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Abstract Self-organizing systems rely on positive feedback (amplification of perturbations).
In particular, in swarm systems, positive feedback builds up in a transient phase until max-
imal positive feedback is reached and the system converges temporarily on a state close to
consensus. We investigate two examples of swarm systems showing time-variant positive
feedback: alignment in locust swarms and adaptive aggregation of swarms. We identify an
influencing bias in the spatial distribution of agents compared to awell-mixed distribution and
two features, percentage of aligned swarm members and neighborhood size, that allow us to
model the time variance of feedbacks. We report an urn model that is capable of qualitatively
representing all these relevant features. The increase in neighborhood sizes over time enables
the swarm to lock in a highly aligned state but also allows for infrequent switching between
lock-in states. We report similar occurrences of time-variant feedback in a second collective
system to indicate the potential for generality of this phenomenon. Our study is concluded
by applications of methods from renormalization group theory that allow us to focus on the
neighborhood dynamics as scale transformations. Correlation lengths and critical exponents
are determined empirically.
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1 Introduction

Many systems showing pattern formation, such as animal coloration (Camazine et al. 2001),
embryogenesis (Crick 1970), and grazing systems (Noy-Meir 1975), are examples of self-
organizing systems. In a self-organizing system, numerous sub-components interact with
each other and with the environment with simple and local interaction rules. These local
interactions result either in positive feedback (also called amplification or activation) or
in negative feedback (also called inhibition) effects, respectively, when interactions drive
the system toward or away from an ordered state. General features of self-organizing sys-
tems are the interplay between positive feedback and random fluctuations as well as the
interplay between positive and negative feedbacks (Bonabeau et al. 1999). Typically the
system is initialized to an unordered state, that is, it is not showing any patterns in the
beginning and it is far from an attractor. Fluctuations generate local deviations that are
amplified, propagated through space and time by positive feedback until a spatiotemporal
pattern forms. Negative feedback might prevent the system from reaching extreme states
(e.g., 100% ordered, extinction). Due to this stochastic process, random dynamical attrac-
tors form and characterize especially the long-term dynamics of the system features (Arnold
2003).

Swarm systems are another example of self-organizing systems. A frequent setting in the
case of swarms is that several stable ordered states exist (multistability) that are symmetrical
to each other—a typical situation in collective decision-making systems (Valentini et al. 2014;
Hamann 2013b; Montes de Oca et al. 2011; Dussutour et al. 2009; Nicolis and Dussutour
2008). For example, in flocking there are many directions in which the swarm could move
and depending on the situation many directions might be of equal utility. Collective systems
rely on consensus formation to be efficient and to prevent splitting the swarm (Jeanson et al.
2004; Couzin et al. 2005). Although the swarm may approach a consensus state and a large
majority may share a common opinion, the swarm typically does not reach the extreme state
of a 100% consensus (due to negative feedback as discussed above). The asymptotic behavior
of the system is characterized by attractors that we call lock-in following the notion of Arthur
(1989) who discusses economical processes such as the formation of standards. These lock-
in states are random dynamical attractors, and due to stochasticity, the system always has
nonzero probability to switch between lock-in states (Arnold 2003).

A swarm is a distributed agent system where each agent autonomously decides on its
actions. With the global knowledge of an external observer, we can classify at least a subset
of the agents’ actions as positive or negative feedback events that drive the system toward
an ordered state or drive it away from a too ordered state (Hamann 2012, 2013a, b). These
events can also be viewed as ‘frozen accidents’ (Hamann et al. 2013), that is, due to random
events an agent increases the system’s order slightly (e.g., by approaching another agent in
an aggregation scenario or by aligning with an agent that happens to be close-by in a flocking
scenario) and subsequently tries to conserve that new state (e.g., by staying stopped or by
following the other agent). By counting these positive and negative feedback events, we are
able to calculate the ratio of positive feedback events

f + = F+

F+ + F− , (1)

for the number of positive feedback events 0 � F+ � N within a limited time interval for
swarm size N (F− accordingly). If f + > 0.5 (respectively, f + < 0.5), we say that positive
feedback (negative feedback) is predominant and we know that the system is generally
approaching (departing from) an ordered state.
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Fig. 1 Example of a Markov
chain for swarm size N = 4. pi,j
provides the transition probability
to move from state i to state j 0 1 2 3 4
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Fig. 2 The four examples of un-/ordered positions and states of agents. Agents have positions on a circle
(cf. locust scenario) and have one of two states: gray or black. aOrdered positions, ordered states. bUnordered
positions, ordered states. c Ordered positions, unordered states. d Unordered positions, unordered states

As an extension, we can measure positive and negative feedback events for each possible
system state L and average overmany independent runs.Weobtain a function of ratios f +(L).
The ratios can be interpreted as probabilities of positive feedback. Hence, a Markov chain
whose transition probabilities are defined by function f +(L) is a simple and abstractmodel of
such systems, see Fig. 1 for swarm size N = 4. In its simplest form, the system state L would
just count the number of agents in a certain state s. High degrees of order (patterns) would
be reached for L = 0 (no agent in state s) and L = N (all agents in state s). The transition
probabilities are defined by f +(L). For example, p3,2 = f +(3) and p3,4 = 1 − f +(3) in
Fig. 1.

For several swarm systems, such as density classification (Hamann et al. 2010; Hamann
2012, 2013b), aggregation controlled by BEECLUST (Schmickl and Hamann 2011;
Schmickl et al. 2008;Kernbach et al. 2009), and alignment in locust swarms (Yates et al. 2009;
Buhl et al. 2006), it was found that negative feedback is initially predominant while positive
feedback builds up only over time and not merely depending on the order of the current
system state (Hamann 2012, 2013a, b). The time variance of feedbacks can be reflected,
for example, in the above Markov chain model by time-dependent transition probabili-
ties pi+2,i+1(t) = f +(i, t). This dependency on time needs to be modeled and requires
a defined property that determines the time dependency. Consequently, there exists a second
feature and/or a mechanism besides the order of the system that controls the increase in posi-
tive feedback over time. This feature is very likely a spatial property. That fact is determined
by the method of elimination due to the simplicity of the investigated systems. The agents
of the investigated systems have only two properties, their (internal) state (e.g., opinion,
direction of motion) and their position. This two dimensionality allows for two conceptually
independent definitions of order. These systems can be ordered in terms of agent positions1

and/or in terms of their states. Figure 2 shows all four possible combinations in a setting
similar to a locust system that we investigate in this paper primarily.

Our first objective is to determine the above-mentioned second feature. Once determined,
we aim at defining a mathematical model that is capable to (1) cover the interplay between
positive and negative feedbacks and (2) to identify the increase in positive feedback over time.
We continue thework reported in earlier publications (Hamann 2012, 2013b), where research
questions investigated here were raised. We extend the recently published study (Hamann

1 Naturally, the definition of order is ambiguous. Here, we say that a uniform distribution of agents in space
is an unordered state.
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and Valentini 2014) where we provided preliminary results. Our main concept is to consider
spatial features—specifically, relative agent positions. We find that the investigated system
maximizes both types of order (see Fig. 2) although its primary purpose is to maximize
the order in the motion direction. In the case of the locust system, we identify the second
feature to be its neighborhood. That is, the local density of agents within perception range
of a different agent. In the aggregation scenario, we have also analyzed the influence of the
average neighborhood size and we have derived an appropriate model (Hamann et al. 2014).
Another related work is that of Huepe et al. (2011) based on ‘adaptive networks.’ They also
find that spatial feature is relevant and that can be modeled in an abstract way.

Most of the following experiments are based on a swarm model inspired by swarm align-
ment of locusts. These swarms switch between different aligned states even after having
reached high degrees of alignment (lock-in states). This special property is necessary to stay
adaptive to dynamic changes in the environment and is subject to the following investiga-
tions. First, we follow our hypothesis that spatial features are relevant in these systems and
empirically analyze the disparity in the dynamics of locust alignment between well-mixed
and biased spatial distributions of agents. We measure the probability of positive feedback
based on transition probabilities and the bias in the agents’ neighborhoods toward agents of
the current majority. Based on that statistical evidence collected in our preliminary analysis,
we detect a crucial feature that summarizes these spatial effects, the average neighborhood
size of agents.We define a two-dimensional Markov chain that depends on the current degree
of alignment in the system and the average neighborhood size of agents. A vector field rep-
resentation of the transition probabilities obtained from the Markov chain model provides a
clear picture of what we call the ‘fly-bottle effect.’2 We develop an urn model of the locust
dynamics capable to represent the primary features of the system but at a lower computational
complexity. After validating the urn model against agent-based simulations of the locust sys-
tem, we derive an analytical description of its simplified dynamics that allow us to obtain
insights into the causes of time-variant positive feedback as a function of the neighborhood
size. Finally, we apply methods from physics, in particular the theory of renormalization
group. This is done with the purpose of giving a different perspective on the system’s neigh-
borhood size dependency, namely the perspective of scale transformation dynamics instead
of temporal dynamics. This is followed by techniques to determine the propagation of cor-
relations between agents through space.

2 Locust scenario

In the growth stage of a wingless nymph, swarms of desert locusts (Schistocerca gregaria)
show a self-organizing collective motion behavior that is often referred to as ‘marching
bands’ (Buhl et al. 2006). The collective motion is expressed in the directional alignment of
a majority of locusts, it is density dependent, and individuals seem to change their direction
as a response to local interactions with neighbors (Buhl et al. 2006). In experiments, the
complexity of the collective motion is reduced to a pseudo-1-d setting by using a ring-shaped
arena. Microscopic (Czirók et al. 1999) and macroscopic models (Yates et al. 2009; Hamann
2012, 2013a, b) of this behavior have been reported. Here, we use the microscopic model of
self-propelled particles byCzirók et al. (Czirók et al. 1999) as our referencemodel (henceforth
‘Czirók model’).

2 A fly bottle is a traditional device made of clear glass to passively trap flying insects that enter it from below
and cannot escape because of their phototaxis behavior.
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Table 1 Used parameters for the
Czirók model

Parameter Symbol Value

Swarm size N {17, 21, 25, 33, 41, 49, 57, 61}
Circumference C 70 (21)

Nominal velocity v 0.1

Perception range Δr 1.0

Noise η 2.5

The system is defined in 1-d space. A particle i has coordinate xi ∈ [0, C) and dimen-
sionless velocity ui ∈ [−1, 1]. We refer to particles with velocity ui < 0 as ‘left-goers’
(respectively, ‘right-goers’ for ui > 0). The dynamics of a particle is defined by

xi(t + 1) = xi (t) + vui(t) (2)

where v is the nominal particle velocity and

ui(t + 1) = G(〈u(t)〉i) + ξi (3)

considers the particle’s interaction with neighbors (subject to noise ξi uniformly distributed
over [−η/2, η/2]). The local average velocity 〈u(t)〉i for the i th particle is calculated over
all neighbors located in the interval [xi − Δr, xi + Δr ] for perception range Δr (see Table 1
for the parameter settings). G describes both propulsion and friction forces

G(u) =
{

(u + 1)/2, for u > 0

(u − 1)/2, for u � 0
. (4)

Equations 3 and 4 implement a variant of a localmajority rule because each particle i aligns
to the local average velocity 〈u(t)〉i. However, unlike the standard case in opinion dynamics,
the contribution of each particle is weighted by its absolute velocity |u(t)| while the actual
opinion is the sign of the velocity. The initial condition is a random uniform distribution for
both the particles’ coordinates xi ∈ [0, C) and their velocities ui ∈ [−1, 1]. The number of
particles is a constant that we call swarm size N . Throughout the paper, we prefer to use odd
swarm sizes to avoid fluctuations at N/2 (also see Table 1).

In the locust system, the spatial distribution of particles is biased and undergoes a nontrivial
evolution. Next, we present already a measurement using the Czirók model to highlight these
spatial distributions of particles which point to the dynamic neighborhood sizes and the main
subject of this study. Figure 3 gives a simplified picture of the spatial correlations generated
by the Czirók model in the form of the pair correlation function. In statistical physics, the pair
correlation function (or radial distribution function) describes how the density of particles
varies depending on the distance from a reference particle (this concept is also used later in
Sect. 4.3.2). For a given left-goer ratio, we measure the density of left-goers as a function
of the distance from a left-goer at times t1 = 30 and t2 = 90. We consider swarms with
N = 41 particles and system states with 25 left-goers and 16 right-goers only. The shown
results are averaged over many independent runs. The two horizontal dashed lines give the
expected distribution under the assumption of a uniform distribution of particles. Early in
the simulation, at t1 = 30, a left-goer has an increased density for nearby left-goers (within
distances of about 2.6) in comparison with an assumed uniform distribution. Accordingly,
right-goers have a decreased density for nearby right-goers due to symmetry. Later in the
simulation, at t2 = 90, left-goers have an increased density of nearby left-goers for even
longer distances of up to about 6.0 and as a consequence a decreased density for the remaining
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Fig. 3 Pair correlation function:
measured density of
left-/right-goers at distances from
a particle of the same kind

arena (accordingly for right-goers). These spatial correlations in the particle distributions are
discussed next, and we also study and interpret the temporal evolution of these correlations
throughout the paper.

3 Models

In this section, we describe the foundations and we define the tools underlying our mathemat-
ical modeling approach. We define two metrics, the probability of positive feedback events
and the left-goer edge ratio. We present an experimental methodology to analyze the effects
of biased spatial distributions in comparison with the canonical assumption of a well-mixed
distribution of agents in the space. Next, we provide a Markov chain model capable to catch
the dynamics of the locust system including spatial features. Using this Markov model, we
show and explain what we call the fly-bottle effect and its correlations with both local (i.e.,
neighborhood size) and global (i.e., swarm size) density of agents in space. In addition, we
present an urn model that is capable to qualitatively represent all the relevant spatial features.
Finally, we give a mathematical model of the underlying feedback processes to indicate what
can be done analytically.

3.1 Well-mixed and biased spatial distributions

In the following,we investigate the impact of biased spatial distributions of agents in the locust
system.Often uniformdistributions are assumed inmodels of collective systems, andwewant
to determine the difference in the swarm behavior between uniform and biased distributions.
We model the collective decision-making process using Markov chains. A simple model for
collective decision making with only one state variable was reported before (Hamann 2012,
2013b) and also above in Fig. 1. In the locust scenario, we count left-goers L (without loss of
generality) and get a set of N +1 states: {0, 1, . . . , N }. As simplifying assumptions, we ignore
that the systemmight stay within the current state (i.e., no self-loops) and that we might have
changes in the left-goer number of more than one particle within a small time interval. By
excluding self-loops, we only loose the capability to model temporal effects quantitatively
while not influencing the qualitative behavior and steady states. Limiting the model to one
state transition at a time has no major effects because we can always observe the system
behavior on sufficiently small time intervals. Without loss of generality, we focus exclusively

123



Swarm Intell

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Transition probabilities P(L → L + 1) and left-goer edge ratio ε using the Czirók model and
two methods of initially positioning agents following a random uniform distribution or a special biased
distribution(N = 21). a Czirók model, transition probabilities (average over time). b Czirók model, left-goer
edge ratio (average over time). c Well-mixed variant of Czirók model, transition probabilities for different
agent densities (average over one-time-step executions of the simulation). d Well-mixed variant of Czirók
model, left-goer edge ratio (average over one-time-step executions of the simulation). e Bias variant of Czirók
model, transition probabilities (average over one-time-step executions of the simulation). f Bias variant of
Czirók model, left-goer edge ratio (average over one-time-step executions of the simulation)

on transitions that are increasing the number of left-goers: L → L + 1. They occur with
probability P(L → L +1) and due to the symmetry we have P(L → L +1) = 1− P(L →
L − 1) for L ∈ {1, 2, . . . , N − 1}. These transition probabilities are easily measured for all
system states L using theCzirókmodel. The initial agent positions are sampled froma random
uniform distribution. Next, we simulate the evolution of the system according to the Czirók
model for 2000 time steps. This time is sufficient for the system to exhibit spatial correlations
characteristic of the Czirók model. The state transitions are measured and averaged over the
whole time interval. The resulting values for all probabilities P(L → L + 1) are shown in
Fig. 4a (agent density N/C = 0.3).
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An abstract model that only counts left-goers is not representing spatial features and
therefore implicitly assumes for the agents a well-mixed distribution in space independent of
their internal state (e.g., heading, opinion). However, swarm systems typically rely on spatial
features and show non-homogeneous distributions of agents (Hamann 2010; Huepe et al.
2011). In the locust scenario, the first priority for the swarm is to achieve alignment, which
is generally independent of agents’ positions. However, locusts seem to depend heavily on
spatial features such as the number of neighbors (Hamann 2013a). In the following, we briefly
investigate the difference between a well-mixed locust system and a locust system whose
agents’ spatial distributions are biased by the time-dependent evolution of both positions and
headings of agents. Our aim is to qualitatively analyze these differences and obtain insights
into their origins. For the following experiment, we initially place the agents by sampling
from a uniform distribution and calculate the updates in agent directions ui according to the
Czirók model. In contrast to our measurements presented in Fig. 4a, each simulation lasts
for only one time step. In this way, we sample the system before its agent spatial distribution
is affected by the Czirók model. Figure 4c shows the resulting transition probabilities for
two agent densities (N/C ∈ {0.3, 1.0}) based on 2 × 105 independent simulation samples
each. We note that the density of agents influences the transition probabilities considerably.
In addition, we note qualitative differences in the shapes of the curves compared to Fig. 4a.

Next, we define a measure capable to represent an important spatial feature, the left-goer
edge ratio. The spatial distribution of agents induces a graph. The existence of an edge is
simply determined by checking whether two agents are mutually within their perception
range Δr . At the beginning of the simulation, the induced graph corresponds to a (one-
dimensional) random geometric graph. As time flows, the dynamics of the Czirók model
bias the spatial distribution of agents. The set of agents with whom an agent shares an edge
defines also its neighborhood, the size of this set is its neighborhood size, and the average
neighborhood size is defined by (remember, xi gives position of agent i)

N = 1

N

∑
1�i�N

|{1 � j � N : |xi − xj| < Δr}|. (5)

To define our measure, we count ‘left-goer edges’ which are edges that connect at least one
left-goer with another agent. The set of left-goer edges EL is defined by

EL = {e|e = (e1, e2) with e1 and/or e2 is left-goer}. (6)

The definition of the set of right-goer edges Er is symmetrical. Our measure is the left-goer-
edge ratio ε, which is calculated based on the set sizes:

ε = |EL|/(|EL| + |ER|). (7)

The edge ratio ε ∈ [0, 1] can be interpreted as an indicator of how the neighborhood sizes
(i.e., node degrees) are distributed between left-goers and right-goers. If the neighborhood
size averaged over all left-goers equals that averaged over all right-goers, then we have edge
ratio ε = 0.5. If the average neighborhood size of left-goers is bigger than that of right-goers,
then we have edge ratio ε > 0.5. If right-goer neighborhoods are bigger, then ε < 0.5. We
measure the edge ratio using the Czirók model by averaging over 2×105 samples. Figure 4b
shows the presence of bigger neighborhood sizes for left-goers in case of a global majority
of left-goers (L > N/2, for swarm size N = 21) and of smaller neighborhood sizes when
left-goers are outnumbered (L < N/2). We do the same measurements for the well-mixed
simulation as shown in Fig. 4d. In contrast to the Czirók model, the edge ratio scales linearly
(ε(L) = L/N ) for both the tested densities (see Fig. 4b). This result is in agreement with
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our expectations based on the well-mixed assumption. Hence, when we assume a well-mixed
distribution, we ignore the correlations in space and time due to earlier dynamics of the locust
system. We have shown the relevance of spatial effects in this system. This spatial effects are
generated by positive feedback and establish a dependence on the system’s history which, in
turn, influences the positive feedback itself.

Next, we investigate how the well-mixed distribution needs to be manipulated to obtain
a similar spatial bias as in the locust system. The motivation is to better understand the
relevant microscopic spatial features of the locust system. The aim is to gather information
that will be useful in the definition of mathematical models, which represent relevant spatial
features.We investigate how the well-mixed simulation can bemodified to introduce a spatial
bias that results in a nonlinear edge ratio ε(L). We follow a simple constructive approach
to influence the edge ratio: First, agents are positioned according to a uniform distribution;
second, agents belonging to the currentmajority are paired to formclusters of two agents each.
This is obtained by moving an agent of the current majority to the same position of a different
agent of the current majority. Agents are initially positioned according to this procedure, and
their directions ui are updated for one time step. Averaging over many samples gives the
resulting transition probabilities and edge ratios which are shown in Fig. 4e and 4f for two
densities (N/C ∈ {0.3, 1.0}). The biased positioning of agents influences both the edge ratio
and transition probabilities. The increased density from 0.3 to 1.0 almost only introduces
a downscaling of the edge bias by a factor of about 0.45. Hence, we learn that the spatial
bias of the locust system can be emulated by introducing a bias to their neighborhood. This
finding is also in agreement with the measured pair correlation function shown in Fig. 3.

3.2 Markov chain model for two system variables

We extend the Markov chain model reported before (Hamann 2012, 2013b) and shown in
Fig. 1 which relies on only one state variable, that is, it only counts the number of left-goers L .
We consider as second state variable the average neighborhood size over all agents that we
round to the nearest integer N ∈ {1, . . . , N }. Figure 5 shows an example of the resulting
chain for swarm size N = 3. We get (N + 1)N states. For simplicity, we ignore again
that the system might stay within the current state (no self-loops), that a concurrent change
of both features might occur (no ‘diagonal’ transitions), and we also ignore that we might
have changes in the left-goer number or neighborhood size of more than one within a small
time interval (no transitions across several states). For any given state (L ,N ), we measure
the probability of observing a transition that increases/decreases the number of left-goers,
P(L → L ±1|(L ,N )), and the probability of observing a transition that increases/decreases
the neighborhood size, P(N → N ±1|(L ,N )). Throughout the paper, we reuse the concept
that each system state of the locust system (or other collective decision-making systems)

Fig. 5 Markov chain for two
state variables: number of
left-goers L (say, horizontally)
and the average neighborhood
size N (say, vertically); swarm
size N = 3

123



Swarm Intell

can be mapped onto this two-dimensional Markov chain and that the system’s dynamics is
qualitatively well modeled by state transitions on this Markov chain.

In the following, we use the two-dimensional Markov chain model (i) to show and explain
the origins of the fly-bottle effect and (ii) to highlight the correlation between the swarm
size and the mean time to switch between lock-in states. The analysis of the Markov chain
model is focused mostly on the computation of the asymptotic behavior of the collective
decision-making process. However, due to the lack of self-loops in the chain, we obtain
a periodic Markov chain of period two. This kind of Markov chains does not converge to
a unique stationary distribution but repeatedly jumps between two stationary distributions:
one for odd time steps and one for even time steps. Nonetheless, we can calculate a unique
limiting distribution of the process by taking the mean of the two steady-state distributions
of the chain. The analysis presented at the end of Sect. 4.1 is based on the computation of
such limiting distributions.

3.3 Urn model

The idea of a Markov chain that depends on a pair of states (L ,N ), namely the number of
left-goers L and the average neighborhood size N , provides a substrate for the following
model. In addition, the considerations about the spatial bias discussed in Sect. 3.1 need to be
integrated into one model.

We define an urn model that represents most of the relevant features of the locust system,
especially those that are due to spatial biases. Our aim is to develop a model that is simpler
and faster to simulate than the Czirók model but still represents the qualitative key features
of this system. In the urn model, marbles represent agents and colors of marbles represent
the states of the agents (here, left- and right-goers). The urn model consists of 3 urns: main,
edges, and resource. Urn main represents the number of left- and right-goers in the swarm
and contains a constant number of N marbles. Urn edges represents an average neighborhood
and contains a variable number of marbles E . The number of marbles in edges represents
the neighborhood size, and the ratio of left-goers within edges represents the edge ratio.
Urn resource provides additional marbles to increase the neighborhood size E and therefore
also holds a variable number of marbles. The underlying idea is that we want to model the
increasing neighborhood size as observed in the locust system. The number of marbles in
edges is allowed to increase and resource provides the requiredmarbles. At the same time, the
number of provided marbles in resource is limited which models the saturation effect in the
increase in neighborhood sizes. At each round, the drawing process follows four stochastic
rules. See Table 2 for used parameters. The parameters were chosen for good qualitative
agreement with the Czirók model but without intensive parameter optimization.

Rule 1 We draw E times from edges with replacement (if E is even we do E + 1 draws
to avoid treatment of tie-breakers) and count the left-goers λ and right-goers ρ that we draw.

Table 2 Used parameters for the
urn model

Parameter Symbol Value

Prob. neighborhood rule (rule 2) Pnsize 0.2

Prob. neighborhood size increase Pincr 0.18

Prob. neighborhood size decrease Pdecr 0.007

Offset neighborhood size decrease cdecr 0.15

Probability of noise Pnoise 0.2
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Next, we draw one marble from main. If λ > ρ and we have drawn a right-goer from main,
then we put a left-goer back to main. If λ < ρ and we have drawn a left-goer from main, then
we put a right-goer back to main. Otherwise, that is, λ < ρ and we have drawn a right-goer,
we do not exchange the marble and put it back in main (accordingly for λ > ρ and left-goer).
This first drawing rule represents the actual decision process of an agent based on counting
neighboring agents and a majority rule.

Rule 2This second drawing rule is executed at each round only with a probability of Pnsize.
We draw E times from edgeswith replacement (if E is evenwe do E +1 draws) and count the
left-goers λ and right-goers ρ that we draw. Next, we do min(λ, ρ)+1 random experiments:
With probability Pincr, we move a left-goer or a right-goer (with equal probability) from
resource to edges if possible. Finally, we do E(max(λ, ρ)/N − cdecr) random experiments
where cdecr is a parameter to fine-tune the model. In each experiment, we first move with
probability Pdecr a left-goer from edges to resource if possible. Then, we apply the same
procedure for a right-goer. This rule models the dynamics of the neighborhood size. Big
neighborhoods increase their size faster than small neighborhoods in situations in which the
number of left- and right-goers is approximately the same. For unbalanced distributions,
neighborhoods tend to decrease their size.

Rule 3 We draw one marble from main. If it is a left-goer, we replace a right-goer in edges
with a left-goer (if possible) or vice versa in the case of a right-goer (positive feedback). This
third drawing rule is executed in each round only with a probability of Pnoise. The effect of
this rule is to create a left-goer ratio in the urn edges similar to that in the urn main (in average
replacements of marbles in edges follow the frequency of left-/right-goer draws from main
which directly reflect the left-goer ratio in main).

Rule 4 We draw one marble from main. If it is a left-goer, we replace a left-goer in main
with a right-goer (if possible) or vice versa in the case of a right-goer (negative feedback).
This fourth drawing rule is executed in each round only with a probability of Pnoise. These
two last rules implement noise. They are executed with the same probability, but the positive
feedback operates on edges and negative feedback operates on main.

Although these four drawing rules seem rather complex, they are simple to implement.
This urn model is of low computational complexity and allows for a fast simulation of the
locust system (e.g., in contrast to the Czirók model no distances between agents need to be
checked). It is capable of simulating the spatial bias despite its simplicity. The Czirók model
and the urn model are compared in Sect. 4.1.

3.4 Mathematical model of feedbacks

In the following, we analyze the feedback processes generated by the urn model and we
relate the results of our analysis to those of previous works (Hamann 2012, 2013b). We
follow the idea that, in the locust system, the time-variant behavior of positive feedback
can be explained by the dynamics of neighborhood sizes. Hence, our aim is to find a causal
relation between the dynamics of neighborhood sizes and the increase in positive feedback
over time.We build on the approach of defining two different equations that model the change
of the left-goer ratio m = L/N over time. Specifically, one equation depends on the positive
feedback probability PFB (Hamann 2012, 2013b), while the other equation is independent.
We then conclude the analysis by deriving an analytic expression for the positive feedback
probability as a function of the neighborhood size.

We define a mathematical description of the above urn model. A detailed model would
not allow for concise equations; therefore, we restrict our attention to the main features. We
ignore the dynamics of urn edges except for the total number of marbles E which gives the
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average neighborhood size N . Our main focus is to model the dynamics of urn main. We
assume that the ratio of left-goers in the neighborhood (edges) is identical to the ratio of
left-goers m = L/N in main. This assumption implies a well-mixed system. Furthermore,
we assume that E = N is odd. The dynamics of the urn model as defined by rule 1 is based
on a majority rule for the draws from urn edges combined with a single draw from urn main.
For N marbles, of which mN are left-goers and (1 − m)N are right-goers, the probability
to draw a majority of left-goers is

P left
maj =

∑
n∈{�N

2 �,...,N }

(N
n

)
mn(1 − m)N−n (8)

and the probability to draw a majority of right-goers is

P right
maj =

∑
n∈{�N

2 �,...,N }

(N
n

)
(1 − m)nmN−n . (9)

Following a heuristic approach, the average change Δm of left-goers within one time step is
modeled as

Δmh(N , m) = (1 − m)P left
maj − m P right

maj − Pnoise(2m − 1), (10)

whereas the first two terms model the positive feedback effect implemented by rule 1. An
increase in the number of left-goers results from drawing a right-goer while having amajority
of left-goers (and vice versa). The third term models the negative feedback effect of rule 4
(see Hamann et al. (2014) for details).

As a second alternative, we model the average change Δm of left-goers with a feedback-
based approach as reported in (Hamann 2012, 2013b). That is, we neglect the actual processes
causing positive and negative feedback in the urn model and we focus instead on the proba-
bility of positive feedback PFB(N , m). We get

ΔmFB(N , m) = 1 − 2
(
(1 − PFB(N , m))P left

maj + PFB(N , m)P right
maj

)
. (11)

Now, we are in a position that allows us to define the probability of positive feedback as
a function of the neighborhood size. This is achieved by equating and solving the right-hand
sides of Eqs. 10 and 11 which yields

PFB(N , m) = −
(
2m − 15P left

maj + 5m P left
maj + 5m P right

maj + 4
)/(

10P left
maj − 10P right

maj

)
.

(12)
With increasing neighborhood size N , we obtain polynomials of increasing degree. For
example, the first three polynomials are

PFB(N = 1, m) = 2

5
, (13)

PFB(N = 3, m) = 3

4
− 7

20(−2m2 + 2m + 1)
, (14)

PFB(N = 5, m) = 3

4
− 7

20(6m4 − 12m3 + 4m2 + 2m + 1)
. (15)

Figure 6 shows plots of Eq. 12 forN ∈ {1, 3, . . . , 27}. An exponential increase in positive
feedback of the form 1 − exp(−N ) with increasing neighborhood size N is clearly visible.
Positive feedback gets more likely with increasing neighborhood size and independently
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Fig. 6 Analytically obtained
probabilities of positive feedback
(Eq. 12) for neighborhood sizes
N ∈ {1, 3, . . . , 27}

from the current system state m. That means, the system is driven stronger to the two fixed
points (m ≈ 0.15 and m ≈ 0.85) with increasing neighborhood size. A similar empirical
result was reported in (Hamann 2013b, Fig. 8b) for a different swarm experiment showing
temporal dependency. In the locust scenario, the neighborhood size also increases over time
(see Section 4). Hence, themodel given by Eq. 12 confirms the time-variant positive feedback
in swarm systems as reported in (Hamann 2012, 2013b).

4 Results

In the following,wevalidate the urnmodel against simulations of theCzirókmodel.Our aim is
to investigate whether the urnmodel is capable to reproduce the spatial bias that characterizes
the locust system as well as other system features. We interpret the results of simulations
using the two-dimensional Markov chain model introduced in Sect. 3.2. Additionally, we
use a fitted Markov chain model to analyze the stability of lock-in states as a function of the
size of the swarm by looking at the mean switching times between lock-in states. We report
a result for another collective decision-making systems to show the potential for generality
of this approach. Finally, we apply methods from renormalization group which allow us
to provide novel perspectives on understanding the neighborhood size dynamics and the
growing correlation lengths.

4.1 Urn model, edge bias, and neighborhood size

We investigate the Czirók model and the urn model with focus on the key findings that the
average neighborhood size and the edge ratio are relevant features of the locust scenario.
In particular, we investigate measured transition probabilities P(L → L ± 1|(L ,N )) and
P(N → N ± 1|(L ,N )) by interpreting both models as Markov chains (Sect. 3.2). An
overview of the complete system dynamics is given by vector fields in Fig. 7a, b for N = 41
(106 samples for Czirók model and 5 × 106 for urn model). These plots are based on the
transition probabilities which are put in relation to each other. Furthermore, the horizontal
and the vertical lengths of the arrows were normalized individually to maximize readability
(i.e., vector field plots are qualitative; the quantitative data are given in Fig. 7c–f). In the
case of the Czirók model, as a consequence of the initial random uniform distribution of
agents over the whole ring, the neighborhood size N is initially small (2Δr N/C ≈ 1.2).
Similarly, urn edges initially holds one left-goer and one right-goer. In the initial unordered
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7 Vector fields, transition probabilities, and edge ratio for theCzirók and urnmodel (N = 41, 106 samples
for Czirók model and 5×106 for urn model). a Czirók model, vector field. bUrn model, vector field. c Czirók
model, transition probabilities number of left-goersL (alignment).dUrnmodel, transition probabilities number
of left-goers L (alignment). e Czirók model, transition probabilities neighborhood size N . f Urn model,
transition probabilities neighborhood size N . g Czirók model, left-goer edge ratio ε. h Urn model, left-goer
edge ratio ε
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state, there are approximately the same number of left-goers and right-goers (L ≈ N − L).
Hence, both systems start in the area at the lower middle of the vector field. First, the
neighborhood size increases. Only later, once a bigger neighborhood size is formed, the
system either increases or decreases in the number of left-goers L until reaching a stable
state, respectively, (L ,N ) ≈ (35, 8) or (L ,N ) ≈ (6, 8).

The vector fields depicted in Fig. 7a, b provide a clear picture of what we call the ‘fly-
bottle effect.’ The swarm system is initialized with L/N ≈ 0.5 and N < 5. At first, there
is no positive feedback concerning the number of left-goers L (Fig. 7c, d) but the average
neighborhood size N increases (in analogy to the fly bottle: ‘entering from below,’ Fig. 7e
and f). Once N ≈ 10 or bigger, a strong positive feedback emerges that easily breaks the
symmetry given by L/N ≈ 0.5 and drives the system toward L/N ≈ 0.12 or L/N ≈
0.88 (fly-bottle analogy: phototaxis behavior). For these values, however, there is negative
feedback on N which decreases to N ≈ 8. Finally, positive and negative feedbacks balance
out and the system converges to either L/N ≈ 0.15 or L/N ≈ 0.85 generating a lock-in
effect (‘the fly is trapped’). This lock-in effect is only temporary because the positive feedback
operating on L for N ≈ 8 is much weaker than that for N > 8 (cf. Fig 7c, thick line gives
values for N = 8). As a consequence, when N � 8 the system switches more frequently
between amajority of left-goers (L > 20) and amajority of right-goers (L < 20). In contrast,
when the neighborhood size is bigger (N > 8), the system would transit from a symmetrical
scenario with L ≈ 20 to either L 	 20 or L 
 20 without switching between different
majorities. In the long run, the system shows a switching behavior between the two lock-ins.
However, such a change in majority becomes more infrequent with increasing swarm size N
(see below) as also seen in natural locusts (Buhl et al. 2006). Projections of the data given in
Fig. 7a, b are given in diagrams c–f.

Figure 7c, d shows the transition probabilities for an increase in L for all relevant values of
the neighborhood size N , respectively, for the Czirók and urn models. Another comparison
is shown in Fig. 7e, f which give the transition probabilities for an increase in N for all
relevant values ofN . Some curves are noisy because the corresponding configurations occur
very rarely. We ignore statistical significance within this qualitative study (big quantitative
differences between the two models are obvious). Positive feedback is found within approxi-
mately the same intervals in Fig. 7e, f (similarly for negative feedback). An extreme positive
feedback in the Czirók model is noticeable in Fig. 7c, e. This can be seen in the interval
12 < L < 29 of Fig. 7e, where transition probabilities toward bigger neighborhood sizes
increase with increasing neighborhood sizes. In the intervals 6 < L < 18 and 23 < L < 35
of Fig. 7c, we can see that positive feedback boosts transition probabilities that push the
system toward lock-in states. Figure 7g, h gives the left-goer edge ratio ε for different times.
The edge ratio of the urn model is more dynamic because the urn model is always started
with one left-goer and one right-goer, that is, an edge ratio of ε = 0.5. The initial edge ratio
for the Czirók model, in turn, is the direct result of the uniform distribution of agents which
gives ε(L) = L/N .

Finally, we investigate the effects of increasing the swarm size on the stability of lock-
in states. We analyze the mean time τN necessary to move from a selected initial set of
states with a majority of right-goers to a selected final set of states where left-goers are the
majority in the system. In particular, these two sets approximately group all configurations
of the locust system where positive and negative feedback balance each other, that is, they
are close to one of the fixed points. We consider swarm systems whose transient dynamics
have already vanished and thus settled down to their limiting behavior. We define the set
of initial (respectively, final) states looking at the limiting distribution P∞(L ,N ) of the
process (computed from the Markov chain defined in Sect. 3.2 and shown in Fig. 8a). We
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(a) (b)

Fig. 8 Illustrations of a limiting distribution P∞(L ,N ) for the Czirók model, size N = 41, patterned areas
represent lock-in states; bmean first passage time τN over swarm size N for both models fitted to a exp(cx)xb ,
error bars give standard deviation (note logarithmic scale on vertical axis)

select states with a majority of right-goers (respectively, left-goers) in descending order of
probability up to an overall joint probability of the set of 0.1 (see patterned areas in Fig. 8a).
This corresponds to a majority of right-goers where L/N ≈ 0.15 and a majority of left-goers
with L/N ≈ 0.85, whileN ∈ [5.8, 14.2] for the urn model andN ∈ [4, 10.6] for the Czirók
model. To compute the mean switching time τN , we first lump together all final states with
majority of left-goers in a single state, and then, we make this state absorbing. We obtain in
this way a Markov chain with a single absorbing state. An absorbing state is a state that, once
entered, cannot be left by the Markov process (no outgoing transitions). The mean switching
time of our original chain corresponds to the absorption time of a process in the modified
chain that starts with an initial distribution proportional to the limiting probabilities of the
initial states selected so far. Figure 8b shows the mean switching time τN when the swarm
size N increases. The urn model’s qualitative behavior is similar to that of the Czirók model
for all swarm sizes, with the latter experiencing shorter switching times. For both models,
the mean switching time scales approximately exponentially with swarm size (notice the
logarithmic scale of the horizontal axis in Fig. 8b), thus showing that bigger swarms form
more stable majorities. Hence, the urn model preserves this important temporal feature of
the Czirók model qualitatively.

4.2 Generalization to another collective decision-making system

It seems a general phenomenon in swarm systems that negative feedback is initially predom-
inant while positive feedback builds up only over time. The generality is supported by the
following finding in an adaptive aggregation scenario.

The BEECLUST algorithm is a model algorithm for swarm aggregation. It is based on
observations of young honeybees (Szopek et al. 2008, 2013). The behavioral model of these
bees was transferred to a control algorithm for swarms of robots (Schmickl and Hamann
2011; Schmickl et al. 2008; Kernbach et al. 2009). The BEECLUST approach was analyzed
in many models (Hereford 2011; Schmickl et al. 2009; Hamann et al. 2012, 2010; Bodi et al.
2011) and was also extended to be more efficient (Arvin et al. 2014, 2012). The BEECLUST
algorithm controls a swarm to aggregate at a certain spot that is indicated by an environmental
feature (e.g., temperature, light, and sound). If two options of equal utility are provided to the
swarm, then it has to break this symmetry by collective decision making and aggregate only
at one of the two options (Hamann et al. 2012). When driven by the BEECLUST algorithm,
robots in the swarm repeatedly formclusters of aggregated robots. For the feedback processes,
both the cluster size and the number of clusters seem important features. Small clusters tend
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Fig. 9 Vector field for the
BEECLUST system, 2 × 106

samples

to dissolve while big clusters tend to grow. In addition, the growth rate scales nonlinearly
with the cluster size because, for example, robots in big clusters remain physically trapped
by neighbors while in small clusters such geometrical constraints are unlikely to have an
impact.

In our simulation, the swarm particles move in a rectangular arena, which has appropriate
aggregation sites at both short sides.We separate the arena logically into twohalves containing
an aggregation site each. As the order parameter, we define the number of robots in the
left half L without loss of generality. As the secondary feature, we choose the average
neighborhood sizeN again, because it also gives an estimate of the average cluster size. For
a small swarm of size N = 25 that is successfully aggregating at one side, the measurements
are shown in a vector field, see Fig. 9, similar to the measurements for in the Czirók model
(Fig. 7a). Swarms initializedwith a uniformdistribution of positions have small neighborhood
sizes and a balanced L (i.e., L ≈ N/2). Initially, the neighborhood size increases as clusters
start to form. However, negative feedback is still predominant and prevents the system to
break the symmetry between the two aggregation spots, that is, L = N/2 is initially a stable
fixed point. Later, the swarm achieves bigger neighborhood sizes (N > 4) and collectively
decides for one side as positive feedback prevails over negative feedback. Although bigger
clusters are more likely to persist than small clusters, a preferred neighborhood size ofN = 6
is established. The dynamics described by the vector field in Fig. 9 resembles that of the locust
system and, at some extent, supports our claims of generality concerning the fly-bottle effect.

4.3 Renormalization group theory, correlation length, and critical exponent

In the following, we discuss the potential of applying methods from renormalization group
theory to the study of spatial dynamics in collective decision-making system. These methods
provide, on the one hand, an additional point of view over the dynamics of neighborhood
size which can interestingly be seen as a time-independent scale transformation dynamics
inherent to majority decision-making processes. On the other hand, they allow to define and
detect the structure formation and criticality of these systems depending on the measure of
correlation lengths.

Renormalization group is a generally applicable method from physics (Fisher 1998).
The leading idea is to view systems at different scales and to define transformations that
map the system from scale to scale. Renormalization group can be seen as a divide-and-
conquer approach to decrease a system’s degrees of freedom (Sornette 2006, p. 53) in a
sequence of scale transformations. The underlying concept is that all (physical) systems are
recursively defined on sub-systems of lower scale. It is a valid approach for situations where
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scale invariance and self-similarity are appropriate assumptions for the investigated system.
Although renormalization group is mostly used in fields, such as particle physics, that are
seemingly unrelated to systems relevant for swarm intelligence, there are also applications
in closer fields, such as percolation and spin systems (Galam 1997). Sornette (2006, p. 291)
even assigns to renormalization group potential for designing large-scale systems:

renormalization group can be thought of as a construction scheme or ‘bottom-up’
approach to the understanding and even to the design of large-scale hierarchical struc-
tures.

Similar to our approach, Galam (2000) applies methods of renormalization group to analyze
a hierarchical decision-making system that is based on a local majority rule. However, in his
case the scale transformation is used to model the explicit scale structure of the investigated
system (voting in hierarchical structures). Here, we want to point to two ways of applying
renormalization group to the analysis of the locust system in the context of dynamic neighbor-
hood sizes. First, the dynamics of renormalization group for site percolation models shows
similarities to the dynamics generated by majority rules in systems from swarm intelligence.
Second, we apply methods of renormalization group to calculate critical exponents for the
correlation lengths of the investigated locust system.

Next, we follow the example of applying renormalization group methods to a site per-
colation model by Sornette (2006, p. 299) because it has a direct connection to our locust
system. The problem of site percolation is generally defined on a graph where each node has
a certain probability p to be occupied. The question to answer is whether there is a path of
occupied nodes that extends through the whole graph (spanning cluster). The different scales
are defined recursively by grouping certain nodes in a set which forms supersites.

The above-mentioned sequence of scale transformations is based on the so-called renor-
malization group flowmapϕ, which is repeatedly applied to the transformed system feature x :
x ′ = ϕ(x), x ′′ = ϕ(x ′), etc. Renormalization group requires the discretization of space.
Hence, one has to choose and define a lattice (triangular, square, pentagonal, etc.) which
in turn defines static neighborhoods. In the case of percolation, the lattice cells are either
occupied or unoccupied which is given by a probability p.

The next step is to define a flow map ϕ that implements the scale transformation. The
flow map has a crucial requirement as it has to preserve the key property under investigation.
In the case of percolation, we are interested in spanning clusters (i.e., a path from occupied
cells to neighboring occupied cells through the whole area). Our flow map needs to define
a mapping ϕ(p) = p′ that gives the true probability p′ that a spanning cluster exists within
the supersite (a supersite is the complement to a cell on the next scale level).

For site percolation on a triangular lattice, we can define supersites as composites of three
cells. We have a spanning cluster either if all three cells are occupied or if two cells are
occupied. Based on simple probability theory and combinatorics, we get

ϕ(p) = p′ = p3 + 3p2(1 − p). (16)

Writing it as change of p (i.e., ϕ(p) = p + Δp), we get

Δp = ϕ(p) − p = p3 + 3p2(1 − p) − p. (17)

See Fig. 10 for plots of Eqs. 16 and 17. ϕ(p) has three fixed points: unstable in p = 0.5 and
two stable points for p = 0 and p = 1. Therefore, the interpretation of the iterative scale
transformation process is that for larger scales the lattice gets either sparser (toward p = 0)
or denser (toward p = 1). Similar results with polynomials of higher degrees are obtained
for square and pentagonal lattices, etc.
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(a) (b)

Fig. 10 Plots of flow maps, a site percolation on a triangular lattice (Eq. 16) and b flow map as change in p
(Eq. 17)

4.3.1 Collective decision making as scale transformation

The connection between renormalization group and the locust system is the possibility to
decrease the system’s degrees of freedom by grouping agents in clusters. On the next higher
scale, these clusters are treated as if they were single agents. The idea is to group the agents
usefully such that clusters of agents forman analogy to supersites.On the next scale,we ignore
a number of details, such as distances between agents or noise, because we are averaging
agent properties over spatial intervals. Self-similarity is achieved by treating clusters as if
they were agents and by ignoring effects of noise.

A difference between the locust system and site percolation is that the topology matters
in site percolation because it is defined on paths. In contrast, the topology is irrelevant for
the locust system once the considered agents are mutually within perception range. This
difference between these two systems is, however, meaningless in the following because
the scale transformations for site percolation are typically defined in a way that allows to
ignore complex considerations about the underlying topology. Hence, the two systems can
be accessed via the same combinatorial approach, which is shown in the following.

In the case of the locust system, an agent is either a left-goer or a right-goer with the
current ratio or probability p = L/N and 1 − p = 1 − L/N , respectively. The flow
map implements the majority decision, that is, we calculate the probability p′ of having
a left-goer majority in the considered agent cluster with left-goer ratio p. If we consider
a cluster size of N = 3, then we get Eq. 16 which is identical to Eq. 8. For the change
of p, we get Eq.17 which gives a curve that corresponds to our measurements shown in
Figs. 4a and 7c but for a noise-free, absorbing system (Δp = 0 for p = 0 and p = 1, see
Fig. 10b). This allows for an intriguing interpretation of the locust system as a dynamic scale
transformation system. The idea is to abstract away time and to substitute it with a stepwise
scale transformation. This approach is in line with another interpretation of renormalization
group by Sornette (2006, p. 287): ‘renormalization group is nothing but a kind of dynamical
system in which time is replaced by scale.’ Our interpretation here is that the flow map for
percolation systems implements actually a majority decision rule. Hence, the dynamics in
scales of the iterative scale transformation and the dynamics in time of our locust system
show interesting similarities. In fact, they share their primary interpretation that the pressure
toward the two extremes (p = 0 and p = 1) is increasedwith increasing number of neighbors
(in the case of renormalization group, one can compare triangular lattices to square lattices,
square lattices to pentagonal lattices, etc.) and that the system considerably depends on
neighborhood sizes, which is also the major statement of this paper.
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4.3.2 Critical exponents and correlation length in collective decision making

In physics, the theory of critical phenomena investigates systems that approach ‘a state at
which the scale of correlations becomes unbounded’ (Amit 1984). A key insight of this theory
is that certain thermodynamic quantities across a number of different systems (e.g., solid-
state magnetism and percolation) diverge following power laws. The corresponding critical
exponents are determined, for example, by methods from renormalization group theory and
allow to compare properties of different systems. The definition of a critical temperature Tc is
common which defines the boundary between an unordered (T > Tc) and an ordered phase
(T < Tc).

In the following, wemake use of the concept of correlation lengths from statistical physics.
It is based on the definition of statistical correlations between random variables X . A pair
correlation function γ gives the correlation between spatially separated system features
depending on a distance r and a considered position R

γ (r) = corr(X (R), X (R + r)). (18)

For many relevant systems, the correlation function can be approximated by

γ (r) ≈ c1 + c0 exp(−r/ξ), (19)

for constants c0, c1 and correlation length scale ξ that normalizes the distance r . Using
the critical temperature, the corresponding power law for correlation length ξ and critical
exponent ν is defined by ξ ∝ |T − Tc|−ν , that is, the correlation length ξ is proportional to
the power of the temperature difference (the ‘distance’ to the critical temperature).

In most physical systems investigated with methods from renormalization group, the
topology is static or it is at least a valid simplification to assume a static topology. Examples
are bond percolation (Young and Stinchcombe 1975) and the Isingmodel (Kadanoff 1966). In
statistical mechanics, the correlation function is typically defined either directly on a regular
lattice or, in the case of real space, on a regular lattice that is introduced as a modeling
assumption. For the latter case, note a statement by Sornette (2006, p. 299): ‘there is no
unique prescription for renormalizing in real space and a considerable number of approximate
renormalization techniques have been developed, with varying degrees of success.’ Also for
the real-space case, a static topology and homogeneous densities are assumed. The locust
system, however, has inhomogeneous, dynamic densities and a dynamic topology in real
space. Hence, we have to test different methods that are able to deal with dynamic topologies.

Similarly to renormalization approaches in real space,we have defined and tested a number
of techniques to address the dynamic topologies. Three definitions of defining and measuring
a correlation function were tested: real distances,3 hop-counts as distances (i.e., minimal
number of required agents serving as relay stations for a supposedmulti-hop communication),
and lattices based on perception range (i.e., coarse-grained histogram in steps of multiples
of perception ranges r , 2r , 3r , etc.). The coarse-grained histogram gave best results.

An example of measured correlations in the Czirók model is given in Fig. 11a (swarm
size N = 351, system state L = 57, 106 samples). We measure the correlation γ between
agent states (depending on particle velocity which is classified in u � 0 and u > 0) and the
distances r between them following Eq. 18 (agent states define the random variable X ). A
correlation function γ is fitted following Eq. 19 and gives a correlation length of ξ ≈ 5.2.
However, finite-size effects of the ring-topology in the Czirók model introduce artifacts such
that the functions of the form exp(−x) are not always easily fitted. These finite-size effects

3 In terms of the actual implementation, real distances are represented by a fine-grained histogram.
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(a) (b)

Fig. 11 Measured correlations in the Czirókmodel, fitted correlation function γ , and correlation length ξ over
left-goer ratio L/N (106 samples). a Fitted correlation function, swarm size N = 351, system state L/N =
57/351 ≈ 0.16. b Correlation length ξ over left-goer ratio L/N for swarm sizes N ∈ {101, 151, 251, 351}

are reflected in the plots of the correlation length ξ as shown in Fig. 11b for different swarm
sizes (e.g., increased correlation length for L/N = 0.5, local optimum for L/N = 0.175 for
N = 351). In addition, rather big swarm sizes (N > 100) are required to obtain exploitable
data. The correlation length diverges for the critical system states L/N ≈ 0.15 and L/N ≈
0.85 as expected (cf. P(L → L + 1) = 0.5 in Fig. 7c). Hence, we can define, as analogy,
two critical temperatures T 1

c ≈ 0.15 and, in full symmetry, T 2
c ≈ 0.85. For T 1

c ≈ 0.15
and T = L/N < 0.5, we find by fitting a critical exponent of ν ≈ 0.49 for the power law
ξ ∝ |T − Tc|−ν .

These two critical points correspond to the left-goer ratios of the lock-in states. The critical
exponent is an alternative method to the left-goer edge ratio that describes the influence of
not-well-mixed agent distributions and the emerging correlations between agent positions
and agent states. In particular, it gives a mathematically accessible representation of the
qualitative difference between lock-in states and any other states.

5 Discussion and conclusion

This paper started from the finding of earlier publications (Hamann 2012, 2013b) that, in
swarm systems, positive feedback builds up in a transient phase independently of the order
parameter (here L) until maximal positive feedback is reached. The independence of this
phenomenon from the order parameter indicates the existence of a second feature that controls
the increase in positive feedback. In the case of the locust system, we identify the average
size of agents’ neighborhoods as this second feature and, in addition, we detect the relevance
of other spatial features such as the correlation length and the edge ratio. We extended the
Markov chain approach introduced in (Hamann 2012, 2013b) to model the second state
variable and therefore to count both left-goers (order parameter) and average neighborhood
size (secondary feature). Although it was necessary to consider the original spatial features
of the locust scenario, we extended the urn model concept (Hamann 2012, 2013b) to emulate
spatiality, particularly, neighborhood size and edge ratio.

What we call the fly-bottle effect was introduced to describe the general dynamics in
these two-dimensional models. The fly-bottle effect relies on a second feature that serves
as a kick starter for the whole system by initiating short-range correlations first which can
then be leveraged to increase the overall order in the system. The fly-bottle effect seems
to have a certain generality in swarm systems. Indeed, the increase in positive feedback
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during a transient phase was also reported for other systems such as density classification
and aggregation controlled by BEECLUST (Hamann 2012, 2013b). For the BEECLUST
system, we have shown the respective vector field for neighborhood size as second feature.
Indeed, it shows qualitatively similar dynamics as in the locust system.

An additional interpretation of the fly-bottle effect with reference to Fig. 3 is that the
secondary feature is generating only short-ranged correlations early on but not global cor-
relations. These short-ranged correlations seem to be side-effects, such as small clusters of
agents in the investigated locust scenario. The long-range correlations seen later in the system
are then an effect of the primary feature (here L) and probably could neither be generated by
the one or the other feature alone. The qualitative difference between system states of low
order (for the locust system: 0.25 < L < 0.75) and of high order (for the locust system:
L < 0.25, L > 0.75) is also proven by the measured correlation length using methods of
renormalization group.

The similarities between a renormalization group approach to percolation and collective
decision-making systems based on a local majority rule point to general concepts that are
also contained in the fly-bottle effect. While the fly-bottle effect focuses on the temporal
dynamics, the scale transformation of the percolation system establishes a time-independent
hierarchy. On lower scales, small clusters of opinions are formed that help to establish order
on higher scales by merging small clusters into bigger clusters. The influence of bigger
neighborhood sizes can also be interpreted in the framework of renormalization group by
comparing lattices of different node degrees (triangular, square, pentagonal, etc.).

Future research work will focus on the questions whether the fly-bottle effect is generally
observed in swarm systems and, if so, whether it can be used to design swarm behaviors for
artificial swarm systems.
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