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In this article, we propose UACOR, a unified ant colony optimization (ACO) algorithm for continuous opti-
mization. UACOR includes algorithmic components from ACOR; DACOR and IACOR-LS, three ACO algo-
rithms for continuous optimization that have been proposed previously. Thus, it can be used to
instantiate each of these three earlier algorithms; in addition, from UACOR we can also generate new con-
tinuous ACO algorithms that have not been considered before in the literature. In fact, UACOR allows the
usage of automatic algorithm configuration techniques to automatically derive new ACO algorithms. To
show the benefits of UACOR’s flexibility, we automatically configure two new ACO algorithms, UACOR-s
and UACOR-c, and evaluate them on two sets of benchmark functions from a recent special issue of the
Soft Computing (SOCO) journal and the IEEE 2005 Congress on Evolutionary Computation (CEC’05),
respectively. We show that UACOR-s is competitive with the best of the 19 algorithms benchmarked
on the SOCO benchmark set and that UACOR-c performs superior to IPOP-CMA-ES and statistically signif-
icantly better than five other algorithms benchmarked on the CEC’05 set. These results show the high
potential ACO algorithms have for continuous optimization and suggest that automatic algorithm config-
uration is a viable approach for designing state-of-the-art continuous optimizers.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Metaheuristics are a family of optimization techniques that
have seen increasingly rapid development and have been applied
to numerous problems over the past few years. A prominent meta-
heuristic is ant colony optimization (ACO). ACO is inspired by the
ants’ foraging behavior and it was first applied to solve discrete
optimization problems (Dorigo & Stützle, 2004; Dorigo, Maniezzo,
& Colorni, 1991, 1996). Only much later, adaptations of ACO to con-
tinuous optimization problems were introduced. Socha and Dorigo
(Socha & Dorigo, 2008) proposed one of the now most popular ACO
algorithms for continuous domains, called ACOR. It uses a solution
archive as a form of pheromone model for the derivation of a prob-
ability distribution over the search space. Leguizamón and Coello
(2010) proposed an extension of ACOR, called DACOR, that had
the goal of better maintaining diversity during the search. Subse-
quently, Liao, Montes de Oca, Aydın, Stützle, and Dorigo (2011)
proposed IACOR-LS, an incremental ant colony algorithm with local
search for continuous optimization. IACOR-LS uses a growing solu-
tion archive as an extra search diversification mechanism and a
local search to intensify the search. IACOR-LS was benchmarked
on two prominent sets of benchmark functions for continuous
optimization, obtaining very good results. These benchmark func-
tion sets are the ones proposed for a recent special issue of the Soft
Computing journal (Herrera, Lozano, & Molina, 2010; Lozano, Moli-
na, & Herrera, 2011) (we refer to this special issue as SOCO) and the
special session on real parameter optimization of the 2005 IEEE
Congress on Evolutionary Computation (CEC’05) (Suganthan
et al., 2005).

In this article, we propose a ACO algorithm for continuous
optimization that combines algorithmic components from ACOR,
DACOR and IACOR-LS. We call this algorithm Unified ACO for con-
tinuous optimization (UACOR). It is unified, because from UACOR,
we can instantiate the original ACOR, DACOR and IACOR-LS algo-
rithms by using specific combinations of the available algorithmic
components and parameter settings. However, we can also obtain
combinations of algorithm components that are different from any
of the already proposed combinations; in other words, from UA-
COR we can instantiate new continuous ACO algorithms that have
not been proposed or tested before.

The flexibility of UACOR makes possible the use of automatic
algorithm configuration tools to generate new, high-performing
continuous ACO algorithms. Here, we follow such an approach
and use Iterated F-race (Birattari, Yuan, Balaprakash, & Stützle,
2010), an automatic algorithm configuration tool, as implemented
in the irace package (López-Ibáñez, Dubois-Lacoste, Stützle, &
Birattari, 2011) for configuring new high-performing ACO algo-
rithms for continuous optimization from UACOR. With automatic
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configuration tools, algorithm parameters are defined using a kind
of machine learning approach in which an algorithm is first trained
on a set of problem instances and later deployed. We use as train-
ing sets low dimensional versions of the functions in the SOCO and
CEC’05 benchmark sets and configure two new ACO variants:
UACOR-s is configured on the SOCO benchmark (the -s suffix
stands for SOCO) set and UACOR-c on the CEC’05 benchmark set
(the -c suffix stands for CEC). UACOR-s and UACOR-c are then
tested on higher dimensional versions of the SOCO and CEC’05
benchmark functions. The results show that (i) UACOR-s is com-
petitive or superior to all the 19 algorithms benchmarked on the
SOCO function set and that (ii) UACOR-c is superior to IPOP-
CMA-ES (Auger & Hansen, 2005) and statistically significantly bet-
ter than other five recent state-of-the-art algorithms benchmarked
on the CEC’05 function set. These experimental results show (i) the
high potential of ACO algorithms for continuous optimization and
(ii) the high potential of an algorithm design approach that is based
on the combination of algorithm frameworks and automatic algo-
rithm configuration. In fact, there are few researches that give evi-
dence for the latter point. For instance, KhudaBukhsh, Xu, Hoos,
and Leyton-Brown (2009) proposed SATenstein and instantiated
a new state-of-the-art local search algorithm for the SAT problem;
López-Ibáñez and Stützle (2010) configured a multi-objective ACO
algorithm that outperformed previously proposed multi-objective
ACO algorithms for the bi-objective traveling salesman problem;
Dubois-Lacoste, López-Ibáñez, and Stützle (2011) configured new
state-of-the-art algorithms for five variants of multi-objective
flow-shop problems. More recently, the ideas behind the combina-
tion of algorithm frameworks and automatic algorithm configura-
tion techniques have been extended to the programming by
optimization paradigm (Hoos, 2012). This article is the first to
automatically configure a continuous optimizer framework.

The article is organized as follows. Section 2 introduces ACO for
continuous domains, reviews the three continuous ACO algorithms
underlying UACOR, and identifies their algorithmic components in
a component-wise view. Section 3 describes UACOR. In Section 4,
we automatically configure UACOR to instantiate UACOR-s and
UACOR-c and in Section 5, we evaluate their performance. We con-
clude and give directions for future work in Section 6.
μ σ μ σ

Fig. 1. The structure of the solution archive and the Gaussian functions used to
generate PDFs in ACOR.
2. ACO algorithms for continuous optimization

2.1. ACO metaheuristic

The Ant Colony Optimization (ACO) metaheuristic (Dorigo &
Stützle, 2004) defines a class of optimization algorithms inspired
by the foraging behavior of real ants. In ACO algorithms, artificial
ants are stochastic procedure for constructing candidate solution
that exploit a pheromone model and possibly available heuristic
information on the problem being tackled. The pheromone model
consists of a set of numerical values, called pheromones, that are
modified at each iteration in order to bias ants toward the most
promising regions of the search space; the heuristic information,
if available, captures a priori knowledge on the particular problem
instance being solved.

The main algorithmic components of the ACO metaheuristic are
the ants’ solution construction and the update of the pheromone
information. ‘‘Daemon actions’’ are procedures that carry out tasks
that cannot be performed by single ants. A common example is the
activation of a local search procedure to improve an ant’s solution
or the application of additional pheromone modifications derived
from globally available information about, for example, the best
solutions constructed so far. Although daemon actions are op-
tional, they can greatly improve the performance of ACO
algorithms.
2.2. ACO for continuous domains

After the initial proposals of ACO algorithms for combinatorial
optimization problems (Dorigo & Stützle, 2004; Dorigo et al.,
1991, Dorigo, Maniezzo, & Colorni, 1996), several ant-inspired algo-
rithms for continuous optimization problems were proposed (Bil-
chev & Parmee, 1995; Dréo & Siarry, 2004; Hu, Zhang, & Li, 2008;
Hu, Zhang, Chung, Li, & Liu, 2010; Monmarché, Venturini, & Slimane,
2000). However, as explained in Socha and Dorigo (2008), most of
these algorithms use search mechanisms different from those used
in the ACO metaheuristic. The first algorithm that can be classified
as an ACO algorithm for continuous domains is ACOR (Socha & Dor-
igo, 2008). In ACOR, the discrete probability distributions used in the
solution construction by ACO algorithms for combinatorial optimi-
zation are substituted by probability density functions (PDFs) (i.e.,
continuous probability distributions). ACOR uses a solution archive
(Guntsch & Middendorf, 2002) for the derivation of these PDFs over
the search space. Additionally, ACOR uses sums of weighted Gauss-
ian functions to generate multimodal PDFs.

Fig. 1 shows a sketch of a solution archive and the Gaussian
functions that form the PDFs from which ACOR samples values to
generate candidate solutions. The solution archive keeps track of
a number of complete candidate solutions for a problem, and, thus,
it can be seen as an explicit memory of the search history.

DACOR (Leguizamón & Coello, 2010) and IACOR-LS (Liao et al.,
2011) are two more recent ACO algorithms for continuous optimi-
zation, which also use a solution archive and generate PDFs using
sums of weighted Gaussian functions. Since the algorithmic com-
ponents of UACOR are derived from the ACOR, DACOR and IACOR-
LS, the next sections describe their operation.
2.2.1. ACOR

ACOR initializes the solution archive with k solutions that are
generated uniformly at random. Each solution is a D-dimensional
vector with real-valued components xi 2 ½xmin; xmax�, with
i ¼ 1; . . . ;D. In this paper, we assume that the optimization prob-
lems are unconstrained except possibly for bound constraints of
the D real-valued variables xi. The k solutions of the archive are
kept sorted according to their quality (from best to worst) and each
solution Sj has associated a weight xj. This weight is calculated
using a Gaussian function as:

xj ¼
1

qk
ffiffiffiffiffiffiffi
2p
p e

�ðrankðjÞ�1Þ2

2q2k2 ; ð1Þ

where rankðjÞ is the rank of solution Sj in the sorted archive, and q is
a parameter of the algorithm. By computing rankðjÞ � 1, the best
solution receives the highest weight.
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The weights are used to choose probabilistically a guiding solu-
tion around which a new candidate solution is generated. The
probability of choosing solution Sj as guiding solution is given by
xj=

Pk
a¼1xa so that the better the solution, the higher are the

chances of choosing it. Once a guiding solution Sguide is chosen,
the algorithm samples the neighborhood of the i-th real-valued
component of the guiding solution si

guide using a Gaussian PDF with
li

guide ¼ si
guide, and ri

guide equal to

ri
guide ¼ n

Xk

r¼1

jsi
r � si

guidej
k� 1

; ð2Þ

which is the average distance between the value of the i-th compo-
nent of Sguide and the values of the i-th components of the other
solutions in the archive, multiplied by a parameter n. The process
of choosing a guiding solution and generating a candidate solution
is repeated a total of Na times (corresponding to the number of
‘‘ants’’) per iteration. Before the next iteration, the algorithm up-
dates the solution archive keeping only the best k of the k + Na solu-
tions that are available after the solution construction process.

2.2.2. DACOR

Different from ACOR, DACOR keeps the number of ants (Na)
equal to the solution archive size k and each of the Na ants con-
structs at each algorithm iteration a new solution. A further differ-
ence of DACOR with respect to ACOR is the specific choice rule for
the guiding solution Sguide. With a probability Q best 2 ½0;1�, ant j
chooses as Sguide the best solution, Sbest, in the archive; with a prob-
ability 1� Qbest , it chooses as Sguide the solution Sj. A new solution is
generated in the same way as in ACOR, and then compared to Sj

(independently of whether Sbest or Sj was chosen as guiding solu-
tion). If the newly generated solution is better than Sj, it replaces
Sj in the archive; otherwise it is discarded. This replacement
strategy is different from the one used in ACOR in which all the
solutions in the archive and all the newly generated ones compete.

2.2.3. IACOR-LS
IACOR-LS’s main distinctive features are a solution archive

whose size increases over time to enhance the algorithm’s search
diversification, and a local search procedure to enhance its search
intensification. Additionally, IACOR-LS uses a different rule than
ACOR for choosing a guiding solution. At each algorithm iteration
of IACOR-LS, the best solution in the archive Sbest is chosen as the
guiding solution Sguide with a probability equal to the value of a
parameter EliteQ best 2 ½0;1�; with a probability of 1�EliteQbest , each
solution in the archive is used as Sguide to generate a new solution.
With this choice rule, either only one new solution is constructed
by an ‘‘elite’’ guiding solution or k new solutions are constructed
by k ants at each algorithm iteration. Each new solution is con-
structed in the same way as in ACOR. Finally, Sguide and the newly
generated solution are compared. If the newly generated solution
is better than Sguide, it replaces it in the archive; otherwise it is
discarded.

IACOR-LS initializes the archive with InitAS solutions. Every
GrowthIter iterations a new solution is added to the archive until
a maximum archive size is reached. The new solution is initialized
as follows:

Snew ¼ Srand þ randð0;1ÞðSbest � SrandÞ; ð3Þ

where Srand is a random solution and randð0;1Þ is a random number
uniformly distributed in ½0;1Þ.

IACOR-LS applies at each iteration a local search procedure for
LsIter iterations. If the local search improves upon its initial solu-
tion, the improved solution replaces the original solution in the
archive. The maximum number of times the local search procedure
is called from a same initial solution is limited to LsFailures calls.
The initial solution for the local search is chosen as follows. The
best solution is chosen deterministically if it has been called less
than LsFailures times. Otherwise, a random solution from the ar-
chive is chosen as the initial solution, excluding all those that al-
ready served as initial solutions LsFailures times.

The initial step size for the local search procedure is set as
follows. First, a solution different from the best one is chosen
uniformly at random in the archive. The step size is then set to
the maximum norm (jj � jj1) of the vector that separates this ran-
dom solution from the best solution. As a result, step sizes tend
to decrease upon convergence of the algorithm and, in this sense,
the step sizes are chosen adaptively to focus the local search
around the best-so-far solution. In our previous experiments, Pow-
ell’s conjugate directions set (Powell, 1964) and Lin-Yu Tseng’s
Mtsls1 (Tseng & Chen, 2008) local search methods have shown
very good performance.

IACOR-LS uses a default restart mechanism that restarts the
algorithm and re-initializes the archive of size InitAS with the
best-so-far solution Sbest and InitAS�1 random solutions. The re-
start criterion is the number of consecutive iterations, StagIter,
with a relative solution improvement lower than a threshold �.
IACOR-LS also integrates a second restart mechanism, which con-
sists in restarting and initializing a new initial archive of size
RestartAS (RestartAS is a parameter different from InitAS) with
Sbest in the current archive and RestartAS�1 solutions that are ini-
tialized at positions biased around Sbest; these positions are defined
by Sbest + 10Shakefactor � ðSbest � SrandÞ. The restart criterion is the
number of consecutive iterations, StagIter, with a relative solution
improvement percentage lower than a certain threshold 10StagThresh.

2.3. Algorithmic components

We define several algorithmic components for UACOR by
abstracting the particular design alternatives taken in ACOR,
DACOR and IACOR-LS. This results in seven main groups of algorith-
mic components, which are described next, before detailing the
outline of UACOR.

1. Mode. Two alternative UACOR modes, called DefaultMode and
EliteMode, are identified. DefaultMode consists in deploying a
number of ants in each algorithm iteration to construct solu-
tions. EliteMode allows in each algorithm iteration to deploy
only one ‘‘elite’’ ant with a probability of EliteQbest 2 ½0;1�. The
‘‘elite’’ ant selects Sbest in the archive as Sguide to construct a
new solution.

2. Number of ants. Two design choices for defining the number
of ants deployed are identified. Na defines the number of ants
as an independent parameter (Na 6 k) while NaIsAS defines
the number of ants to be equal to k, the size of the solution
archive.

3. Choice of guiding solution. This algorithmic component
chooses how to select Sguide to sample new solutions. Three
design choices are identified: (i) Sbest is selected as Sguide with
a probability Qbest 2 ½0;1�; (ii) Sguide is probabilistically selected
from the solutions in the archive depending on their weight;
(iii) solution Sl is selected as Sguide, where l is the index of the
currently deployed ant.

4. Update of solution archive. The update of the solution archive
concerns the replacement of solutions in the archive. We iden-
tified three design choices. A parameter RmLocalWorse defines
whether UACOR globally removes the Na worst solutions
among all k + Na solutions, or whether UACOR makes the deci-
sion about the acceptance of Sl locally. In the latter case, we use
a parameter SnewvsGsol to decide whether the solution gener-
ated by ant l is compared with Sguide or with the previous l-th
solution to remove the worse one.



Table 1
Algorithmic components of UACOR.

Algorithm components Options Description

Mode {DefaultMode, EliteMode} Definition of UACOR mode
AntsNumber {Na, NaIsAS} Definition of the number of ants deployed
SolutionConstructions Sample the neighborhood of the solution component of Sguide Using a Gaussian PDF

Select Sbest in a proportion of Qbest 2 ½0;1� How Sguide is selected from the solution archive
Select probabilistically by weights
Select Sl for the ant l

SolutionArchiveUpdate Remove by globally ranking How Na worse solutions are removed from the archive
Remove by comparing with Sguide

Remove by comparing with Sl

LocalSearch {F, Powell, Mtsls1, CMA-ES} Definition of a local search procedure
IncrementalArchive {F, True} Definition of an incremental archive mechanism
RestartMechanism {F, 1st, 2nd} Definition of a restart mechanism
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5. Local search. We consider four options for the use of a local
search procedure. If parameter LsType is set to F (for false), no
local search procedure is used. Otherwise, LsType invokes one
of three local search methods. As local search methods we con-
sidered Powell’s conjugate directions set and Mtsls1, which
were already used by IACOR-LS. In addition, in UACOR we also
consider the usage of CMA-ES (Hansen & Ostermeier, 1996;
Hansen & Ostermeier, 2001; Hansen, Muller, & Koumoutsakos,
2003), which is an evolutionary strategy that also has been con-
sidered as a local search method in other algorithm (Molina,
Lozano, García-Martínez, & Herrera, 2010).1 All three local
search procedures use a dynamic calling strategy and an adaptive
step size, which follow the choices taken for IACOR-LS.

6. Incremental archive size. The possibility of incrementing the
archive size is considered. If parameter IsIncrement is set to F,
the incremental archive mechanism is not used. Otherwise, if
IsIncrement is set to T (for true), UACOR invokes the incremental
archive mechanism.

7. Restart mechanism. Three options for the restart mechanism
are identified. If parameter RestartType is set to F, the restart
mechanism is not used. Otherwise, RestartType invokes either
of the two restart mechanisms, which are introduced in
IACOR-LS. They are labeled as 1st and 2nd, respectively.

Table 1 summarizes the algorithmic components defined above
and their options. Some algorithmic components are only signifi-
cant for specific values of other components. We discuss the con-
nection between these algorithmic components in Section 3.
3. UACOR

The three ACO algorithms described in the previous section as
well as many others that may result from the combination of their
components are subsumed under the general algorithmic structure
provided by UACOR. In this section, we describe the connections of
the algorithmic components of UACOR by a flowchart and show
how from UACOR we can instantiate the algorithms ACOR,
DACOR and IACOR-LS. The flowchart of UACOR is given in Fig. 2.
The related parameters are given in Table 2. Some settings take ef-
fect in the context of certain values of other settings.
1 For inclusion in UACOR, we set the initial population size of CMA-ES to a random
size between k ¼ 4þ b3 lnðDÞc and 23 � k ¼ 4þ b3 lnðDÞc. The CMA-ES local search
procedure is run until one of three stopping criteria (Auger & Hansen, 2005) is
triggered. The three stopping criteria use three parameters stopTolFunHist(¼ 10�20),
stopTolFun(¼ 10�12) and stopTolX(¼ 10�12); they refer to the improvement of the best
objective function value in the last 10þ d30D=ke generations, the function values of
the recent generation, and the standard deviation of the normal distribution in all
coordinates, respectively.
UACOR starts by randomly initializing and evaluating the solu-
tion archive of size InitAS. Next, UACOR selects a mode, which can
be either the default or the elite mode.

We first describe the default mode, which is invoked if param-
eter DefaultMode is set to T (true). At each iteration, Na new
solutions are probabilistically constructed by Na ants (recall that
and ant in our case is the process through which a solution is gen-
erated). If the parameter NaIsAS is set to T, the number of ants is
kept equal to the size of the solution archive. If the parameter NaI-
sAS is set to F (false), a parameter Na, Na 6 k, is activated. Each ant
uses a choice rule for the guiding solution. The parameter
Qbest 2 ½0;1� controls the probability of using Sbest as Sguide. With a
probability 1� Qbest , Sguide is selected in one of two different ways.
If parameter WeightGsol is T, Sguide is probabilistically selected from
the solutions in the archive by their weights as defined by Eq. (1).
Otherwise, solution Sl (l is associated with the index of the current
ant to be deployed) is chosen as Sguide. Once Sguide is selected, a new
solution is generated. This process is repeated for each of the Na
ants. Next, UACOR updates the solution archive by removing Na
solutions. If parameter RmLocalWorse is F, UACOR removes the
Na worst solutions among all the kþ Na solutions as in ACOR. If
parameter RmLocalWorse is T, one of two possibilities is consid-
ered. If parameter SnewvsGsol is T, each newly generated solution
is compared to the corresponding Sguide to remove the worse one;
otherwise, it is compared to the corresponding Sl to remove the
worse one. Finally, a new solution archive is generated.

The elite mode is invoked if parameter DefaultMode is set to F.
The elite mode at each algorithm iteration deploys only one ‘‘elite’’
ant. With a probability EliteQbest , 0 6 EliteQbest 6 1, it selects Sbest in
the archive as Sguide. If the newly generated solution is better than
this Sbest, it replaces it in the solution archive; with a probability
1� EliteQbest the solution construction follows the default mode.

After updating the solution archive, UACOR sequentially consid-
ers three procedures. These are a local search procedure, a mecha-
nism for increasing the archive size and a restart mechanism,
respectively. The details of these procedures were described in
Section 2.2.3.

We use a simple penalty mechanism to handle bound
constraints for UACOR. We use

PðxÞ ¼ fes �
XD

i¼1

BoundðxiÞ; ð4Þ

where BoundðxiÞ is defined as

BoundðxiÞ ¼
0; if xmin 6 xi 6 xmax

ðxmin � xiÞ2; if xi < xmin

ðxmax � xiÞ2; if xi > xmax

8><
>:

ð5Þ
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xmin and xmax are the minimum and maximum limits of the search
range, respectively, and fes is the number of function evaluations
that have been used so far. For avoiding that the final solution is
outside the bounds, the bound constraints are enforced by clamping
the final solution S to the nearest solution on the bounds, resulting
in solution S0 if S violates some bound constraints. If S0 is worse than
the best feasible solution found in the optimization process, S0 is re-
placed by it.
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dimensionalities. These two benchmark sets have been chosen as
they have become standard benchmark sets for testing continuous
optimizers. The SOCO benchmark set was used in a special issue of
the journal Soft Computing and it extends the benchmark sets of
earlier benchmarking studies on the scaling behavior of continuous
optimizers such as the one held at the CEC’08 conference. The
CEC’05 benchmark set was introduced in 2005 for a comparison
of evolutionary optimizers; its central role is exemplified by the
more than 600 citations in google scholar (as of April 2013) to
the technical report describing this set of functions (Suganthan
et al., 2005). Classified by function characteristics, the SOCO bench-
mark set consists of seven unimodal and 12 multimodal functions,
or, four separable and 15 non-separable functions. The CEC’05
benchmark set consists of five unimodal and 20 multimodal
functions, or, two separable and 23 non-separable functions. For
a detailed description of the benchmark functions, we refer the
reader to (Herrera et al., 2010; Suganthan et al., 2005).

In our experiments, we follow the termination conditions sug-
gested for the SOCO and CEC benchmarks (Herrera et al., 2010;
Suganthan et al., 2005) to make our results comparable to those
of other papers. In particular, we use a maximum of 5000� D func-
tion evaluations for the SOCO functions, and 10;000� D for the
CEC’05 functions, where D is the dimensionality of a function.

For automatically configuring UACOR, we employ Iterated
F-Race (Birattari et al., 2010), a method for automatic algorithm
configuration that is included in the irace package (López-Ibáñez
et al., 2011). Iterated F-Race repeatedly applies F-Race to a set of
candidate configurations. F-Race is a racing method that at each
iteration applies all surviving candidate configurations to an in-
stance of a combinatorial problem or a function in the continuous
optimization case. If a candidate configuration is found to perform
statistically worse than others (as determined by the Friedman
two-way analysis of variance by ranks and its associated post-
tests), it is eliminated from the race. F-race finishes when only
Table 2
The left part of the table gives the list of parameter settings and their domains. Some setting
automatically configured algorithms are given in the central part and the right part, depend
for tuning. The tuned parameter settings are highlighted in boldface; some of the paramete
to be fixed to obtain the original algorithm structure.

Module Para name Type Domain Tuning on SOCO

ACOR-s DACOR-s IA

Mode DefaultMode c fT; Fg T T F
EliteQ best r [0, 1] ⁄ ⁄ 0

DefNants InitAS i [20, 100] 87 40 6
NaIsAS c {T, F} F T T
Na i [2, 20] 2 ⁄ ⁄

SolConstr Qbest r [0, 1] 0 0.1193 0
WeightGsol c {T, F} T F F
q r (0, 1) 0.2869 ⁄ ⁄
n r (0, 1) 0.7187 0.6705 0

SAUpdate RmLocalWorse c {T, F} F T T
SnewvsGsol c {T, F} ⁄ F T

LS LsType c {F, Powell, Mtsls1,
CMA-ES}

F F M

LsIter i [1, 100] ⁄ ⁄ 8
LsFailures i [1, 20] ⁄ ⁄ 1

IncArch IsIncrement c {T, F} F F T
GrowthIter i [1, 30] ⁄ ⁄ 4

RestartMech RestartType c {F, 1st, 2nd} F F 1
StagIter r [1, 1000] ⁄ ⁄ 1
StagThresh r [�15, 0] ⁄ ⁄ ⁄
Shakefactor r [�15, 0] ⁄ ⁄ ⁄
RestartAS i [2, 100] ⁄ ⁄ ⁄

⁄ The value of the parameter is not relevant for the corresponding algorithm.
one candidate survives or the allocated computation budget to
the race is used. Iterated F-Race then samples new candidate con-
figurations around the best candidate configurations found so far.
The whole process is repeated for a number of iterations (hence
the name Iterated F-Race).

The automatic configuration tool handles all parameter types of
UACOR: continuous (r), integer (i) and categorical (c). The perfor-
mance measure used for tuning is the error of the objective
function value obtained by the tuned algorithm after a certain
number of function evaluations. The error value is defined as
f ðxÞ � f ðx�Þ, where x is a candidate solution and x� is the optimal
solution. In the automatic tuning process, the maximum budget
is set to 5000 runs of UACOR. The number of function evaluations
of each run is equal to 5000� D for the SOCO functions, and
10;000� D for the CEC’05 functions, where D is the dimensionality
of a function. The settings of Iterated F-Race that we used in our
experiments are the default (Birattari et al., 2010; López-Ibáñez
et al., 2011). We apply the automatic configuration process for
UACOR two times: once using the SOCO training instances to
instantiate UACOR-s, and once using the CEC training instances
to instantiate UACOR-c. The input for the training consisted of 19
SOCO benchmark functions of dimension ten sampled in a random
order and 25 CEC benchmark functions of dimension ten sampled
in a random order.

The tuned configurations for UACOR-s and UACOR-c are pre-
sented in the central and right part of Table 2. This table also gives
the parameter settings for the UACOR’s instantiations of ACOR,
DACOR and IACOR-Mtsls1. Their parameters were also automati-
cally tuned as mentioned above for the SOCO and CEC’05 bench-
mark sets, respectively, and for these specific parameter
configurations we again use the extensions ’-s’ and ’-c’ depending
on the benchmark set used for automatic configuration. Consider-
ing that UACOR-s does not use the restart mechanisms of UACOR
after tuning and UACOR-c does, when tuning these three ACO
s are only significant for certain values of other settings. The parameter settings of the
ing on whether the SOCO of the CEC’05 training set of benchmark functions was used
r settings for ACOR , DACOR , and IACOR-Mtsls1 are in normal face: these settings need

Tuning on CEC’05

COR-Mtsls1-s UACOR-s ACOR-c DACOR-c IACOR-Mtsls1-c UACOR-c

T T T F T
.0508 ⁄ ⁄ ⁄ 0.7974 ⁄

54 92 81 54 85
F F T T T
14 14 ⁄ ⁄ ⁄
0.2365 0 0.1287 0 0.4582
T T F F F
0.3091 0.09401 ⁄ ⁄ ⁄

.8782 0.6934 0.6998 0.7357 0.9164 0.6753

F F T T T
⁄ ⁄ F T T

tsls1 Mtsls1 F F Mtsls1 CMA� ES

5 86 ⁄ ⁄ 39 ⁄
6 ⁄ ⁄ 3 3

T F F T T
5 ⁄ ⁄ 10 11

st F 2nd 2nd 2nd 2nd
8 ⁄ 939 313 6 8

⁄ �3.386 �2.302 �3.041 �3.189
⁄ �4.993 �4.163 �0.04979 �0.03392
⁄ 66 71 3 12
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Fig. 3. UACOR-s (left side) and UACOR-c (right side) are highlighted in the flowchart of UACOR.

T. Liao et al. / European Journal of Operational Research 234 (2014) 597–609 603
algorithms on the SOCO training instances, we deploy them as
proposed in the original literature; when tuning them on CEC’05
training instances, we extend them to use the restart mechanisms
of UACOR to improve performance.

As a further illustration of the respective algorithm structures,
we highlight UACOR-s and UACOR-c in the flowchart of UACOR
in Fig. 3. Both use DefaultMode, select Sbest as Sguide with a probabil-
ity Qbest 2 ½0;1�, use the incremental archive mechanism. UACOR-s
uses Mtsls1 local search and UACOR-c uses CMA-ES local search.
The parameter settings in which they differ, imply a more
explorative search behavior of UACOR-c than that of UACOR-s. In
fact, (i) UACOR-c sets the number of ants equal to the size of the
solution archive while UACOR-s defines it as an independent
parameter (Na 6 k); (ii) UACOR-c frequently chooses all solutions
of the archive as Sguide (as in DACOR), while UACOR-s probabilisti-
cally selects Sguide based on its weight; (iii) UACOR-c makes a local
acceptance decision comparing Sl to Sguide, while UACOR-s globally
removes the Na worst solutions among all k + Na solutions; (iv)
UACOR-c uses a restart mechanism for diversifying the search
while UACOR-s does not. Considering parameter values, UACOR-c
has larger initial archive size, which is consistent with the idea of
a stronger exploration than UACOR-s; the larger values of Qbest

and GrowthIter would imply UACOR-c and UACOR-s differ. Similar
remarks hold also for the settings of the ‘-c’ and ‘-s’ variants of
ACOR, DACOR and IACOR-Mtsls1. Note that the more explorative
settings on the CEC’05 benchmark set are somehow in accordance
with the perceived higher difficulty of this benchmark set than the
SOCO set. In fact, in the CEC’05 benchmark set the best available
algorithms fail to find quasi-optimal solutions much more fre-
quently than in the SOCO benchmark function set.

5. Experimental study

In this section, we evaluate UACOR-s and UACOR-c on the 19
SOCO benchmark functions of dimension 100 and 25 CEC’05
benchmark functions of dimensions 30 and 50. Each algorithm
was independently run 25 times on each function. Whenever a
run obtains a new best error value, we record the number of func-
tion evaluations used, and the new best error value. Following the
rules of the SOCO algorithm comparison, error values lower than
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Fig. 4. The box-plots show the distribution of the average errors obtained on the 19 SOCO benchmark functions of dimension 100. The left plot compares the performance of
UACOR-s with ACOR-s, DACOR-s and IACOR-Mtsls1-s. The right plot shows the benefit of the incremental archive size used in UACOR-s. A þ symbol on top of each box-plot
denotes a statistically significant difference at the 0.05 a-level between the results obtained by the indicated algorithm and those obtained with UACOR-s. The absence of a
symbol means that the difference is not statistically significant. The numbers on top of a box-plot denote the number of the averages below the optimum threshold 10�14

found by the indicated algorithms.

2 Information about these 16 algorithms is available at http://sci2s.ugr.es/eamhco/
CFP.php.
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10�14 are approximated to 10�14 (10�14 is the optimum threshold
for SOCO functions). For CEC’05 functions, error values lower than
10�8 are approximated to 10�8 (10�8 is the optimum threshold for
CEC’05 functions). We compute the average error obtained by an
algorithm on each benchmark function of each dimensionality.
These average errors on all test functions in each benchmark
set (SOCO or CEC’05) are then used to compare the algorithms’
performance. To analyze the results, we first use a Friedman test
at the 0.05 a-level to determine whether there are significant
differences among the algorithms compared (Conover, 1999). In
fact, in all cases the null hypothesis of equal performance is
rejected and we then determine the significance of the difference
between the algorithms of interest based on the computed mini-
mum difference between the sum of the ranks that is statistically
significant.

5.1. Experiments on the SOCO benchmark set

First, we compare UACOR-s with the three ACO algorithms,
ACOR-s, DACOR-s and IACOR-Mtsls1-s. The left plot of Fig. 4 shows
that UACOR-s statistically significantly improves upon the three
ACO algorithms on the distribution of average errors across the
19 SOCO benchmark functions. This test is based on the average er-
ror values that are reported in Table 3. In fact, on 14 of the 19 func-
tions the average error obtained by UACOR-s is below the optimum
threshold, while for ACOR-s, DACOR-s and IACOR-Mtsls1-s such
low average error values are only obtained 0, 1, and 8 times,
respectively. (The main responsible for the large differences be-
tween the performance of ACOR-s and DACOR-s on one side and
UACOR-s and IACOR-Mtsls1-s on the other side is due to the usage
or not of a local search procedure to improve candidate solutions.)
The larger number of optimum thresholds reached also is the rea-
son why UACOR-s performs statistically significantly better than
ACOR-Mtsls1-s. Only on one function, on which UACOR-s does
not reach the optimum threshold, it obtains slightly worse average
errors than IACOR-Mtsls1-s.

As a next step, we investigate the benefit of the incremental
archive mechanism used by UACOR-s when compared to a fixed
archive size. The right boxplot of Fig. 4 shows that UACOR-s
performs more effective than with archive sizes fixed to 1, 50
and 100, respectively. (Note that for an archive size one, the
resulting algorithm is actually an iterated Mtsls1 local search
algorithm (Tseng & Chen, 2008).) The differences are statistically
significant for the archive sizes 1 and 50, and the average errors
of UACOR-s obtain the largest number of times the optimum
threshold (14 versus 6, 7 and 9, respectively).

Finally, we compare UACOR-s with all 13 candidate algorithms
published in the SOCO special issue and with the three algorithms
that were chosen as reference algorithms in this special issue.2

Recall that IPOP-CMA-ES (Auger & Hansen, 2005) is considered to
be a representative of the state-of-the-art for continuous optimiza-
tion and MA-SSW (Molina, Lozano, & Herrera, 2010; Molina, Lozano,
Snchez, & Herrera, 2011) was the best performing algorithm at the
CEC’2010 competition on high-dimensional numerical optimization.
UACOR-s performs statistically significantly better than these two
algorithms and other ten algorithms, as shown in Fig. 5. The best
performing algorithm from the SOCO competition is MOS-DE
(LaTorre, Muelas, & Pea, 2011), an algorithm that combines differen-
tial evolution and the Mtsls1 local search algorithm. It is noteworthy
that UACOR-s performs competitive to MOS-DE. Although UACOR-s
does not obtain on more functions lower average errors than
MOS-DE than vice versa, UACOR-s reaches on more functions the
zero threshold (14 versus 13).

5.2. Experiments on the CEC’05 benchmark set

We next evaluate UACOR-c on the CEC’05 benchmark set of
dimension 30 and 50. Tables 4 and 5 show the average error values
across the 25 CEC’05 benchmark functions obtained by UACOR-c,
ACOR-c, DACOR-c, IACOR-Mtsls1-c, IPOP-CMA-ES (Auger & Hansen,
2005) and other five recent state-of-the-art algorithms.

Table 4 shows that UACOR-c gives across the 30 and 50 dimen-
sional problems, on more functions lower average errors than
ACOR-c, DACOR-c and IACOR-Mtsls1-c than vice versa. Considering
the average error values across all these CEC’05 benchmark func-
tions, UACOR-c performs statistically significantly better than
ACOR-c, DACOR-c and IACOR-Mtsls1-c.

http://sci2s.ugr.es/eamhco/CFP.php
http://sci2s.ugr.es/eamhco/CFP.php


Table 3
The average errors obtained by ACOR-s, DACOR-s, IACOR-Mtsls1-s, MOS-DE and UACOR-s for each SOCO function. The numbers in parenthesis at the bottom of the table represent
the number of times an algorithm is better, equal or worse, respectively, than UACOR-s. Error values lower than 10�14 are approximated to 10�14. The average errors that
correspond to a better result between MOS-DE and UACOR-c are highlighted.

a A significant difference between the corresponding algorithm and UACOR-s by a Friedman test at the 0.05 a-level over the distribution of average errors of ACOR-s, DACOR-s,
IACOR-Mtsls1-s and UACOR-s.

D
E

C
H

C
IP

O
P−

C
M

A−
ES

SO
U

PD
E

D
E−

D
40

−M
m

G
O

D
E

G
aD

E
jD

El
sc

op

Sa
D

E−
M

M
TS

M
O

S−
D

E
M

A−
SS

W
R

PS
O

−v
m

IP
SO

−P
ow

el
l

Ev
oP

R
O

pt
EM

32
3

VX
Q

R
1

U
A

C
O

R
−s

1e−14

1e−09

1e−04

1e+01

1e+06
+ + + + + + + + + + + +

Optima 6 0 2 8 9 6 9 10 12 13 8 4 5 0 4 5 14

Av
er

ag
e 

Er
ro

rs
 o

f F
itn

es
s 

Va
lu

e

Fig. 5. The box-plot shows the distribution of the average errors obtained on the 19
SOCO benchmark functions of dimension 100. The results obtained by the three
reference algorithms (left), 13 algorithms (middle) published in SOCO and UACOR-s
(right) are shown on the plot. The line at the bottom of the boxplot represents the
optimum threshold (10�14). A þ symbol on top of the two box-plot denotes a
statistically significant difference at the 0.05 a-level between the results obtained
with the indicated algorithm and those obtained with UACOR-s detected with a
Friedman test and its associated post test on the 19 algorithms. The absence of a
symbol means that the difference is not significant. The numbers on top of a box-
plot denote the number of averages below the optimum threshold 10�14 found by
the indicated algorithms.
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Of particular interest is the comparison between UACOR-c and
IPOP-CMA-ES, the data of which are taken from the literature (Au-
ger & Hansen, 2005). The latter is an acknowledged state-of-the-art
algorithm on the CEC’05 benchmark set. UACOR-c shows superior
performance to IPOP-CMA-ES and it gives on more functions lower
average errors than IPOP-CMA-ES than vice versa. The average
error values that correspond to a better result between UACOR-c
and IPOP-CMA-ES are highlighted in Table 4.

As a final step, we compare UACOR-c with five recent state-of-
the-art continuous optimization algorithms published since 2011.
These reference algorithms include HDDE (Dorronsoro & Bouvry,
2011), Pro-JADE (Epitropakis, Tasoulis, Pavlidis, Plagianakos, &
Vrahatis, 2011), Pro-SaDE (Epitropakis et al., 2011), Pro-DEGL
(Epitropakis et al., 2011) and ABC-MR (Akay & Karaboga, 2012).
In the original literature, these algorithms were tested on the
CEC’05 benchmark set for which the parameter values of the algo-
rithms were either set by experience or they were manually tuned.
We directly obtain the data of the five algorithms on the CEC’05
benchmark set from the original papers. Table 5 shows that
UACOR-c gives on the 30 and 50 dimensional problems on more
functions lower average errors than each of these five state-of-
the-art algorithms. For each algorithm, Table 6 summarizes the
average ranking, the number of times the optimum thresholds is
reached and the number of lowest average error values obtained
across all six algorithms that are compared. UACOR-c obtains the
best average ranking, the highest number of optimum thresholds
and it is the best performing algorithm for most functions. The dif-
ferences between the best ranked algorithm UACOR-c and the
other five state-of-the-art algorithms are found to be statistically
significant.

5.3. UACOR-s vs. UACOR-c

Finally, one may be interested how UACOR-s and UACOR-c
compare on the SOCO and CEC’05 sets, respectively. Fig. 6 illus-
trates these results using correlation plots, where each point corre-
sponds to the average error measured for UACOR-c (x-axis) and
UACOR-s (y-axis), respectively. A point below (above) the diagonal
indicates better performance for the algorithm on the y-axis
(x-axis). From these correlation plots, we can clearly observe that
UACOR-s performs statistically significantly better than UACOR-c
on the SOCO benchmark set and that UACOR-c performs statisti-
cally significantly better than UACOR-s on the CEC’05 benchmark
set. Clearly, there is no best algorithm across the two benchmark
sets. The main underlying reason is probably that the CEC’05
benchmark set contains many rotated functions on which the
CMAES local search excels, while CMAES performs poorly on the



Table 4
The average errors obtained by ACOR-c, DACOR-c, IACOR-Mtsls1-c, IPOP-CMA-ES and UACOR-c for each CEC’05 function. The numbers in parenthesis at the bottom of the table
represent the number of times an algorithm is better, equal or worse, respectively, compared to UACOR-c. Error values lower than 10�8 are approximated to 10�8. The average
errors that correspond to a better result between IPOP-CMA-ES and UACOR-c are highlighted.

a A significant difference between the corresponding algorithm and UACOR-s by a Friedman test at the 0,05 a-level over the distribution of average errors of ACOR-c, DACOR-c,
IACOR-Mtsls1-c and UACOR-c.
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SOCO benchmark functions (see also poor performance of IPOP-
CMA-ES in Fig. 5; IPOP-CMA-ES couples CMA-ES with a simple
restart mechanism that increases the initial population size to be
used in the CMA-ES local search). However, our goal is not to
propose one specific algorithm, but rather a framework that in
combination with an automatic parameter tuning method enables
the automatic synthesis of high-performance ACO algorithms for a
particular class of problems. In the article we have shown that this
approach obtains state-of-the-art results on two very different
benchmark function sets, which is something no other algorithm
of the more than 20 used as a reference in this article is able to do.
6. Conclusions

In this article, we proposed UACOR, a unified ant colony optimi-
zation algorithm that integrates components from three previous
ACO algorithms for continuous optimization problems, ACOR

(Socha & Dorigo, 2008), DACOR (Leguizamón & Coello, 2010) and
IACOR-LS (Liao et al., 2011). UACOR is flexible and it allows the
instantiation of new ACO algorithms for continuous optimization
through the exploitation of automatic algorithm configuration
techniques. In this way, we can generate from the available
algorithmic components new ACO algorithms that have not been



Table 5
The average errors obtained by HDDE, Pro-JADE, Pro-SaDE, Pro-DEGL, ABC-MR and UACOR-c for for each CEC’05 function. The numbers in parenthesis at the bottom of the table
represent the number of times an algorithm is better, equal or worse, respectively, compared to UACOR-c. Error values lower than 10�8 are approximated to 10�8. The lowest
average errors values are highlighted.

a A significant difference between the corresponding algorithm and UACOR-c by a Friedman test at the 0,05 a-level over the distribution of average errors of HDDE, Pro-JADE,
Pro-SaDE, Pro-DEGL, ABC-MR and UACOR-c.

Table 6
Given are the average rank, the number of optimum thresholds reached, and the number of times the lowest average errors reached by each algorithm presented in Table 5. In
addition, we give the publication source for each reference algorithm.

Algorithms Average ranking Num of optima Num of lowest average error values Publication sources

UACOR-c 2.52 12 25
Pro-SaDEa 3.22 4 17 IEEE TEC, 2011
Pro-JADEa 3.54 6 11 IEEE TEC, 2011
HDDEa 3.54 2 8 IEEE TEC, 2011
Pro-DEGLa 3.89 5 6 IEEE TEC, 2011
ABC-MRa 4.29 5 12 Information Sciences, 2012

a A significant difference between the corresponding algorithm and UACOR-c by a Friedman test at the 0,05 a-level over the distribution of average errors of HDDE,
Pro-JADE, Pro-SaDE, Pro-DEGL, ABC-MR and UACOR-c.
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considered or tested before. In the experimental part of this article,
we have shown that by instantiating UACOR by automatic
algorithm configuration tools we can effectively obtain new, very
high performing ACO algorithms for continuous optimization. In
particular, the computational results showed that the automati-
cally configured UACOR algorithms obtain statistically significantly
better performance than the tuned variants of the three ACO algo-
rithms that underly UACOR, namely ACOR, DACOR and IACOR-LS on
each of the benchmark sets we considered. When UACOR is auto-
matically configured for the SOCO benchmark set, it is
competitive or statistically significantly better performing than
all recent 19 algorithms benchmarked on this benchmark set;
when configured for the CEC’05 benchmark set, it performs
superior to IPOP-CMA-ES, the acknowledged state-of-the-art algo-
rithm on this benchmark set and statistically significantly better
than other five recent high-performance continuous optimizers
that were evaluated on this benchmark set. In a nutshell, in this
paper we have proven the high potential ACO algorithms have
for continuous optimization and the high potential automatic algo-
rithm configuration has to develop continuous optimizers from
algorithmic components.

The work presented here can be extended along several direc-
tions. A first direction is to extend further the available compo-
nents in UACOR. Examples are to synthesize other probability
density functions for the generation of candidate solutions, to
include alternative ways of handling the archive and constraint
handling techniques for tackling constrained continuous optimiza-
tion problems, and the consideration of also other local search
algorithms. Another promising direction would be to design a
more general algorithm framework from which different types of
continuous optimizers other than ACO algorithms can be automat-
ically configured. This may lead to ultimately more powerful
continuous optimization techniques. Another direction would be
to consider the automatic configuration of continuous optimizers
for more specific classes of functions and to combine these opti-
mizers in the form of algorithm portfolios or through the
exploitation of techniques for algorithm selection. Finally, for the
case of very expensive functions, where the evaluation of a single
solution may take many hours or more, it would be useful to
include surrogate modeling techniques into UACOR.
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