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Abstract 18 

Division of labor is ubiquitous in biological systems, as evidenced by various forms of 19 

complex task specialization observed in both animal societies and multicellular organisms. 20 

Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, 21 

as it requires the simultaneous co-occurrence of several complex traits to achieve the 22 

required degree of coordination. Recently, evolutionary swarm robotics has emerged as an 23 

excellent test bed to study the evolution of coordinated group-level behavior. Here we use this 24 

framework for the first time to study the evolutionary origin of behavioral task specialization 25 

among groups of identical robots. The scenario we study involves an advanced form of 26 

division of labor, common in insect societies and known as “task partitioning”, whereby two 27 

sets of tasks have to be carried out in sequence by different individuals. Our results show that 28 

task partitioning is favored whenever the environment has features that, when exploited, 29 

reduce switching costs and increase the net efficiency of the group, and that an optimal mix of 30 

task specialists is achieved most readily when the behavioral repertoires aimed at carrying 31 

out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also 32 

show for the first time that self-organized task specialization could be evolved entirely from 33 

scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired 34 

evolutionary method known as Grammatical Evolution. Remarkably, division of labor was 35 

achieved merely by selecting on overall group performance, and without providing any prior 36 

information on how the global object retrieval task was best divided into smaller subtasks. We 37 

discuss the potential of our method for engineering adaptively behaving robot swarms and 38 

interpret our results in relation to the likely path that nature took to evolve complex sociality 39 

and task specialization. 40 

41 
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Author summary 42 

Many biological systems execute tasks by dividing them into finer sub-tasks first. This is seen 43 

for example in the advanced division of labor of social insects like ants, bees or termites. One 44 

of the unsolved mysteries in biology is how a blind process of Darwinian selection could have 45 

led to such hugely complex forms of sociality. To answer this question, we used simulated 46 

teams of robots and artificially evolved them to achieve maximum performance in a foraging 47 

task. We find that, as in social insects, this favored controllers that caused the robots to 48 

display a self-organized division of labor in which the different robots automatically 49 

specialized into carrying out different subtasks in the group. Remarkably, such a division of 50 

labor could be achieved even if the robots were not told beforehand how the global task of 51 

retrieving items back to their base could best be divided into smaller subtasks. This is the first 52 

time that a self-organized division of labor mechanism could be evolved entirely de-novo. In 53 

addition, these findings shed significant new light on the question of how natural systems 54 

managed to evolve complex sociality and division of labor. 55 

  56 
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Introduction 57 

The “major transitions in evolution”, whereby cells teamed up to form multicellular organisms 58 

or some animals went on to live in societies, are among the keys to the ecological success of 59 

much life on earth [1]. The efficiency of both organisms and animal societies frequently 60 

depends on the presence of an advanced division of labor among their constituent units [2-4]. 61 

The most celebrated examples can be found in social insects, which exhibit astonishing levels 62 

of social organization and are ecologically dominant in many natural ecosystems [5,6]. 63 

Through division of labor, social insects can perform complex tasks by dividing them up into 64 

smaller sub-tasks carried out by different sets of individuals [7-10]. Although the adaptive 65 

benefits of division of labor are evident, the way in which it can evolve is more enigmatic, 66 

since an effective division of labor requires the simultaneous co-occurrence of several 67 

complex traits, including self-organized mechanisms to decompose complex tasks into 68 

simpler subtasks, mechanisms to coordinate the execution of these tasks, mechanisms to 69 

allocate an appropriate number of individuals to each task, and the ability of individuals to 70 

effectively carry out each of the subtasks [4]. The complexity of this co-evolutionary problem 71 

is further exacerbated by the fact that division of labor should also be flexible to be able to 72 

cope with changing environmental conditions [4,10,11].  73 

To date, most analytical and individual-based simulation models of division of labor 74 

[4,9,10,12-16] have focused merely on determining the optimal proportion of individuals 75 

engaging in different tasks [12] or on determining optimal task allocation mechanisms 76 

[4,9,10,13,16], sometimes in relation to particular levels of intragroup genetic variation [14,15]. 77 

These studies implicitly assume that pre-optimized behaviors to carry out each of the different 78 

subtasks, which we refer to as “pre-adapted behavioral building blocks”, are already present 79 

in nonsocial ancestors [17], and that division of labor merely involves the rewiring of these 80 

behaviors. Empirical support for this hypothesis can  be found for example in the somatic cell 81 

differentiation in multicellular organisms, which is derived from a genetic switch involved in the 82 

induction of diapause during stress periods in unicellular ancestors [2,18]. Similarly, in insect 83 

societies, worker brood care is thought to be derived from ancestral parental care [19], and 84 

reproductive division of labor as well as worker task specialization may be derived from 85 

mechanisms that initially regulated reproduction and foraging in solitary ancestors [17,20-22].  86 



 5

A limitation of traditional analytical modeling approaches to division of labor [4,10], 87 

however, is that they can only consider a finite and pre-specified number of behavioral 88 

strategies. In recent years, artificial evolution of teams of embodied agents has been used to 89 

enable the study of social traits in more detail, taking into account more realistic physical 90 

constraints and a much larger set of allowable behaviors and strategies [23-25]. In 91 

evolutionary swarm robotics, for example, this framework has been used to study the 92 

evolution of the origin of communication [26,27], collective transport [28], collective motion 93 

[29], aggregation [30-32] and chain formation [33] (reviewed in [23,24,34-37]). Nevertheless, 94 

to date, no study in evolutionary swarm robotics has succeeded in evolving complex, self-95 

organized division of labor entirely de novo [38,39]. This may be due to the fact that most 96 

evolutionary robotics studies have made use of neural network-based approaches [23-25,36], 97 

which have been shown to scale badly to more complex problems [38,40].   98 

The main aim of our study was to test if other nature-inspired evolutionary methods 99 

than traditionally used in evolutionary swarm robotics would be able to achieve complex task 100 

specialization in social groups. Analogously to the situation in nature where subtask behaviors 101 

may or may not be recycled from pre-adapted behavioral building blocks, we do this using 102 

one of two approaches, in which we either do or do not pre-specify the behaviors required for 103 

carrying out the different subtasks. Evidently, we expected that task specialization could 104 

evolve much more easily when pre-adapted behavioral building blocks were present, but we 105 

were also interested to see if a self-organized mechanism of task specialization could be 106 

evolved entirely de-novo using our recently developed method of Grammatical Evolution [41]. 107 

This nature-inspired evolutionary method allows a set of low-level behavioral primitives to be 108 

recombined and evolved into complex, adaptive behavioral strategies through the use of a 109 

generative encoding scheme that is coupled with an evolutionary process of mutation, 110 

crossover and selection [41].  111 

The type of division of labor we consider in our set-up is known as “task partitioning”, 112 

and requires different tasks to be carried out in sequence by different sets of individuals [7]. In 113 

particular, our experimental scenario was inspired by a spectacular form of task partitioning 114 

found in some leafcutter ants, whereby some ants (“droppers”) cut and drop leaf fragments 115 

into a temporary leaf storage cache and others (“collectors”) specialize in collecting and 116 
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retrieving the fragments back to the nest [42,43] (Fig. 1). In our analogous robotics setup, we 117 

used a team of robots [44] simulated in-silico using an embodied swarm robotics simulator 118 

[45] (Fig. 2) and required the robots to collect items and bring them back to the nest in either 119 

a flat or sloped environment (see Figs. 1 and 2b and Material and Methods). In this setup, 120 

task specialization should be favored whenever some features of the environment (in our 121 

case, the presence of a slope) can be exploited by the robots to achieve faster foraging 122 

(“economic transport”, [46]) and reduce switching costs between different locations [9,47].  123 

The results of these experiments show for the first time that complex, self-organized task 124 

specialization and task allocation could be evolved in teams of robots. Nevertheless, a fitness 125 

landscape analysis also demonstrates that task specialization was much easier to evolve 126 

when pre-evolved behavioral building blocks were present. We use these findings as a 127 

starting point to speculate about the likely path that nature took to evolve complex sociality 128 

and division of labor. Furthermore, we discuss the potential of our nature-inspired 129 

evolutionary method for the automated design of swarms of robots displaying complex forms 130 

of coordinated, social behavior. 131 

 132 

Materials and Methods 133 

The task and the environment 134 

Our experimental setup is inspired by the type of task partitioning observed in Atta leafcutter 135 

ants [42,43], that collect leaves and other plant material as a substrate for a fungus that is 136 

farmed as food (Fig. 1a). In these insects, particularly in species that harvest leaves from 137 

trees, leaf fragments are retrieved in a task partitioned way, whereby some ants (“droppers”) 138 

specialize in cutting and dropping leaf fragments to the ground, thereby forming a leaf cache, 139 

and others specialize in collecting leaves from the cache to bring them back to the nest 140 

(“collectors”) [42,43]. In addition, another strategy is known whereby the whole leaf cutting 141 

and retrieval task is carried out by single individuals (“generalists”), without any task 142 

partitioning [42,43]. Task partitioning in this scenario is thought to be favored particularly in 143 

situations where the ants forage on leaves from trees, due to the fast that the leaf fragments 144 

can then be transported purely by gravity, which saves the ants the time to climb up and down 145 

the tree, and the fact that there are few or no costs associated with material loss thanks to the 146 
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large supply of leaves [7,43,48] (Fig. 1a). This theory is supported by the fact that species 147 

living in more homogeneous grassland usually retrieve leaf fragments in an unpartitioned 148 

way, without first dropping the leaves (Fig. 1c), particularly at close range to the nest [43,49].  149 

In the corresponding robotic setup, we substituted the tree with a slope area and leaves 150 

with cylindrical items. A team of robots then had to collect these items from what we call the 151 

source area and bring them back to what we refer to as the nest area (Fig. 1b). Simulations 152 

were carried out using the realistic, physics-based simulator ARGoS [45]. As demonstrated in 153 

the past, controllers developed within ARGoS can be directly transferred to real robots with 154 

minimal or no intervention [50,51]. The robots involved in the experiments were a simulated 155 

version of the foot-bot robot [44], which is a differential-drive, non-holonomic, mobile robot 156 

(Fig. 2a). A screen-shot of a simulation instant is shown in Figure 2b. We used a setup 157 

whereby 5 items were always present in the source area. The 5 items were replaced and put 158 

in a random position within the source area each time a robot picked up one of them. This is 159 

justified by the fact that leaf availability in the natural environment is often virtually unlimited. A 160 

light source was placed at a height of 500 m, 500 m away from the nest, in the direction of the 161 

source area. The light allowed the robots to navigate in the environment, since phototaxis 162 

allowed them to go towards the item source, whereas anti-phototaxis allowed them to return 163 

to the nest. The slope area had an inclination of about 8 degrees. The linear velocity of the 164 

robots on the flat part of the arena was 0.15 m/s, but this reduced to a maximum speed of 165 

0.015 m/s when they had to climb up the slope, and increased to 0.23 m/s when they came 166 

down from the slope. If an item was dropped in the slope area, it slid down the slope at a 167 

speed of 1 m/s until it reached the cache area, where it was stopped due to friction and their 168 

impact with other items in the cache. This was done to simulate leaves being dropped from 169 

the tree, as in Figure 1a. In addition, in some of the experiments, we considered a flat 170 

environment of the same length and width as the one described above (Fig. 1d), to mirror the 171 

case in nature where ants forage in a flat, homogeneous environment (Fig. 1c).  172 

 173 

Evolution of task-partitioning from pre-adapted building blocks 174 

In a first set of experiments, we assumed that the behavioral strategies required to carry out 175 

each of the subtasks (dropper or collector behavior, as well as generalist, solitary foraging) 176 
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were available to the robots as pre-adapted behavioral building blocks and then determined 177 

the optimal mix of each of the strategies [12]. This setup, therefore, matched some 178 

evolutionary scenarios proposed for the origin of division of labor in biological systems based 179 

on co-opting pre-adapted behavioral patterns [2,17-22]. In addition, this scenario allowed us 180 

to determine under which environmental conditions task partitioning is favored, and provided 181 

a fitness benchmark for the second scenario below, where task partitioning was evolved 182 

entirely de-novo.  183 

In this first set of experiments, dropper, collector and generalist foraging strategies 184 

were implemented as follows: 185 

(1) Dropper strategy: A dropper robot is a robot that climbs the slope area and never 186 

descends it again, continuously collecting items from the source area and dropping 187 

them to the slope area. 188 

(2) Collector strategy: A collector robot is a robot that never climbs the slope area. 189 

Instead, it continuously collects items from the cache (when present) and brings them 190 

back to the nest. If it cannot find any items, the collector robot keeps exploring the 191 

cache area by performing random walk, until an item is found. 192 

(3) Generalist strategy: A generalist robot is a robot that performs a standard foraging 193 

task. It climbs the slope and explores the source area, collects items, and brings them 194 

all the way back to the nest. The generalist robot does not explore the cache area, 195 

but in case it finds an item at the cache while going towards the source, it collects it 196 

and brings it back to the nest. 197 

The rules that we employed to implement these strategies are shown in Supplemental Table 198 

S1. We also assumed that the robots would specialize for life in each of these available 199 

strategies according to a particular evolved allocation ratio. This was equivalent to assuming 200 

that in nature, these behavioral strategies would already have evolved due to selection in their 201 

ancestral environment, and that natural selection would favor a particular hard-wired 202 

individual allocation between the different sets of tasks, e.g. through fine-tuning of the 203 

probability of expression of the gene-regulatory networks coding for the different behavioral 204 

patterns. For these experiments, we used teams of 4 robots, to match the evolutionary 205 

experiments with fine-grained building blocks (cf. next section). Subsequently, a fitness 206 
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landscape analysis was used to determine the optimal mix between the three strategies in 207 

one of two possible environments, a flat or a sloped one (Fig. 1b, d). This was done via 208 

exhaustive search, that is, by testing all possible ratio combinations and determining the 209 

corresponding fitness values in the two environments, rather than using an evolutionary 210 

algorithm. This was possible due to the relatively small search space, which gave access to 211 

the full fitness landscape Group performance, measured by the total number of items 212 

retrieved to the nest over a period of 5,000 simulated seconds, for each possible mix of the 213 

three strategies, was measured in 10 simulated runs and then averaged.  214 

 215 

Evolution of task-partitioning from first principles 216 

In a second set of experiments, we considered an alternative scenario where both task 217 

specialization and task allocation could evolve entirely de-novo, starting only from basic, low-218 

level behavioral primitives. These primitives were simply navigational behaviors allowing 219 

robots to either go towards the source or towards the nest, as well as a random walk 220 

behavior: 221 

(1) PHOTOTAXIS: uses the light sensor to make the robot go towards the direction with the 222 

highest perceived light intensity. 223 

(2) ANTI-PHOTOTAXIS: uses the light sensor to make the robot go towards the lowest 224 

perceived light intensity. 225 

(3) RANDOM WALK: makes the robot move forward for a random amount of time and then 226 

turn to a random angle, repeating this process while the block is activated, without using 227 

any sensors. 228 

In addition, a mechanism of obstacle avoidance, based on the robot’s range and bearing and 229 

proximity sensors, was switched on at all times to avoid that the robots would drive into each 230 

other or into the walls of the foraging arena. Finally, two instantaneous actions were allowed, 231 

namely picking up and dropping an item. To be able to evolve adequate behavioral switching 232 

mechanisms, we allowed the robots to perceive their position in space, that is, whether they 233 

were in the source, slope, cache or nest, based on sensorial input from the ground and light 234 

sensors, as well as perceive whether or not they were currently holding an item.  235 
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The fine-grained behavioral building blocks were combined together using a method 236 

known as grammatical evolution [52] as implemented in GESwarm [41], in order to evolve 237 

rule-based behaviors representing more complex strategies. GESwarm was developed for the 238 

automatic synthesis of individual behaviors consisting of rules leading to the desired collective 239 

behavior in swarm robotics. These rules were represented by strings, which in turn were 240 

generated by a formal grammar. The space of strings of such a formal grammar was used as 241 

a behavioral search space, and mutation, crossover and selection were then used to favor 242 

controllers that displayed high group performance. 243 

The individual behavior of a given robot was expressed by a set R  of an arbitrary 244 

number R
n  of rules

i
R : 245 

 { }, {1, , }
i R

R i n= ∈ …R . 246 

Each rule was composed of three components: 247 

 
i i i i
R = × ×P B A , 248 

where 
i

B  denotes a subset of all possible fine-grained behavioral building blocks (phototaxis, 249 

anti-phototaxis and random walk), 
i

A  denotes a subset of all possible instantaneous actions 250 

(pickup, drop, change behavior or change an internal state variable) and 
i

P  denotes a subset 251 

of all possible preconditions. The preconditions were specified as logical conditions with 252 

respect to the current value of a number of state variables, which included both sensorial 253 

input (the environment they were in and whether or not they were carrying an item) and 254 

internal state variables (a state variable that specified whether they wanted to pick up an item 255 

or not and two memory state variables, with evolvable meaning). 256 

If all the preconditions in 
i

P  were met, and if a given robot was executing any of the 257 

low-level behaviors present in 
i

B , all actions contained in 
i

A  were executed with evolvable 258 

probability l
p . In this way, we could allow the evolution of probabilistic behaviors, which have 259 

been extensively used both in the swarm robotics literature [53,54] and as microscopic 260 
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models of the behavior of some social animals [55,56]. Finally, each robot executed all rules 261 

and actions in their order of occurrence. 262 

To be able to generate the rules above, we devised a grammar using the Extended 263 

Backus-Naur Form notation [57]. Within the framework of grammatical evolution [41,52], a 264 

genotype represented a sequence of production rules to be followed to produce a valid string 265 

(in our case a set of rules) starting from that grammar. Mutation and crossover acted at the 266 

level of this genotype, modifying the sequence of production rules. The full grammar of 267 

GESwarm is described in [41]. 268 

Biologically speaking, our GESwarm rule-based controllers can be considered 269 

analogous to gene-regulatory networks or to a brain, whereby internal memory state variables 270 

in our model can be seen as an analogy to epigenetic states or memory states in the brain. 271 

Furthermore, as in biological systems, we use a generative encoding (a string coding for a 272 

series of conditional rules, similar to a DNA sequence coding for conditionally expressed gene 273 

regulatory networks) and evolve our system using mutation and crossover. One departure in 274 

our setup from biological reality, however, was that we used genetically homogeneous teams, 275 

as is common in evolutionary swarm robotics [58], but different from the situation in most 276 

social insects, where sexual reproduction tends to be the norm. This choice was made 277 

because homogeneous groups combined with team-level selection has been shown to be the 278 

most efficient approach to evolve tasks that require coordination [28]. Nevertheless, this setup 279 

can still be considered analogous to the genetically identical cells of multicellular organisms 280 

[59] or the clonal societies of some asexually reproducing ants [60] that both display complex 281 

forms of division of labor.  282 

We executed a total of 22 evolutionary runs on a computer cluster, of which we used 283 

100 to 200 nodes in parallel. The number 22 was chosen to meet the total amount of 284 

computational resources we had at our disposal (3 months of cluster time) and was 285 

statistically speaking more than adequate. All evolutionary runs were carried out for 2,000 286 

generations using 100 groups of 4 robots and were each evaluated 3 times. This relatively 287 

small number of robots was chosen to limit the computational burden of the evolutionary runs. 288 

Nevertheless, we also verified if the evolved controllers could be scaled to larger teams of 20 289 

robots each. In this case, the foraging arena was scaled in direct proportion with the number 290 
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of robots. We used single-point crossover with crossover probability 0.3 and mutation 291 

probability 0.05. We chose a generational replacement with 5% elitism, in order to exploit 292 

parallel evaluation of multiple individuals on a computer cluster. We used roulette-wheel 293 

selection, that is, the probability to select a given genotype was proportional to its fitness 294 

relative to the average fitness of all genotypes in the population. As fitness criterion we used 295 

group performance, measured as the total number of items retrieved to the nest over a period 296 

of 5,000 seconds. During post-evaluation, this same fitness criterion was used to evaluate the 297 

evolved controllers. We also assessed the average absolute linear speed of the robots along 298 

the long axis of the arena, measured as a percentage of the theoretical maximum speed, and 299 

the degree of task specialization, measured by counting how many items have been retrieved 300 

through the action of more than one robots (i.e. via specialists) and by dividing this number by 301 

the total number of objects retrieved (i.e. via specialists + via only one generalist). 302 

 303 

Results 304 

Evolution of task-partitioning from pre-adapted building blocks 305 

In the first set of simulations, we assumed that each robot could specialize for life to one 306 

among the three possible preexisting behavioral strategies required for task partitioning, 307 

dropper, collector and generalist, and determined the optimal mix between the three 308 

strategies based on an exhaustive search on the full fitness landscape (Fig. 1b, d). These 309 

simulations were performed both in a flat and a sloped environment. As proposed for natural 310 

systems [7,43,48], our a priori hypothesis was that task partitioning would be favored 311 

particularly in the sloped environment, and that maximal group performance would be 312 

achieved when some robots would drop items in a cache and others specialized in collecting 313 

items from the cache. This is because, in such an environment, some of the robots would be 314 

able to avoid the costly traversal of the slope area (i.e. avoid switching costs) and the fact that 315 

gravity could also help to move items across the slope, thereby resulting in more economical 316 

transport (Fig. 1).  317 

Examination of the obtained fitness landscapes reveals that there was one globally 318 

attracting optimum in each of the two environments considered (Fig. 3a, b). As expected, this 319 

optimum involved task partitioning in the sloped environment (Fig. 3b), with a mix of 50% 320 
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droppers and 50% collectors being most efficient, but only generalist foraging in the flat 321 

environment (Fig. 3a, Videos S1 and S2). In addition, our fitness landscape analysis showed 322 

that when pre-adapted behavioral building blocks can be used in the evolutionary process, 323 

the fitness landscape tends to be very smooth, thereby making task specialization easily 324 

evolvable, without the risk of the system getting trapped in suboptimal local optima. It should 325 

also be noted that in our setup, the absolute group performance was significantly higher (t-326 

test, t=-16.6, d.f.=18, p<10-11) in the sloped environment (144.1 ± 4.3 S.D. items collected in 327 

5,000 s, n=10) than in the flat one (120.2 ± 1.4 S.D. items collected in 5,000 s), due to the fact 328 

that in the first case, gravity helped to move the items towards the source.  329 

 330 

Evolution of task-partitioning from first principles 331 

In a second set of experiments, we used GESwarm [41] to evolve task specialization and task 332 

allocation entirely de-novo, starting only from basic, low-level behavioral primitives (see 333 

Materials and Methods). Surprisingly enough, these evolutionary experiments demonstrated 334 

that task partitioning and fully self-organized task specialization and task allocation could also 335 

emerge entirely from scratch by selecting purely on overall group performance (number of 336 

items retrieved to the nest). In particular, our experiments show that in 59% (13 out of 22) of 337 

the runs, the majority of the items were retrieved by the robots in a task-partitioned way in the 338 

final evolved controller obtained after 2,000 generations (Fig. 4, Videos S3 and S4.1-S4.22). 339 

In these cases, most of the items were first dropped by one robot and later picked up by 340 

another one. In contrast to the case with predefined behavioral strategies, however, the task 341 

specialization that was seen in these controllers did not entail fixed roles, but instead was 342 

characterized by a dynamic allocation in response to the size of the cache. An example of a 343 

controller (nr. 2) displaying such behavior is shown in Supplemental Video S3, where the 344 

majority of the robots first exploit the source to act as droppers, but then move down the slope 345 

as the cache fills up to act as collectors (the evolved rules of this controller are shown in 346 

Table S2). The robots shown in these simulations used simple probabilistic rules to switch 347 

from the source to the cache area, while the cache itself was exploited to switch from the 348 

cache area back to the source area. We observed that the latter mechanism was also very 349 

simple and based on stigmergy, i.e. robots would collect from the cache whenever objects 350 
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were found on the way, but would continue all the way to the source when cache items were 351 

not encountered. Thanks to these simple mechanisms, the robots could dynamically switch 352 

roles in response to the size of the cache. The same adaptive specialization dynamics are 353 

apparent in Figure 5a, where the density of the robot positions across the arena is shown 354 

across the 30 runs used for post-evaluation of the same controller, and in Figure 5b, which 355 

displays the individual trajectories of the four robots in a typical evaluation run (the spatial 356 

segregation and robot trajectories for all other evolved controllers are shown in Fig. S1).  357 

That such self-organized task specialization and task allocation could evolve from first 358 

principles by selecting purely on group performance is significant, given that we started from a 359 

random controller that barely achieved any foraging during the first few generations (Fig. 4, 360 

Video S1). As in the case without pre-adapted building blocks that we considered in the 361 

previous section, also here, the presence of a slope was sufficient for the evolution of task 362 

partitioning. Indeed, when we conducted the very same experiments in a flat environment, 363 

none of the controllers evolved task partitioning and generalist foraging was the favored 364 

strategy [41].  365 

Significantly, the evolved rules for both generalist foraging [41] and task partitioned 366 

object retrieval scaled very well also to larger teams of robots. An example is shown in Video 367 

S1, where one of the evolved controllers from a 4 robot team is implemented in a team of 20 368 

robots. In this case, the achieved group performance scaled almost perfectly with the 369 

increase in group size (457 ± 72 S.D. in the 20 robot team vs. 103 ± 24 S.D. in the 4 robot 370 

one). Excellent scalability properties were also shown by the fact that for the 8 best evolved 371 

controllers, the performance ratio of the rules when implemented in the 20 robot teams 372 

relative to that in the 4 robot ones in which the rules were first evolved was very close to the 373 

expected linear scaling factor of 5 (4.4, S.D. 0.14, see Table S3). 374 

Although the lack of fixed roles precluded an analysis in terms of behavioral roles 375 

similar to that presented in the section above, it turned out that both increased amounts of 376 

task partitioning and higher average linear speeds significantly increased group fitness 377 

(multiple regression analysis, p<0.01 and p<10-5, respectively, n=22, Fig. 6). In fact, all 8 378 

evolved controllers displaying a high group performance (top 35%, >ca. 100 items collected) 379 

had very high levels of task partitioning (92% ± 0.08 S.D. of all items retrieved in a task 380 
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partitioned way) and achieved a high average linear speed (31% ± 0.6% S.D. of the 381 

theoretical maximum). Significantly, out of these 8, the performance of the best evolved 382 

controller (135 ± 14 S.D., n=30 items retrieved) was not significantly different from the optimal 383 

2 dropper-2 collector mix obtained in the experiment using hand-coded behavioral strategies 384 

above (144.1 ± 4.3 S.D., t-test, t=2.01, d.f.=38, p > 0.05). Among these 8 best controllers, 385 

between 4 and 11 rules were used to switch between the different allowed behaviors and 386 

instantaneous actions (cf. evolved rules shown in Supplemental Table S2). Interestingly, in 3 387 

of these best controllers, the rules employed as a precondition a memory state variable that 388 

was increased or decreased as a result of some of the actions performed in other rules. In 389 

principle, the use of these state variables could have allowed for the evolution of mechanisms 390 

akin to the response threshold model, which has been extensively used in studies on division 391 

of labor [4,9,10,16]. Nevertheless, none of our controllers succeeded in evolving this 392 

particular mechanism, and task allocation instead appeared to be based purely on 393 

probabilistic and stigmergic switching, as explained above. 394 

A detailed analysis of the fitness and behavior of the final evolved controllers 395 

demonstrated that there was one global optimum characterized by a high level of task 396 

partitioning and high linear speed (Fig. 6). Nevertheless, some runs were trapped in 397 

suboptimal regions of the search space. For example, some controllers merely displayed 398 

generalist foraging, which was suboptimal in our setup (Fig. 6, bottom right points). Similarly, 399 

other controllers were characterized by defective locomotory skills, even if some actually 400 

achieved task partitioning (Fig. 6, left blue points). Finally, two evolved controllers were 401 

characterized by a high degree of task partitioning and a decent speed, but nevertheless had 402 

low overall performance due to the use of a suboptimal dropping strategy, characterized by a 403 

continuous dropping and picking up in all the regions of the environment, which affected 404 

performance but not speed and degree of task partitioning (Fig. 6, two blue points in the 405 

upper-right corner). These outliers, however, did not change the fact that fitness was strongly 406 

correlated with both the degree of task specialization and the linear speed of the robots. 407 

Despite the variation in performance of the final evolved controllers, an analysis of 408 

fitness and degree of task partitioning over the course of the evolutionary runs (Fig. 4) clearly 409 
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demonstrates that high task partitioning was evolutionarily stable, since any transition to high 410 

task partitioning never reverted back to generalist foraging in later generations.  411 

 412 

Discussion 413 

One of the unsolved mysteries in biology is how a blind process of Darwinian selection could 414 

have led to the hugely complex forms of sociality and division of labor as observed in insect 415 

societies [4]. In the present paper, we used simulated teams of robots and artificially evolved 416 

them to achieve maximum team performance in a foraging task. Remarkably, we found that, 417 

as in social insects, this could favor the evolution of a self-organized division of labor, in which 418 

the different robots automatically specialized into carrying out different subtasks in the group. 419 

Furthermore, such a division of labor could be achieved merely by selecting on overall group 420 

performance and without pre-specifying how the global task of retrieving items would best be 421 

divided into smaller subtasks. This is the first time that a fully self-organized division of labor 422 

mechanism could be evolved entirely de-novo. Overall, these findings have several important 423 

implications. First, from a biological perspective, they yield novel evidence for the adaptive 424 

benefits of division of labor and the environmental conditions that select for it [4], provide a 425 

possible mechanistic underpinning to achieve effective task specialization and task allocation 426 

[4] and provide possible evolutionary pathways to complex sociality.  Second, from an 427 

engineering perspective, our nature-inspired evolutionary method of Grammatical Evolution 428 

clearly has significant potential as a method for the automated design of adaptively behaving 429 

teams of robots. 430 

In terms of the adaptive benefits of division of labor and the environmental conditions 431 

that select for it, our results demonstrated that task partitioning was favored only when 432 

features in the environment (in our case a slope) could be exploited to achieve more 433 

economic transport and reduce switching costs, thereby causing specialization to increase the 434 

net efficiency of the group. Previous theoretical work has attributed the evolution of task 435 

specialization to several ultimate factors, some of which are hard to test empirically [61]. 436 

Duarte et al. [4], for example, reviewed modeling studies that showed that the adaptive 437 

benefits of a behaviorally-defined division of labor could be linked to reduced switching costs 438 

between different tasks or locations in the environment, increased individual efficiency due to 439 
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specialization, increased behavioral flexibility or reduced mortality in case only older 440 

individuals engage in more risky tasks (“age polyethism”). Out of these, there is widespread 441 

agreement on the role of switching costs and positional effects as key factors in promoting 442 

task specialization [4,10,47,62], and our work confirms this hypothesis. Indeed, in our set-up, 443 

task partitioning greatly reduced the amount of costly switching required between 444 

environmental locations. Furthermore, our work also confirms the economic transport 445 

hypothesis, i.e. that task partitioning results in more economical transport, which in our case 446 

was due to the fact that gravity acted as a helping hand to transport the items. Previously, this 447 

hypothesis had also found significant empirical support [7,43,46,48], e.g. by the fact that in 448 

leafcutter ants, species that collect leaves from trees tend to engage in task partitioned leaf 449 

retrieval, whereas species living in more homogeneous grassland usually retrieve leaf 450 

fragments in an unpartitioned way, without first dropping the leaves, particularly at close 451 

range to the nest [43,49].  452 

A surprising result in our evolutionary experiments was that adaptive task 453 

specialization was achieved despite the fact that the robots in each team all had identical 454 

controllers encoded by the same genotype. This implies that a combination of individual 455 

experience, stigmergy and stochastic switching alone were able to generate adaptive task 456 

specialization, akin to some of the documented mechanisms involved in behavioral task 457 

specialization in some asexually reproducing ants [63] and in cell differentiation in 458 

multicellular organisms and clonal bacterial lineages [59,64,65]. The choice of using 459 

homogeneous, clonal groups of robots with an identical morphology precluded other 460 

mechanisms of division of labor observed in nature from evolving, based, for instance, on 461 

morphological [4,12] or genetic [4] role specialization. Such mechanisms, however, could be 462 

considered in the future if one allowed for genetically heterogeneous robot teams [28] or 463 

evolvable robot morphologies. Lastly, the grammar we used did not specifically allow for 464 

recruitment signals to evolve, such as those observed in leafcutting ants, where both trail 465 

pheromones and stridulation are used as mechanisms to recruit leaf cutters [66,67], or the 466 

ones in honeybees, where the tremble dance is used to regulate the balance between 467 

number of foragers and nectar receivers inside the colony [68,69]. Nevertheless, including 468 

low-level primitives for communication behavior into the grammar, which we plan to do in 469 
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future work, would readily allow for the evolution of such mechanisms, and would likely boost 470 

the performance of the evolved controllers even further (cf. [26,27]).  471 

In terms of the mechanisms of task specialization and task allocation evolved, our 472 

work is important in that alleviates one of the limitations of existing models on the evolution of 473 

task specialization, namely, that they normally take pre-specified subtasks and an existing 474 

task allocation model (e.g. the response threshold model) as point of departure [4], thereby 475 

greatly constraining the path of evolution. Our work is an important cornerstone in 476 

establishing, at the best of our knowledge, the first model that bridges the gap between self-477 

organization and evolution without significantly constraining the behavioral strategies and 478 

coordination mechanisms that can be obtained to achieve optimal task specialization and task 479 

allocation. In fact, compared to other previous studies on evolution of task specialization 480 

[47,62,70-72], our work is the first time to consider non-predefined sub-tasks that could evolve 481 

de-novo and combine into complex individual behavioral patterns. 482 

Although our experiments demonstrate that division of labor and behavioral 483 

specialization in teams of identical robots could evolve in both the scenarios we considered, 484 

fitness landscape analyses showed that optimal task allocation could be achieved most easily 485 

if optimized behaviors capable of carrying out the different subtasks were available as pre-486 

adapted behavioral building blocks. This leads us to suggest that when building blocks are 487 

solidified in earlier stage of the evolution, complex coordination strategies such ask task 488 

specialization are more likely to evolve as the fitness landscape becomes smoother and also 489 

easier to explore due to its greatly reduced size. In addition, it brings further support for the 490 

hypothesis that, in nature, the evolution of division of labor in social groups and other 491 

transitions in the evolution of sociality also tends to be based on the co-option of pre-existing 492 

behavioral patterns, as opposed to requiring the de-novo evolution of many entirely new 493 

social traits [17]. Our results, therefore, match and can be integrated with  available evidence 494 

with respect to the importance of preadaptations in the origin of advanced forms of sociality 495 

[2,17-22,73], where, for example, reproductive division of labor and worker task specialization 496 

are thought to be derived from mechanisms that initially regulated reproduction and foraging 497 

in solitary ancestors [17,20-22], sibling care is thought to be derived from ancestral parental 498 

care [19], and reproductive altruism (i.e., a sterile soma) in some multicellular organisms 499 
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evolved via the co-option of a reproduction-inhibiting gene expressed under adverse 500 

environmental conditions [73]. Furthermore, it confirms other studies that have examined the 501 

building block hypothesis with various digital systems, for example in the context of genetic 502 

algorithms [74], evolution of single robot morphologies [75] and the open-ended evolution of 503 

simple computer programs [76].  504 

From an engineering perspective our study is the first to achieve a complex form of 505 

division of labor using an evolutionary swarm robotics approach, and the first to use the 506 

method of Grammatical Evolution to evolve complex, non-trivial behavioral patterns. This 507 

result is novel in the field of evolutionary swarm robotics, where, few exceptions aside, most 508 

studies have used non-incremental and non-modular approaches, e.g. based on monolithic 509 

neural networks [38,77].  In fact, previously, the only other studies which evolved a 510 

rudimentary task allocation in swarms of robots were those of Tuci et al. [78], which used a 511 

neural network controller combined with a fitness function favoring a required preset task 512 

allocation [78], of Duarte et al. [40], which used evolved neural network controllers capable of 513 

carrying out particular subtasks, which were then combined with a manually engineered 514 

decision tree, and the work of refs. [79-81], which used open-ended evolution and a simplified 515 

robotic scenario to evolve heterogeneous behaviors for collective construction [79,80] and 516 

pursuit [81] tasks in presence of a pre-specified set of three sub-tasks.  Typically, the 517 

behavioral complexity that could be reached in these artificial neural network-based studies 518 

was quite limited, making the evolution of self-organized task specialization in homogeneous 519 

groups out of reach for these methods. In fact, the evolution of self-organized task 520 

specialization would clearly require a non-standard neural network approach, involving 521 

recurrent neural connections to keep track of the internal state (e.g. the current direction of 522 

motion to be able to perform phototaxis), a mechanism to achieve modularity and a 523 

mechanism to switch stochastically between these modules. Extending the neural network 524 

approach used in evolutionary swarm robotics to this level of complexity would be an 525 

interesting task for the future. Other studies on task allocation and task partitioning in swarm 526 

robotics typically used traditional, manually engineered approaches [82-88] (reviewed in [89]). 527 

All these methods are significantly less general than ours, given that we used a nature-528 

inspired automatic design method with a single fitness criterion, group performance, without 529 
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any pre-engineered decision-making mechanisms, and simultaneously evolved a self-530 

organized task decomposition and task allocation mechanism as well as optimized behaviors 531 

to carry out each of the evolved subtasks. We therefore believe that GESwarm and 532 

grammatical evolution will play a key role in the future of evolutionary swarm robotics.  533 

Overall, our work and the results we obtained are therefore important both to explain 534 

the origin of division of labor and complex social traits in nature, as well as to advance the 535 

field of evolutionary swarm robotics, as we showed that the novel methodological and 536 

experimental tools we developed were able to synthetize controllers that were beyond the 537 

level of complexity achieved to date in the field. 538 

 539 

  540 
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Figures 541 

 542 

Figure 1. Task partitioning in insects and robots. (a) Task partitioned retrieval of leaf 543 

fragments, as found in most Atta leafcutter ants that harvest leaves from trees [7,43]. Dropper 544 

ants cut leaves which then accumulate in a cache, after which the leaves are retrieved by 545 

collectors and brought back to the nest, where they serve as a substrate for a fungus which is 546 

farmed as food. Ants also occasionally use a generalist strategy whereby both tasks are 547 

performed by the same individuals. (b) Analogous robotics setup, whereby items have to be 548 

transported across a slope using the coordinated action of droppers, collectors and possibly 549 

generalists. (c) Grasscutting leafcutter ants cutting leaf fragments in a flat environment 550 

without task partitioning, using a generalist foraging strategy [49]. (d) Analogous robotics 551 

setup, with robots being required to collect items in a flat arena.  552 

 553 
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 554 

Figure 2. Foot-bot robots and ARGoS simulation platform. (a) The foot-bot robot [44] and its 555 

sensors and actuators. (b) A snapshot of the ARGoS [45], the physics-based simulator used 556 

in our experiments. The snapshot shows the different elements composing our experimental 557 

setup. 558 

 559 

  560 
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 561 

Figure 3. Optimal group composition in 4 robot teams using pre-adapted dropper, collector or 562 

generalist foraging strategies (cf. handcoded rules shown in Table S1). Ternary plots show 563 

group performance (total number of items retrieved to the nest over a period of 5,000 564 

simulated seconds averaged over 10 simulation runs, color coded) as a function of the 565 

number of collectors (blue), droppers (green) and generalist foragers (red) in the 4 robot 566 

teams (black dot=optimum). In a flat environment (a), teams of generalist foragers achieve 567 

optimal performance (cf. Supplemental Video S2), whereas in a sloped arena (b), a mix of 2 568 

droppers and 2 collectors is most optimal (cf. Video S1). Both of these optima are global 569 

attractors in their respective fitness landscapes (cf. vectors which represent the phase 570 

portrait).  571 

  572 
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 573 

Figure 4. Group performance and degree of task specialization displayed by 4 robot teams 574 

over subsequent generations for each of the 22 evolutionary runs. The degree of task 575 

specialization (Y axis) is measured as the proportion of items retrieved by more than one 576 

robot (task-partitioned) over the total number of items retrieved. The group fitness (color-577 

coded) is the total number of items retrieved to the nest over a period of 5,000 simulated 578 

seconds averaged over 2 simulation runs. The degree of task specialization and the group 579 

fitness of the best evolved controller in each generation is shown over subsequent 580 

generations for each of the 22 evolutionary runs. High task partitioning was evolutionarily 581 

stable, since any transition to high task partitioning never reverted back to generalist foraging 582 

in later generations. Some controllers, however, did not evolve task partitioning as a result of 583 

being trapped in local optima. 584 

 585 
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 586 

Figure 5. Self-organized task specialization and task allocation displayed by a controller 587 

evolved from first principles using Grammatical Evolution (cf. Video S3 and evolved rules 588 

shown in Table S2). (a) Robot densities in the experimental arena of as a function of time 589 

(average of 30 runs). Despite having identical controllers, robots segregate quickly between 590 

the source and cache areas, thereby avoiding the costly traverse of the slope. (b) Robot 591 

trajectory on the arena and cache size in a typical evaluation run. All robots first move to the 592 

source to collect items, but after 500-1000 s into the simulation, the robot teams self-organize 593 

to have two droppers pushing items off the slope and two robots collecting items from the 594 

cache, without these tasks having been explicitly rewarded during the evolutionary runs.     595 

 596 
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 597 

Figure 6. The effect of the degree of task specialization (Y axis, proportion of items retrieved 598 

through the action of multiple robots) and average linear speed (absolute average linear 599 

speed of the robots along the long axis of the arena as a percentage of the theoretical 600 

maximum speed) on the fitness performance of the 22 controllers evolved from first principles. 601 

A high degree of task partitioning and high speed significantly increased group fitness (color 602 

code, multiple regression analysis: p<0.01 and p<10
-5

; color gradient represents the best-fit 603 

plane, average of 30 runs).  604 

 605 

  606 
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Legends Supplemental Material 607 

Figure S1. The different types of dynamics displayed by all 22 controllers evolved from first 608 

principles using Grammatical Evolution (cf. Videos S4 and evolved rules shown in Table S2). 609 

The figures are ordered based on performance, from the best to the worst. (a) Robot densities 610 

in the experimental arena as a function of time (average of 30 runs). (b) Robot trajectory on 611 

the arena and cache size in a typical evaluation run. 612 

 613 

Table S1. Rules used to encode the dropper, collector and generalist foraging strategies in 614 

the experiments with pre-adapted building blocks. Most of the rules are used by more than 615 

one behavioral building block (rules R1 and R4-R6 are used by droppers, rules R2-R3, R5 616 

and R7-R8 are used by collectors and rules R1, R4-R5 and R7-R8 are used by generalists). 617 

For each rule: the first row contains the list of preconditions, each denoted by the syntax 618 

PNAME =True|False where NAME is the intuitive name of the precondition; the second row 619 

contains the list of fine-grained behavioral building blocks (BRANDOM_WALK, BPHOTOTAXIS, BANTI-620 

PHOTOTAXIS, c.f. Materials and Methods); the remaining rows contain the list of actions (one per 621 

row), where the first column indicates the type of the action (AB are actions that change the 622 

currently-executed behavior, while AIS are all other actions), the second column indicates the 623 

execution probability, and the third column indicates the effect of the action (either the new 624 

behavior to switch to in case of AB or the new value of the internal state ISNAME in case of AIS). 625 

Memory states were set as follows: PSTAY_DOWN=True and PSTAY_UP=False for collectors, 626 

PSTAY_DOWN =False and PSTAY_UP =True for droppers and PSTAY_DOWN =False and PSTAY_UP =False for 627 

generalists. 628 

 629 

Table S2. Rules evolved via Grammatical Evolution in the 22 evolutionary runs. Controllers 630 

are sorted from high to low group performance. 631 

  632 

Table S3. Performance of the 22 evolved controllers and degree of task partitioning observed 633 

in the 4 robot teams and in the 20 robot ones used during post-validation. Controllers are 634 

sorted from high to low group performance. 635 

 636 
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Supplemental Video S1. Video of the optimal behavior displayed by the controller with pre-637 

adapted building blocks in the sloped environment. In this case, an allocation of 50% 638 

droppers and 50% collectors resulted in maximal group performance.  639 

 640 

Supplemental Video S2. Video of the optimal behavior displayed by the controller with pre-641 

adapted building blocks in the flat environment. In this case, an allocation of 100% generalist 642 

foragers resulted in maximal group performance.  643 

 644 

Supplemental Video S3. Example of task partitioning behavior evolved during evolutionary 645 

run number 2. From initially random behavior, the robots first evolve generalist foraging after 646 

500 generations. Subsequently, after 500 more generations, the robots evolve task 647 

partitioning, which gets further perfected over the following 1000 generations. We conclude by 648 

showing how the controller evolved in a 4 robot team scaled up when tested in a swarm of 20 649 

robots. The full HD video is available at https://www.youtube.com/watch?v=8mlHXcCNzjg. 650 

 651 

Supplemental Videos S4.1-S4.22. Behavior displayed by the 22 evolved controllers. Videos 652 

are sorted from high to low group performance. 653 

 654 
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