (A= 4.17,
B = 195), computed using α = 0.0017, β = 0.12 and Dr = 0.079. The resulting structure is less
rigid and displays strong deformations that persist even after it starts moving collectively, slowly
dampening thereafter. CM is still consistently achieved for this parameter combination, although
convergence typically takes longer. Row (C) corresponds to a case with higher B (A= 25
and B = 1950) that uses α = 0.01, β = 1.2 and Dr = 0.079. The higher rotational response to
forces produces large oscillations of the heading angles without strongly deforming the elastic
structure. Finally, row (D) corresponds to a case with lower B (A= 25 and B = 6.1) that uses
α = 0.01, β = 0.0038 and Dr = 0.079. Here, agents turn slowly even under strong transversal
forces, producing high deformations that result, in turn, in large angular fluctuations, which are
then slowly dampened out. Despite these differences, with all these parameter combinations the
system reaches CM for low enough levels of noise, as shown in the figure.

The AES model displays an order–disorder phase transition as a function of noise similar
to that in the Vicsek model. Figure 3 examines this transition in the same hexagonal active
crystal displayed on column A of figure 1 and in a larger (N = 547) hexagonal configuration
with identical parameters. The leftmost column presents results as a function of sensing noise
Dr and the central column, as a function of actuation noise Dθ . Top panels display the mean
and local maxima of the distribution of ψ values computed for the last 106 time-steps (after
discarding the initial 106 steps to ensure convergence to a statistical steady state) in 30 (or 80, in
the transition region) equivalent runs per noise value. Bottom panels display the corresponding
values of the Binder cumulant G = 1 − 〈ψ4

〉/3〈ψ2
〉

2 [24]. As the level of either type of noise
is increased, the system undergoes a discontinuous transition from an ordered state where
agents self-organize, to a disordered state where they continue to point in random directions
without achieving CM. This is evidenced by the discontinuous drop of the order parameter
at the critical point and by the Binder cumulant, which is known to become negative in the
transition region for first order transitions with bistable solutions. In the sensing noise case, we
find that G reaches negative values for N = 547, indicating that the transition is discontinuous
for large enough systems. In the actuation noise case, N = 547 does not appear to be large
enough to reach G < 0, but the dip at the transition region drops further and further below
G = 1/3 (the expected value in the disordered phase) as the system size is increased, which
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Figure 3. Global order parameter ψ and Binder cumulant G as a function of
positional sensory noise Dr (leftmost column) and angular actuation noise Dθ

(central column) for the hexagonal active crystal with N = 91 agents displayed in
figure 1 (panel A1) and for an equivalent but larger hexagonal system with N =

547 agents. The curves display the mean and local maxima of the distribution
of values obtained in numerical simulations. The rightmost column shows the
ψ distributions close to the critical noise. Both transitions are shown to be first
order, displaying a discontinuity at the critical point and a bistable region.

strongly suggests a discontinuous transition [24, 32, 33]. We confirm the presence of a bistable
region (where ordered and disordered solutions coexist) for both cases by displaying on the
rightmost column the distribution of ψ values in the transition region. It is apparent that these
distributions become more bimodal as the system size is increased. Finally, we point out that we
observed an equivalent discontinuous transition when using either Gaussian or homogeneous
noise distributions and for other spatial configurations (data not shown).

4. Convergence dynamics

We focus in this section on the convergence dynamics of the AES model. First, we show that the
mechanism that leads to CM can be best understood by decomposing the energy of the system
into its elastic modes. Then, we study how the convergence to the ordered state depends on the
system size.

4.1. Energy cascading mechanism

We begin by computing the spectral decomposition of the energy into the elastic modes of the
system. In order to do this numerically, we first determine the elasticity matrix K of the structure
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Figure 4. Kinetic energy (A), elastic energy (B) and spectral decomposition
of the elastic energy (C) as a function of time for a zero noise simulation of
the hexagonal active crystal displayed on figure 1 (panel A1) that converges
to an aligned, translating state. Brighter points in (C) represent larger mode
amplitudes. After a transient, both energies converge to their stationary values
for collective translational motion, E∗

K = 1.82 × 10−4 and E∗

V = 0, respectively.
All modes show decaying oscillations that dampen out faster for higher modes.
After t ≈ 1500, most elastic energy has been converted to kinetic energy,
where it either dissipates or flows to lower modes, eventually reaching the zero
(translational) mode.

by perturbing the agent positions one by one with respect to an equilibrium configuration where
all springs are at their natural length. We then find the eigenvalues and eigenvectors of the K
matrix. As in standard elasticity, these eigenvectors define an orthogonal base over which we can
decompose the displacements and velocities. The corresponding amplitudes yield the spectral
decomposition of the potential and kinetic energy, respectively.

We display on figure 4 the dynamics of the total kinetic and potential energy (panels (A)
and (B)), and of the spectral decomposition of the potential energy (panel (C)) for the same
system simulated in row (A) of figure 1, but with zero noise (Dr = Dθ = 0) and for a run that
converges to a translating solution. Note that the sum of potential plus kinetic energy is not
conserved here due to the overdamped nature of the dynamics. For this system, we have 182
elastic modes, corresponding to 91 agents with two positional degrees of freedom per agent.
The amplitude of these modes are displayed on figure 4(C) as a function of time, numbered in
order of growing energy and smaller scales, without accounting for degeneracies. The initial
condition is set with all agents randomly oriented and placed in an undeformed hexagonal
lattice. At t = 0, the potential energy is therefore zero while the kinetic energy is equal to
E∗

K = (1/2)Nv2
0 = 1.82 × 10−4, where we have set the agent mass to 1. At the beginning of
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the dynamics, kinetic energy drops and potential energy grows, due to elastic forces. Given
the disorder in the system, this potential energy is initially broadly distributed throughout the
different energy modes. As time advances, the system rearranges itself into states with decaying
elastic energy and growing kinetic energy, until the former reaches values close to zero while
the latter reaches again its E∗

K value. Figure 4(C) allows us to visualize the mechanism that
leads to self-organization. After the initial transient, all modes are excited and their amplitudes
oscillate while dampening, with higher modes decaying faster than lower ones. This results
from a combination of a standard elasticity process and the coupling between elastic forces
and heading angle imposed by the model. Indeed, it is well-known that higher energy modes
dampen at a faster rate in elastic systems, since they are more rigid and have higher oscillation
frequencies, which typically leads to faster dissipation. In this active system, however, each
agent is continuously injecting energy at the individual level through its self-propulsion term,
so motion cannot dampen out. Instead, elastic forces will steer agents away from higher modes
more strongly than from lower modes. If while doing this agents do not re-excite higher elastic
modes faster than these decay, the self-propulsion energy will be channeled to lower and
lower modes until the first (rotational) mode or zero (translational) mode is reached and CM is
achieved. If instead agents feed too much self-propulsion energy to higher modes while turning,
these modes will always remain excited and no CM state will be reached. We conclude that not
every active elastic system will achieve CM. For example, we consider in section 5 a constant-
speed algorithm that does not display CM despite having the same angular dynamics as the AES
model. Finally, we note that by writing equations for the flow of energy between the different
modes, we can study analytically the conditions required for self-organization beyond the linear
stability analysis described below. These calculations are beyond the scope of the current paper,
however, and are left for future work.

4.2. Dependence on system size

We study here how the convergence dynamics depends on the system size. Figure 5 displays the
global order parameter ψ as a function of time for hexagonal active crystals with N = 91, 547,
1027 and 5167 agents. Each simulation is started from a random initial condition, using the same
parameters as in figure 4. Ten convergence curves are presented per system size. We observe
that for N = 91 not all runs converge to the aligned (ψ ≈ 1) state. Instead, four runs reach
the metastable rotating (ψ ≈ 0) state and remain trapped there until the end of our simulation
time, which was set here at t = 104 (much longer than the displayed time frame). For the other
sizes, however, no run ultimately converges to the rotating state. This is because the larger a
rotating structure is, the faster outer agents must advance in order to maintain cohesion. For large
enough systems, the drag introduced by these agents will be enough to destabilize the rotating
solution.

Figure 5 also shows that convergence times have a large variability. Despite this, the figure
readily provides a rough estimate of how these times scale with the system size. Indeed, the
time frame displayed on each panel is proportional to N 1/2. Given that even with this rescaled
temporal axis curves seem closer to the ordinate axis for higher N , it is apparent that the typical
convergence time grows here slower than N 1/2. The fact that the convergence dynamics is
strongly non-monotonous suggests that its variability is a reflection of the complex dynamical
landscape that the system navigates, where it can spend unpredictable amounts of time near
local attractors and metastable states. Since the main metastable state is the rotating solution,
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Figure 5. Convergence dynamics of the order parameter ψ for four hexagonal
active crystals of different sizes. All parameters are the same as in figure 4. Ten
runs with different, randomly oriented initial conditions are displayed for each
size. When ψ approaches 1, the system is converging to an aligned translating
state and when it approaches 0, to a rotating (metastable) state. All system sizes
display a broad variability of convergence times, with larger systems typically
taking longer to converge.

a systematic scaling analysis of convergence times will require not only a much larger set of
simulation runs, but also structures that suppress the rotating state, such as strongly elongated
shapes.

5. Linear stability analysis

One of the interesting aspects of our AES model is that we can use a continuous elastic
sheet approximation to carry out analytical calculations. We follow this approach and perform
a standard linear stability analysis [25] of the zero noise case to investigate which specific
dynamical rules can sustain translating CM solutions. We begin by writing the elastic forces
EF = (Fx , Fy) that result from small displacements Eu = (ux , u y) of points on the membrane with
respect to their equilibrium position. These are given by the standard elasticity equations

Fx = (λ+ 2µ)
∂2ux

∂x2
+µ

∂2ux

∂y2
+ (λ+µ)

∂2u y

∂x∂y
, (13)

Fy = (λ+ 2µ)
∂2u y

∂y2
+µ

∂2u y

∂x2
+ (λ+µ)

∂2ux

∂x∂y
, (14)
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where the elastic constants are the Lamé parameter λ and shear modulus µ [25]. By linearizing
the equations of motion (1)–(2) around an equilibrium solution with undeformed membrane and
all agents moving at speed v0 in the x̂ direction, we find the following expressions for ux , u y ,
and the perturbation field φ of the heading angle:

u̇x = αFx , u̇ y = v0φ, φ̇ = βFy. (15)

Replacing equations (13) and (14) into (15) and casting the resulting expression in Fourier space
with wavevector components kx and ky , we can express the perturbation dynamics in matrix
form and compute its eigenvalues 3 to determine the linear stability of the system. We find that
3 satisfies the characteristic equation 33 + C23

2 + C13+ C0 = 0, with

C0 = αβµv0(λ+ 2µ)[k2
x + k2

y]2, (16)

C1 = βv0

[
µk2

x + (λ+ 2µ)k2
y

]
, (17)

C2 = α[(λ+ 2µ)k2
x +µk2

y]. (18)

Using Routh’s stability criterion, here given by C1C2 > C0 [34], we find that the system will
be linearly stable if αβv0(λ+µ)2k2

xk2
y > 0, which is always verified. We conclude that the

translating CM solution is linearly stable for all parameter values.
Analytical calculations like those presented above allow us to determine, a priori, which

elasticity-based equations of motion will be able to sustain CM. We found that most variations
of the AES model cannot support stable aligned solutions. Consider, for example, an algorithm
where the heading angle is determined by equation (2) but the speed is fixed to v0, by setting
α = 0. Given that the angular dynamics remains unchanged, one could naı̈vely think that this
system will align like the AES model. We will now show, however, that this is not the case. The
characteristic equation for α = 0 becomes

33 +β v0[µk2
x + (λ+ 2µ)k2

y]3= 0, (19)

which has solutions 3= 0 and 32
= −v0β[µk2

x + k2
y(λ+ 2µ)]. Since 3 ∈ i <, linear

perturbations will not dampen out, but produce instead permanent oscillations. We confirmed
through numerical simulations that, even for zero noise and starting from an aligned initial
condition, the group will lose order as agents rotate in place. After testing several elasticity-
based active systems, we found only one other example that can sustain CM: a variation of the
model introduced in [19] that we will further discuss in section 7.

6. Exploring AES dynamics

We carry out in this section an initial exploration of three different dynamical setups of the AES
model that allow us to better understand its typical behaviour and modelling possibilities. We
first consider a rotating ring solution, then the propagation of perturbations on an aligned rod-
like configuration, and finally a variation of the AES model where each agent has a different
self-propulsion speed v0.

6.1. Dynamics of a ring-shaped configuration

Figure 6 displays the dynamics of N = 100 agents in a ring-shaped structure where nearest
neighbours are connected by springs of natural length l = 0.65 and stiffness k/ l = 0.25/0.65.
Agents are initially placed on a circular configuration, separated by l and pointing tangentially
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Figure 6. Simulation of a ring-shaped active elastic system. Top panels display
snapshots of the dynamics at t = 5135 (maximum radius, panel 1), 7655 (next
maximal contraction speed, panel 2), 100 000 (panel 3) and 400 000 (panel
4). The arrow on panel 1 indicates the sense of rotation of the structure and
the circle on all panels, the shape of the initial condition. At t = 0, agents
are placed on this circle, pointing tangentially (clockwise). The bottom panel
presents the mean radius of the structure (with respect to its barycentre)
as a function of time. After the initial oscillations of the breathing mode
dissipate, higher elastic modes develop and deform the circular structure. The
simulation video can be found in the supporting information, video 8, available
at stacks.iop.org/NJP/15/095011/mmedia.

(clockwise). The system is then integrated forward in time with zero noise. Top panels display
snapshots at t = 5135, 7655, 105 and 4 × 105; the bottom panel shows the mean radius of
the ring as a function of time. Initially, the ring expands, increasing elastic forces until a
maximum radius is reached (panel 1) and the ring starts contracting. The contraction speed
then increases until it reaches a maximum (panel 2) and agents start turning outwards until
they move again tangentially, reaching a minimum radius. This breathing mode continues to
oscillate with decaying amplitude until it fully dampens out. The circular configuration then
loses stability, exciting higher modes that deform it (panel 3). This state survives with different
levels of deformation until the end of our integration time (panel 4).

6.2. Propagation of perturbations

Figure 7 shows the propagation dynamics of a local perturbation of the heading angle on an
aligned CM state. We set up a three-row rod-like structure similar to that in figure 1(B), with

New Journal of Physics 15 (2013) 095011 (http://www.njp.org/)

http://stacks.iop.org/NJP/15/095011/mmedia
http://www.njp.org/


16

Figure 7. Propagation of localized angular perturbations of the aligned state.
Agents are initially placed on a three-row rod-like structure similar to that in
figure 1(B) but longer (containing N = 499 agents), with all agents heading in
the same direction (θ = 0) and aligned to the rods main axis. Simulations are
carried out with the same parameters used in figure 1(B), but for zero noise.
At t = 0, the frontmost agent is rotated by π/18 (left column) or π/2 (right
column). The plots display the heading angle of all 167 agents on the central
row, numbered from back to front. The large perturbation propagates faster and
produces a wake of longer wavelength than the small one.

the same parameters but in a longer configuration with N = 499 agents. All agents are initially
placed aligned and pointing on the same direction as the rod axis, which we define as θ = 0. At
t = 0, we perturb the orientation of the frontmost agent, rotating it by π/18 (small perturbation)
or π/2 (large perturbation). The system is then integrated forward in time with zero noise. We
plot the heading angles of all agents on the central row of the rod-like structure at four different
moments in time, indexed in order of their position from back to front. Both small and large
perturbations display here a wake of persistent angular oscillations behind them. Note, however,
that other preliminary simulations that we have carried out on less elongated structures show this
wake rapidly decaying after the passage of the initial perturbation. For the long rod-like case
presented here, we observe that small angular perturbations propagate faster and leave a wake
of shorter wavelength and smaller amplitude than large ones. These results illustrate the rich
dynamics exhibited by the propagation of perturbations in the AES model. Their study will
require further systematic analyses that are left for future work.

6.3. Heterogeneous self-propulsion speeds

We now consider a variation of the AES model where all agents have different preferred
speeds. Figure 8 displays the dynamics of an active elastic hexagon with the same parameters
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Figure 8. Snapshots of a hexagonal AES simulation with heterogeneous
preferred speeds at t = 0 (1), 7300 (2), 12 000 (3) and 22 000 (4). Each
agent’s self-propulsion speed v0 is chosen at random between 0 and 0.04.
After a very long integration time, the system reaches a quasi-ordered state
of CM where the orientation of faster agents oscillates broadly so they can
remain cohesive with their slower neighbours. Agents are coloured based
on their degree of local alignment ψ loc, as in figure 1(C). The simulation
video can be found in the supporting information, video 9, available at
stacks.iop.org/NJP/15/095011/mmedia.

as in figure 1(A), but where instead of fixing all self-propulsion speeds to v0 = 0.02 we
select a different v0 for each particle, at random, from the interval 06 v0 6 0.04. Agents are
coloured based on their local alignment, as in figure 1(C). Interestingly, even for this highly
heterogeneous system agents manage to self-organize and achieve CM, albeit after a very
long relaxation time. As time advances, growing regions of coherent motion emerge (panel 2),
but a localized part of the hexagonal structure remains persistently disordered (the lower-left
quadrant of the hexagon on panel 3). This is the area that displays the highest differences of
preferred speeds, which makes CM harder to reach. Eventually, the system finds a way to fully
self-organize and the groups starts moving collectively. In the case shown, it advances in a
curved trajectory due to the random accumulation of faster agents at one side of the structure.
A salient feature of the final quasi-ordered state is that it can never reach the stationary solution
where all agents are fully aligned. This is because the orientation of faster agents must oscillate
strongly so they can remain cohesive with their slower neighbours. The ability displayed here
by the AES model to self-organize even in highly heterogeneous situations opens the possibility
of constructing a rich variety of active solids that produce diverse collective dynamics by
assembling groups of agents with different individual characteristics.

7. Discussion and conclusions

We have identified in this paper an alternative, elasticity-based mechanism for achieving CM
and introduced the AES model to illustrate it. Up to now, the only existing theoretical framework
for explaining how a variety of systems self-organize to achieve CM was based on the Vicsek
model [12] and on the active hydrodynamic theory first introduced by Toner and Tu [15]. Our
work develops a very different theoretical framework, providing a simple alternative mechanism
for CM that is based on elasticity instead of alignment consensus or momentum transfer and
requires no exchange of orientation information. We found only one other system that can

New Journal of Physics 15 (2013) 095011 (http://www.njp.org/)

http://stacks.iop.org/NJP/15/095011/mmedia
http://www.njp.org/


18

display CM under similar conditions: the model introduced in [19] to study the collective
migration of tissue cells. In a version of this model designed to study active jamming, where
agents are confined in a circular box and only have repulsive interactions, a similar elasticity-
based mechanism was shown to be responsible for the dynamics of the jammed phase [20].

The relevance of aligning interactions for achieving CM has been a long-standing issue
in the field. Only a few studies have considered systems where agents align and move
collectively without exchanging orientation information, and their underlying mechanism
remained unexplained. In fact, seminal work by Grégoire and co-workers [23, 24] suggested
that CM was not possible in minimal models without aligning interactions. Our studies show
that their model did not to converge to CM when aligning interactions were turned off because
of two reasons. Firstly, it considered agents with constant speed. As shown above, this is enough
to prevent the elasticity-based mechanism from achieving CM in the AES case. Secondly, their
agents switch to the next desired heading direction in one time-step, instead of integrating
equation (2). This instantaneous relaxation can stop energy from smoothly flowing to lower
energy modes and from developing growing regions of coherent motion.

To the best of our knowledge, this work is the first to combine the theories of elasticity
and CM. It could find applications in any system of self-propelled agents or active particles that
hold an approximately rigid formation. The simple idea that the slower dissipation of lower,
more coherent elastic modes can lead to self-organization in active matter provides a unifying
framework for studying disparate systems such as cell migration in tissue development (where
elasticity has been shown to play a relevant role) [19, 21, 35], flocking models or swarm robotic
control algorithms without explicit alignment [36], or even the recently developed active gels,
which have no self-propulsion but could also display elasticity-driven self-organization [37].

An important application of this work could be found in experimental studies. There
is a growing number of experiments that study CM in natural and artificial systems. One
of their current objectives is to verify if the properties of their propagating waves coincide
with the predictions of the hydrodynamic theory of CM [15, 16]. Our work suggests that
these efforts may be incomplete, since they only search for alignment-based waves, whereas
waves with different properties would result from active elastic interactions. This suggests
the interesting possibility of determining the type of interactions present in a given system
based only on collective properties such as the propagation of perturbations. We expect most
natural groups to move collectively as a result of a combination of both types of mechanisms,
alignment-based and elasticity-based, effectively behaving as an active viscoelastic material
of aligning components. The relevance and role of each mechanism could change at different
time-scales and in different regimes. However, given that some type of cohesion is required
to form a cohesive group, the elasticity-driven mechanism should play a role in many cases.
Note that the AES model does not intend to describe the details of specific experimental
systems, but to illustrate instead the possible relevance of the elasticity-based mechanism
in their convergence to CM. In order to further quantify the dynamics of a specific
system, a more detailed model should be developed (potentially combining different aligning
mechanisms), with its corresponding parameters and characteristic scales obtained from direct
measurements.

Finally, an appealing aspect of the AES approach is that it is well-suited for analytical
studies. In addition to the stability calculations described in this paper, we can envision
carrying out a stochastic differential equation analysis to determine the critical noise level
required for the transition. We could also develop energy-cascading arguments that describe the
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self-organization dynamics as requiring a net energy transfer from higher to lower elastic modes.
These analytical approaches could help improve our fundamental understanding of CM and of
the more general class of non-equilibrium, self-organizing systems where energy is injected at
the smallest scales, which are highly relevant in the study of biological systems and new active
materials.
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