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Abstract The performance of optimization algorithms, including those based on swarm in-
telligence, depends on the values assigned to their parameters. To obtain high performance,
these parameters must be fine-tuned. Since many parameters can take real values or integer
values from a large domain, it is often possible to treat the tuning problem as a continuous
optimization problem. In this article, we study the performance of a number of prominent
continuous optimization algorithms for parameter tuning using various case studies from
the swarm intelligence literature. The continuous optimization algorithms that we study are
enhanced to handle the stochastic nature of the tuning problem. In particular, we introduce
a new post-selection mechanism that uses F-Race in the final phase of the tuning process to
select the best among elite parameter configurations. We also examine the parameter space
of the swarm intelligence algorithms that we consider in our study, and we show that by
fine-tuning their parameters one can obtain substantial improvements over default configu-
rations.
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1 Introduction

Swarm intelligence algorithms such as ant colony optimization (ACO) (Dorigo et al. 1996,
2006; Dorigo and Stützle 2004; Dorigo 2007) and particle swarm optimization (PSO)
(Kennedy and Eberhart 1995; Kennedy et al. 2001; Clerc 2006) are well-established op-
timization techniques. Their performance, either measured by the quality of the solution
obtained in a fixed computation time, or by the computation time needed to find a solution
of a certain desired quality, strongly depends on the values assigned to their parameters.
Finding parameter values that optimize algorithm performance is itself a difficult optimiza-
tion problem (Birattari et al. 2002; Birattari 2009) that has to be tackled with an appropriate
automated tuning procedure.

Significant attention is currently being devoted to the offline tuning of algorithms (Bi-
rattari 2009). Offline tuning concerns the determination of optimal parameter values be-
fore the algorithm is deployed. Various offline tuning methods have recently been pro-
posed. Some of them, such as CALIBRA (Adenso-Díaz and Laguna 2006), SPO (Bartz-
Beielstein 2006) and SPO+ (Hutter et al. 2009a), have been designed for tuning nu-
merical parameters only. Others, such as F-Race (Birattari et al. 2002), iterated F-Race
(Birattari et al. 2010), ParamILS (Hutter et al. 2009b), genetic programming (Oltean 2005;
Fukunaga 2008), REVAC (Nannen and Eiben 2007), and gender-based genetic algorithms
(Ansótegui et al. 2009), are able to also tune categorical parameters including, for exam-
ple, the choice among different constructive approaches to be used in ACO, or the choice of
crossover operators in evolutionary algorithms. The aforementioned methods have produced
good results and, for many optimization algorithms, they have found parameter values that
improve over the parameter values originally proposed by the designers of the algorithms.

For tuning numerical parameters, a promising alternative is to treat the offline tuning
problem as a stochastic continuous optimization problem and to apply continuous optimiza-
tion techniques to it (Yuan et al. 2010a). In this paper, we follow this direction. In particu-
lar, we use state-of-the-art continuous optimization algorithms and we enhance them with
mechanisms for handling the stochasticity of the offline tuning problem. We consider tuning
both, real parameters, such as the acceleration coefficients in PSO algorithms, and integer
parameters, such as the colony size in ACO algorithms. When tuning integer parameters,
the values returned by the continuous optimizers are rounded to the nearest integer, which
is a reasonable approach if the domain of an integer parameter is large.

This paper is structured as follows. Section 2 gives a short overview of the offline tuning
problem and Sect. 3 describes the continuous optimization algorithms we use as tuning al-
gorithms. The tuning problems that we consider are introduced in Sect. 4. The experimental
setup and the results are discussed in Sect. 5. Section 6 analyses the parameter space of the
tuning problems considered, and Sect. 7 concludes the paper.

2 Offline tuning of optimization algorithms

The problem of tuning algorithms offline (tuning problem for short) comprises an optimiza-
tion algorithm with parameters that are to be set to appropriate values, and an application
problem that is to be solved by the given optimization algorithm. By parameter configura-
tion (configuration for short) we refer to a setting of all the parameters of the optimization
algorithm to be tuned. The objective of the tuning problem is to find a configuration of the
optimization algorithm that results in the best possible performance on the considered ap-
plication problem for unseen problem instances. For finding such a performance-optimizing
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Fig. 1 A tuning problem consists of an optimization algorithm to be tuned, and an application problem that
is to be solved by this optimization algorithm. The goal is to optimize the performance of the optimization
algorithm on (unseen instances of) the application problem. A tuning algorithm for addressing the tuning
problem usually consists of a sampling algorithm that generates candidate parameter configurations, and
a stochasticity handling technique that deals with the stochasticity during the evaluation of the parameter
configurations

configuration, a tuning algorithm (tuner for short) can be applied. Such a tuning algorithm
consists of a sampling algorithm that generates candidate parameter configurations and a
way to handle the stochasticity of the tuning problem. The overall tuning process is illus-
trated in Fig. 1.

An important aspect of the tuning problem is that it is stochastic. The stochasticity of
the tuning problem is due to the randomness of the optimization algorithm to be tuned and
the fact that it is not known at tuning time which specific instances will be solved in the
future. The objective of the tuning problem is to optimize the expected performance of the
underlying optimization algorithm with respect to the possible instances it will tackle. The
performance expectation cannot be computed analytically, and has therefore to be estimated
in a Monte Carlo fashion. For a more formal and precise definition of the tuning problem,
the interested reader is referred to Birattari (2009).

In this article, the goal is to evaluate the quality of tuners. The evaluation of a tuner is
divided into two phases, namely the tuning phase and the testing phase. In the tuning phase,
a configuration θ̄ of the optimization algorithm to be tuned is selected based on a set of
training instances of the application problem. The quality of θ̄ is then assessed during the
testing phase based on the set of test instances of the application problem. The evaluation on
an independent test set is crucial, since the algorithm configurations should perform well on
the unseen future instances; in other words, the algorithm configuration should generalize
(Birattari et al. 2006).

3 Tuning algorithms

As stated in Sect. 2, a tuning algorithm is composed of a sampling algorithm and a stochas-
ticity handling method. In what follows, we describe the possible choices we have consid-
ered in this article for these two components.

3.1 Sampling algorithms

In this study, only real-valued parameters or integer parameters with a large domain are con-
sidered. In this case, the tuning problem can be cast in terms of a continuous optimization
problem if integer parameters with a large domain are handled by rounding. We therefore
consider state-of-the-art black-box continuous optimization algorithms as sampling algo-
rithms. The five continuous optimization algorithms we consider are taken from the litera-
ture on mathematical optimization and evolutionary computation.
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3.1.1 Bound optimization by quadratic approximation (BOBYQA)

BOBYQA (Powell 2009) is a model-based trust-region algorithm for derivative-free op-
timization. It extends the NEWUOA algorithm (Powell 2006) by enabling it to handle
bound constraints. At each iteration, on the basis of m sample points, BOBYQA identifies
a quadratic model that covers the current trust region. BOBYQA first determines the point
that minimizes the quadratic model; then, the actual value of this point is determined by di-
rect evaluation; finally, the model is refined by considering the actual value of the generated
point. If in these steps a new best point is found, the center of the trust region is moved to
this point and the radius of the region is enlarged; otherwise, if the new point is not the best,
the radius of the trust region is reduced. For identifying the quadratic model, it is recom-
mended that m = 2d + 1 points are used (Powell 2009), where d denotes the dimensionality
of the search space. NEWUOA (BOBYQA without bound constraints) is considered to be a
state-of-the-art algorithm for derivative-free continuous optimization (Auger et al. 2009).

3.1.2 Mesh adaptive direct search (MADS)

MADS (Audet and Dennis 2006) is a mesh-based direct search algorithm that systematically
adapts the mesh coarseness, the search radius, and the search direction. At each iteration,
a number of points lying on a mesh are sampled. If a new best point is found, the mesh
center is moved to this point, the mesh is made coarser, and the search radius is increased;
otherwise, the mesh is made finer and the search radius is reduced. MADS extends the
generalized pattern search methods (Torczon 1997) by a more extensive exploration of the
variable space. For example, it allows sampling of mesh points that are at different distances
from the incumbent point, and sampling from possibly infinitely many search directions.

3.1.3 Covariance matrix adaptation evolution strategy (CMAES)

CMAES (Hansen 2006) is a (μ,λ) evolutionary strategy algorithm: at each iteration, λ off-
spring points are generated by the μ elite parent points. In CMAES, the offspring are sam-
pled from a multivariate Gaussian distribution. The center of this distribution is a linear
combination of the elite parent points. The covariance matrix of the distribution is auto-
matically adapted by taking into account the search trajectory in order to better predict the
influence of the variables and their interactions. CMAES is considered to be a state-of-the-
art evolutionary algorithm (Auger et al. 2009).

The default CMAES is further improved here by using a uniform random sampling in
the first iteration, instead of a biased Gaussian distribution sampling. The best uniformly
sampled point will serve as a starting point for CMAES. This modification results in sta-
tistically significant improvements in our experiments, especially when the total number of
points sampled in a run of CMAES is small, which is usually the case in tuning problems.

3.1.4 Uniform random and iterated random sampling (URS & IRS)

URS and IRS are used as a baseline for the assessment of other tuning algorithms. They are
the sampling methods that are used in two tuners, known as F-Race(RSD) and I/F-Race (Bi-
rattari et al. 2010), respectively. URS samples a given space uniformly at random, while
IRS has a mechanism to focus the search on promising regions. IRS is a model-based
optimization algorithm (Zlochin et al. 2004). As in I/F-Race, in IRS we keep a list of
2 + round(log2 d) best points, where d is the dimension of the search space. At each it-
eration, a set of new points are generated around these best points. Each newly generated
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point is sampled from a Gaussian distribution centered at one of the best points, and the
standard deviation decreases over time in order to force convergence of the search around
the best points. The list of the best points is updated after each iteration by considering the
new best points.

3.2 Handling stochasticity

Handling stochasticity is an important aspect in the tuning problem. There are two sources of
stochasticity: the randomized nature of the optimization algorithm being tuned, and the sam-
pling of the instances of the application problem. We considered the following two mecha-
nisms to deal with the stochasticity of the tuning problem.

3.2.1 Repeated evaluation

The most straightforward approach is to evaluate the objective function more than once and
return the average value as an estimate of the expected value. Here, nr refers to the number
of repetitions of the objective function evaluation. The advantages of this approach are that
it is simple and that the confidence in the estimate can be expressed as a function of nr.
We tested repeated evaluation with all sampling methods using different values of nr. The
main disadvantage of this technique is that it is blind to the actual quality of the parameter
configurations being re-evaluated.

3.2.2 F-Race

F-Race is a technique aimed at making a more efficient use of computational power than
done by repeated evaluation. Given a set of parameter configurations, the goal of F-Race is
to select the best one. F-Race does so by evaluating the configurations instance-by-instance
and by eliminating inferior configurations from consideration as soon as statistical evidence
is gathered against them. The early elimination of statistically inferior configurations focuses
computational resources on the more promising ones. F-Race terminates when either only
one configuration remains, or a predefined computational budget is reached. The elimination
mechanism of F-Race is independent of the composition of the initial set of parameter con-
figurations. It is thus possible to integrate F-Race with any sampling method that requires
selecting the best configurations from a given set.

3.3 Tuners

In the context of the tuning problem, a point sampled by a sampling algorithm corresponds
to a parameter configuration of the underlying optimization algorithm being tuned. Since the
evaluation of each point is stochastic (see Sect. 2), a sampling algorithm should be combined
with a stochasticity handling technique to form a tuner. From the possible combinations of
the five sampling algorithms and the two ways of handling stochasticity, we can obtain a
number of tuners. Repeated evaluation can be combined with any of the five sampling al-
gorithms. URS, IRS, MADS, and CMAES can also be combined in a rather straightforward
way with F-Race. For BOBYQA, however, the combination with F-Race is not feasible be-
cause (i) BOBYQA generates one single configuration per iteration and therefore it does
not need to select the best out of a set; and (ii) the numerical evaluations of each configu-
ration are used in the identification of the quadratic model. Thus, BOBYQA requires that
each configuration is evaluated using the same instances. As a result, we have nine possible
tuners.
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4 Benchmark tuning problems

In order to compare the performance of the tuners described in Sect. 3, we devised two sets
of case studies. One set of case studies is obtained by considering the application of an ACO
algorithm to the traveling salesman problem (TSP); another set of case studies is obtained
by considering a PSO algorithm applied to continuous optimization.

4.1 Ant colony optimization—traveling salesman problem

As first set of case studies, we have chosen MAX –MI N Ant System (MMAS) (Stützle
and Hoos 2000), one of the most successful ACO algorithms, as the optimization algorithm
to be tuned. The application problem being addressed is the TSP. In the TSP, one is given a
graph G = (V ,A), where V is the set of nodes and A is the set of arcs that fully connect the
graph. Each arc (i, j) has associated a cost dij . The goal of the TSP is to find a minimum
cost Hamiltonian cycle on the given graph G.

MMAS is an iterative algorithm in which a colony of m ants is deployed to construct
solutions during each iteration. Initially, each ant is placed on a randomly chosen node. At
each step of the solution construction, an ant k at node i stochastically selects the next node
j to go to. The stochastic choice is biased by two factors: the pheromone trail value τij (t),
where t is the iteration counter, and the locally available heuristic information ηij , which in
the TSP case is set to ηij = 1/dij . An ant k located at node i selects to go to node j with
probability

pk
ij (t) =

⎧
⎨

⎩

[τij (t)]α ·[ηij ]β
∑

l∈N k
i

[τil (t)]α ·[ηil ]β , if j ∈ N k
i ,

0, otherwise,
(1)

where N k
i denotes the set of nodes ant k can move to from node i, and α and β are parame-

ters that control the relative influence of pheromone trails and heuristic information, respec-
tively. At the end of each iteration, on each arc (i, j) the pheromone trails are updated by

τij (t + 1) = (1 − ρ) · τij (t) + Δτ best
ij (t), (2)

where ρ, 0 < ρ ≤ 1, denotes the fraction of pheromone that is evaporated. In MMAS,
only one ant is allowed to deposit pheromone at each iteration, being either the ant with the
best solution generated so far, the ant with the best solution since a re-initialization of the
pheromone trails, or the ant with the best solution that was generated in the current iteration.
The amount of pheromone deposited is set to

Δτ best
ij (t) =

{
1/f (sbest(t)), if (i, j) is used by the best ant in iteration t,

0, otherwise,
(3)

where f (sbest(t)) denotes the solution cost of solution sbest(t). One of the most important
features that distinguishes MMAS from other ACO algorithms is the use of a maximum
and minimum bound on the pheromone trail values, τmin � τij � τmax, to avoid search stag-
nation. The maximum pheromone trail is set to

τmax = 1

ρ · f (sgb(t))
, (4)
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Table 1 Range and default value of each parameter of M MAS that we tuned

Parameter α β ρ m γ nn q0

Range [0.0,5.0] [0.0,10.0] [0.0,1.00] [1,1200] [0.01,5.00] [5,100] [0.0,1.0]
Default 1.0 2.0 0.5 25 2.0 20 0

Table 2 Parameters that we
tuned in each case study of
M MAS. We have studied the
tuning problem with two to six
parameters to be tuned. There are
three case studies for each
number of parameters from two
to six. Hence, there are 15 case
studies in total

#parameters

2 α β ρ m γ nn

3 α β m β ρ nn ρ γ nn

4 α β ρ m α β γ nn ρ m γ nn

5 α β ρ m nn α β ρ m γ α β m γ nn

6 α β ρ m γ nn α β ρ m γ q0 α β ρ m nn q0

where f (sgb(t)) denotes the solution cost of the global best solution, which will be updated
at every iteration. The initial pheromone trail is set to the upper bound τ0 = τmax, where
f (sgb(0)) in (4) is determined by a simple estimation. The lower bound is set to

τmin = τmax

γ · n, (5)

where n is the dimension of the problem, which in the TSP is given by the number of nodes,
and γ is a parameter. Another parameter when applying MMAS to the TSP is nn, which
determines the size of each node’s candidate list (Stützle and Hoos 2000), from which the
next node is selected.

We have also studied the pseudo-random proportional action choice rule (Dorigo and
Gambardella 1997) in MMAS, as this is shown to be promising in Stützle and Hoos (1998).
Here, with probability q0, 0 ≤ q0 < 1, the ant deterministically chooses as the next node j

the node for which [τij (t)]α · [ηij ]β is maximal; with probability 1 − q0, the ant probabilis-
tically chooses the next node according to (1).

The range and the default values of the seven studied parameters are listed in Table 1.
The default values that we adopted are suggested by the ACOTSP software (Stützle 2002).1

We have defined three case studies for each number d ∈ {2,3,4,5,6} of parameters to be
tuned, resulting in 3 × 5 = 15 case studies. The parameters that were tuned in each of the
case studies are listed in Table 2. In each of the case studies, the parameters that were not
tuned were fixed to their default values (see Table 1). The goal of each case study was to
find a parameter configuration such that MMAS performed well on the TSP within a given
time limit, which was set in our experiments to five seconds.

Note that local search is not applied in this study. It is widely recognized that the hybrid
with local search is essential in obtaining high performing ACO algorithms (Dorigo and
Stützle 2004). However, a previous study (Yuan et al. 2010b) has also shown that, when in-
corporating local search in ACO algorithms, the landscape of the parameter space becomes

1Dorigo and Stützle (2004) proposed ρ = 0.02 and m = n as a default parameter setting for M MAS. For
TSP instances in the range of the instance size we use, Stützle (1999) uses the parameter setting ρ = 0.04 and
m = n/2. We experimentally compared these two proposed settings with the default setting of the ACOTSP
software, and adopted the one suggested by the ACOTSP software as default for this study because, in our
context, it resulted in significantly better performance than the other two settings.
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rather flat. Therefore, the algorithm performance becomes relatively insensitive to the pa-
rameters, which makes it not an ideal testbed for studying tuning algorithms.

The TSP instances were generated by the DIMACS instance generator (Johnson et al.
2001). All instances are Euclidean TSP instances with 750 nodes, where the nodes are uni-
formly distributed in a square of side length 10 000. 1 000 such instances are generated for
the tuning phase, and 300 for the testing phase.

4.2 Particle swarm optimization—Rastrigin functions

As the second set of case studies we have chosen the constricted PSO (cPSO) algorithm
(Clerc and Kennedy 2002), a prominent PSO algorithm, as the optimization algorithm to be
tuned. The application problems considered here are a family of functions derived from the
Rastrigin function, a well-known benchmark function in continuous optimization; details on
the family of functions are provided below.

In PSO algorithms, a population of simple agents, called particles, moves in the domain
of an objective function f : Θ ∈ Rn, where n is the number of variables to optimize. Each
particle i at iteration t has three vectors associated with it:

1. Current position, denoted by xt
i : This vector stores the latest candidate solution generated

by the particle.
2. Velocity, denoted by vt

i : This vector represents the particle’s search direction.
3. Personal best position, denoted by bt

i : This vector stores the best solution found by the
particle since the beginning of the algorithm’s execution.

In addition, a neighborhood relation is defined among the particles through a population
topology (Kennedy and Mendes 2006; Dorigo et al. 2008), which can be thought of as a
graph in which nodes represent particles, and edges represent neighbor relations. The be-
havior of particles in PSO algorithms is usually influenced by the best neighbor; in the fol-
lowing, n(i) gives the index of the best neighbor of particle i. Figure 2 shows four topologies
with different levels of connectivity for a swarm of nine particles. These topologies are spec-
ified by a parameter called neighborhood radius, which is the number of particles on each
side of a particle if the particles are arranged as in the figure. The radius parameter takes
values in the range [1, �N/2�], where N is the size of the swarm. If the radius is equal to
one, the resulting topology is known as a ring topology, and if the radius is equal to �N/2�,
the topology is fully connected.

In the particular PSO variant we use here, the constricted PSO, a particle i moves inde-
pendently for each dimension j using the following rules:

vt+1
ij ← χ

(
vt

ij + φ1U1

(
bt

ij − xt
ij

) + φ2U2

(
bt

n(i)j − xt
ij

))
, (6)

and

xt+1
ij ← xt

ij + vt+1
ij , (7)

where χ is a parameter called constriction factor, φ1 and φ2 are two parameters called
acceleration coefficients, and U1 and U2 are two independent, random numbers uniformly
distributed in the range [0,1).

Five parameters are considered in this study, namely, χ , φ1, φ2, N , and the neighborhood
radius. The actual range of the neighborhood radius depends on the value taken by N . Thus,
we introduce a parameter p that maps linearly the continuous range [0,1] into the range
[1, �N/2�]. More details about the parameters used in the experiments are listed in Table 3.
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Fig. 2 Examples of population
topologies with different
connectivity degrees, resulting
from neighborhoods of different
size. In (a), radius = 1, in (b),
radius = 2, in (c), radius = 3, and
in (d), radius = 4

Table 3 Range and the default
value of each parameter of cPSO
that we tuned

Parameter χ φ1 φ2 N p

Range [0.0,1.0] [0.0,4.0] [0.0,4.0] [4,1000] [0.0,1.0]
Default 0.729 2.05 2.05 30 1

Table 4 Parameters that we tuned in each case study of cPSO. We have studied the tuning problem with two
to five parameters to be tuned. There are three case studies for two, three, and four parameters, and one case
study for five parameters. Hence, there are 10 case studies in total

#parameters

2 χ φ1 φ1 φ2 N p

3 χ φ1 φ2 φ1 φ2 N χ N p

4 χ φ1 φ2 N χ φ1 φ2 p φ1 φ2 N p

5 χ φ1 φ2 N p

The default values of the parameters were set as suggested by Poli et al. (2007). Each run
is stopped after 105 function evaluations. Similar to what we did in Sect. 4.1, we generated
three case studies for each number of parameters d ∈ {2,3,4}, and one for d = 5. Thus, in
total 3 × 3 + 1 = 10 case studies were defined. The parameters that were tuned in each of
the case studies are listed in Table 4. In each case study, the parameters that were not tuned
were fixed to their default values (see Table 3).

For all the experiments, the cPSO algorithm was applied to a family of functions derived
from the Rastrigin function: nA + ∑n

i=1 (x2
i − A cos(ωxi)). The difficulty of this function

can be adjusted by changing the values of the parameters n, A, and ω. In our experiments,
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we set ω = 2π , and we varied the amplitude A to obtain functions with different fitness
distance correlations (FDC) (Jones and Forrest 1995). We sampled the amplitude A from
a normal distribution with mean equal to 10.60171 and standard deviation equal to 2.75.
These values approximately map to a normally distributed FDC with a mean of 0.7 and a
standard deviation of 0.1. The FDC was estimated using 104 uniformly distributed random
samples over the search range. Other settings are the search range and the dimensionality n

of the problem, which are set to [−5.12,5.12]n and n = 100, respectively. A total of 1 000
instances were generated for tuning and another 1 000 instances for testing.

5 Experiments

This section reports the results of the experiments we ran to compare the tuners. Before
presenting the results, we provide some information on the experimental setup.

5.1 Experimental setup

For the tuners that are obtained by combining the sampling algorithms with repeated eval-
uation, an appropriate number nr of repeated evaluations needs to be chosen. In our exper-
iments, we consider four levels with nr ∈ {5,10,20,40}. This choice is made following the
study in Yuan et al. (2010b), where the sampling algorithm MADS is used as a tuner. The
results showed that the best nr value differed a lot from problem to problem, and ranged
from 5 to 40. For F-Race, the default version as described by Birattari (2009) is used.

In our experiments, all parameters are tuned with a precision of two significant digits.
This was done by rounding each sampled value. This choice was made because we observed
during experimentation that reserving two significant digits in the tuning phase leads to
the highest performance of the tuned algorithms. To avoid re-evaluating a same algorithm
configuration on a same instance, we store historical evaluation results in an archive. If the
same algorithm configuration is sampled again, the results on the evaluated instances are
read from the archive instead of rerunning the optimization algorithm.

For each of the 25 case studies mentioned in Sect. 4, we run the tuners with four different
levels of the tuning budget. By tuning budget we mean the maximum number of times that
the underlying optimization algorithm can be run during the tuning phase. Let d be the
number of parameters to be tuned. The minimum level of the tuning budget is chosen to be
B1 = 40 · (2d + 2), which results in a budget B1 = 240 when d = 2. The setting of B1 is
chosen in this way since BOBYQA needs at least 2d + 1 points to make the first quadratic
interpolation, and this setting guarantees that BOBYQA with nr = 40 can make at least one
quadratic interpolation guess. The other three levels of tuning budget are Bi = 2i−1 · B1, i =
2,3,4, thus doubling the budget from level to level.

Each tuner runs 10 trials on each of the four budget levels of each case study. Each trial
is an execution of a tuning phase followed by a testing phase. In the testing phase, the final
parameter configuration selected in the tuning phase is assessed on a set of test instances.

For the purpose of reducing experimental variance, we adopted the technique of com-
mon random instance order and common random seed: in each trial, a fixed random order
of the tuning instances is used; additionally, each instance in each trial is assigned a ran-
dom number, which serves as the common random seed each time this instance is used for
evaluation.

The tuners are compared statistically based on the performance the optimization algo-
rithms reach using the tuned configurations on the test instances. The test results of each
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tuner are compared with each other using the pairwise Wilcoxon signed rank test with
blocking on each instance. In case of multiple comparisons, Holm’s adjustment is used for
multiple test correction.

The experiments were carried out on computers equipped with two quad-core XEON
E5410 CPUs running at 2.33 GHz with 2 × 6 MB second level cache and 8 GB RAM.
Only one CPU core was used for each run due to the sequential implementation of both the
ACOTSP software and the PSO code. The computers run under Cluster Rocks Linux version
5.3/CentOS 5.3. The ACOTSP and PSO programs were compiled using gcc-4.1.2-46.

5.2 Restart mechanism of the tuning algorithms

5.2.1 Basic restart mechanism

In our experiments, three sampling algorithms, CMAES, MADS and BOBYQA, are ex-
tended by a restart mechanism. The restart is triggered whenever stagnation is detected.
Stagnation can be detected when the search coarseness of the mesh or the trust-region ra-
dius drops to a very low level; for example, below the adopted precision (here, two signifi-
cant digits). Considering the number of restarts, it is important to mention that the speed of
convergence of the three algorithms is very different. BOBYQA converges much faster than
MADS, and MADS, in turn, much faster than CMAES. In fact, faster convergence also leads
to a higher number of restarts and, thus, the different algorithms may benefit differently from
the possibility of restarting.

One issue about the restart mechanism is how to choose the initial point of each restart.
In our experiments, each restart begins from a uniformly randomly sampled point in the
parameter space. Other initial points could be taken into account as well. For example, we
have tried restarting the algorithms from the best configuration found so far; however, this
led to statistically significantly worse results.

Next, we studied what is the appropriate value of nr for the tuners that use a restart
mechanism. This study was carried out on eight case studies from MMAS. As the tuners
we chose BOBYQA and MADS, since they converge the fastest and, hence, have the largest
number of restarts. The comparison of the ranks obtained using four nr settings for the basic
restart mechanism, namely nr ∈ {5,10,20,40}, across the eight case studies is shown in
the left four boxplots in each of the two plots of Fig. 3. Each of these boxplots gives the
distribution of the ranks of a tuner according to its average performance in each case study
at each tuning budget level. It is shown that nr = 10 appears to be the best setting for both
BOBYQA and MADS, followed by nr = 5,20,40.

5.2.2 Restart mechanism with post-selection by F-Race

In the basic restart mechanism, the best setting of nr is relatively small, 10 followed by 5.
In such cases, the global best configuration is identified among all the best configurations
obtained at each restart by only a small number of evaluations. The small number of eval-
uations might make the selection unreliable, leading to the danger of over-tuning (Birattari
2009). To avoid this, we propose a restart mechanism with post-selection by F-Race to select
the best of the restart best configurations.

The post-selection works as follows. Each restart best configuration is stored, and in
the post-selection the best of all restart best configurations is selected by F-Race. The tun-
ing budget reserved for the post-selection F-Race is ωpost times the number of restart best
configurations. The factor ωpost in the repeated evaluation experiments is determined by
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Fig. 3 Ranking comparisons of different settings for the tuners based on BOBYQA (left) and MADS (right).
Each plot shows eight different tuners of two restart versions: without post-selection (the left four plots
dubbed “B” or “M” for BOBYQA or MADS respectively) or with post-selection by F-Race (the right four
plots dubbed “BP” or “MP” for BOBYQA or MADS, respectively). Each version includes four levels of nr
values, that is, the number of evaluations at each sampling point; the four levels are 5,10,20,40. Restart with
post-selection F-Race and nr = 5 turned out to be the best setting

ωpost = max{5, (20 − nr)}. In the post-selection F-Race, we start the Friedman test for dis-
carding candidates from only the max{10,nr}th instance, instead of five as in the default
F-Race setting; this helps to make the selection more conservative.

We tested post-selection F-Race on tuners BOBYQA and MADS, and compared it with
the basic restart mechanism in the same eight case studies of MMAS as used in Sect. 5.2.1.
The results with post-selection F-Race for tuners BOBYQA and MADS are shown in the
right four boxplots in each of the two plots of Fig. 3. The performance of the restart mecha-
nism with post-selection F-Race and nr = 5 is statistically significantly better than all other
settings for both, MADS and BOBYQA. Thus, it is the method of choice.

5.3 Combination of F-Race with the sampling algorithms

Next, we examine the performance of the tuners that are obtained by combining the sampling
algorithms IRS, URS, MADS and CMAES directly with F-race (see Sect. 3). Recall that the
F-Race hybrid with BOBYQA is not feasible, as explained in Sect. 3. Before presenting the
results, we discuss some design issues for the combination with F-Race.

5.3.1 F-Race(RSD) and I/F-Race

As explained in Sect. 3.1, URS and IRS are the sampling methods of F-Race(RSD) and I/F-
Race (Birattari et al. 2010), respectively. However, F-Race(RSD) and I/F-Rase were never
compared to the sampling methods with a fixed number of evaluations and this article fills
the gap. The results of this comparison are shown in Fig. 4. The comparison of F-Race(RSD)
and URS with fixed number of evaluations nr ∈ {5,10,20,40} is shown in the first row; the
comparison of I/F-Race and IRS with fixed number of evaluations is shown in the second
row. These results confirm that the sampling methods IRS and URS are better combined
with F-race than using a fixed number of evaluations.

5.3.2 MADS/F-Race and the incumbent protection mechanism

MADS/F-Race (Yuan et al. 2010b) uses F-Race to identify the incumbent point among the
old incumbent point and the new sample points in each MADS iteration. The basic version of
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Fig. 4 Ranking comparisons of two settings of tuners, direct hybrid with F-Race and the fixed number of
evaluations, on two sampling algorithms, namely, URS (first row) and IRS (second row). The left column
shows comparisons across 15 case studies of M MAS, and the right column shows comparisons across 10
case studies of cPSO. In each plot, the leftmost box shows the tuner using the direct hybrid with F-Race,
namely, F-Race(RSD) or I/F-Race (indicated with UFRACE and IFRACE respectively in the plots); and the
other four boxes show the tuners using a fixed number of evaluations nr ∈ {5,10,20,40}

MADS/F-Race is extended here with an incumbent protection mechanism, which is inspired
by the intensification mechanism used in SPO+ (Hutter et al. 2009a). In each iteration,
if an incumbent p∗ that has been evaluated on N∗ instances would be eliminated in F-
Race by another point p with n < N∗ instances, we keep p∗ in the race and double the
number of evaluated instances n := min(2n,N∗). This is done until either the new point p

is eliminated from the race, or n reaches N∗. Then we free the protection and continue the
race normally. The incumbent protection mechanism is done to avoid the incumbent being
eliminated by some inferior but “lucky” point with few evaluations. Experimental results
show that MADS/F-Race with the incumbent protection mechanism results in a statistically
significant improvement over the basic MADS/F-Race.

5.3.3 CMAES/F-Race

CMAES is a (μ,λ) evolutionary strategy. F-Race can be integrated in each iteration to select
μ elite points out of λ points. The race stops when either at most μ points survive, or a
budget of 10 × λ evaluations has been reached. In order to keep track of the best-so-far
point, the best point of each iteration is stored, and a post-selection phase is implemented
using F-Race to identify the global best point from the iteration best points. The setting of
post-selection is the same as described in Sect. 5.2.2 by assigning nr = 5.
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Fig. 5 Ranking comparisons of two settings of tuners, direct hybrid with F-Race and the restart with
post-selection F-Race, on two sampling algorithms, namely, MADS (first row) and CMAES (second row). The
left column shows comparisons across 15 case studies of M MAS, and the right column shows comparisons
across 10 case studies of cPSO. In each plot, the leftmost box shows the tuner using the direct hybrid with
F-Race, namely, MADS/F-Race or CMAES/F-Race (indicated with MFRACE and CFRACE respectively in
the plots); and the other four boxes show the tuners using post-selection F-Race with nr ∈ {5,10,20,40}

5.3.4 Comparisons of F-Race hybrids to restart with post-selection F-Race

In Fig. 5, the direct F-Race hybrids are compared with their corresponding post-selection
F-Race on two sampling algorithms, namely, MADS in the first row and CMAES in the
second row. Each plot on the left column shows the ranking comparisons across 15 case
studies of MMAS, and each plot on the right shows comparisons across 10 case studies
of cPSO. Firstly, in all plots, the direct hybrid F-Race significantly outperforms restart with
post-selection and nr ∈ {10,20,40}. Comparing the F-Race hybrid to the restart with post-
selection and nr = 5, MADS/F-Race performs slightly, yet statistically significantly worse
than MADS with post-selection. In the case of CMAES, the performance of CMAES/F-
Race and the version with post-selection and nr = 5 are similar. The former is shown to
be significantly better in the case studies of MMAS, but significantly worse in the cPSO
case studies. We explain the observation that the direct F-Race hybrids are inferior to post-
selection with nr = 5 for MADS and for the cPSO case studies with CMAES as follows: In
F-Race, by default each candidate configuration is evaluated on at least 5 instances before
the Friedman test is used to discard candidate configurations; hence, many candidate con-
figurations receive more evaluations than the case nr = 5. When solving a tuning problem,
it appears to be a good strategy to quickly have a set of good configurations based on few
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instances and then to select carefully from this set, instead of evaluating each point carefully
from the very beginning.

5.4 Comparisons of all tuning algorithms

Here we compare the performance of the five sampling algorithms mentioned in Sect. 3. In
the following, we compare the sampling algorithms using the setting of restart with post-
selection and nr = 5. This is done because (i) BOBYQA does not have a F-Race hybrid
and (ii) the restart mechanism with post-selection F-Race and nr = 5 works well in com-
parison with the F-Race hybrids as shown in the previous section. However, for URS and
IRS no post-selection is applied due to the missing restart option; still, a fixed number of
evaluations, nr = 5, is used.

Each plot in Fig. 6 shows the average cost of each of the five tuners on one of the 15
case studies derived from the application of MMAS to the TSP; the results for the 10 case
studies derived from the application of cPSO to the family of Rastrigin functions are shown
in Fig. 7. Each case study includes four levels of tuning budget.

The main conclusions from this analysis are the following. For the case studies with
two to four parameters, BOBYQA is in general the best performing algorithm. However,
BOBYQA’s performance degrades with an increase of the number of parameters to be tuned.
The performance of CMAES is relatively robust across the number of parameters to be
tuned, and across the budget levels tested. This conclusion can be further and better observed
in Fig. 8. Each box plot shows the ranks of the five tuners in case studies of a fixed number
of parameters; the first row shows the ranks of the tuners across all numbers of parameters.
The large range of the boxplots for BOBYQA reveals that the performance of BOBYQA is
quite variant, even within problems with the same number of parameters. Clear examples
are MMAS with two parameters and cPSO with four parameters. The most extreme cases
are two cPSO case studies with four parameters: BOBYQA performs the best in the case
with χ,φ1, φ2,p to be tuned, but the worst in the case with φ1, φ2, N, p to be tuned. Finally,
all the tuners tested clearly outperformed URS in most case studies (the same also holds if
URS is combined with F-Race).

Figure 9 shows the average ranks of the five tuners grouped by the number of parameters
to be tuned averaged across all budget levels for the MMAS (left) and cPSO (right). These
two figures confirm the observation that BOBYQA is the best for tuning small numbers of
parameters, while CMAES shows rather robust performance.

5.5 Further comparisons

5.5.1 Comparison between the tuned and the default configurations

We compared the performance of the tuned parameter configurations to that of the default
parameter configurations for MMAS and cPSO. The average cost on the test instances ob-
tained by the default parameter configurations (see Tables 1 and 3, respectively) for MMAS
is 2.54 × 107, and for cPSO is 589. Taking into account the objective ranges on the y-axis
in the plots of Figs. 6 and 7, we can conclude that in all 25 case studies all tuners at even the
lowest tuning budget level obtained parameter configurations that resulted in significantly
better average costs than using the default parameter configurations.

As an example, we list the average percentage improvement of the parameter configura-
tions obtained by restart CMAES with post-selection and nr = 5 over the default parameter
configurations of MMAS and cPSO in Tables 5 and 6, respectively. In the case studies of
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Fig. 6 Average performance over budget level of five tuners on the 15 case studies of M MAS. Each of
the five tuners uses one of the sampling methods: BOBYQA, CMAES, MADS, IRS, or URS. Each tuner
handles the stochasticity using nr = 5; BOBYQA, CMAES, and MADS use restart and post-selection. Each
plot shows the average cost measured on the test instances with respect to four budget levels in each case
study. Each row presents results for a same number of parameters, from two (top) to six (bottom)

MMAS, the tuned configurations improve over the default configuration by around 10% on
average; the average improvement for cPSO is often more than 40%. Note that the default
parameter configurations of MMAS and cPSO are based on years of extensive studies by
experienced researchers in the field of swarm intelligence. Our results here confirm that by
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Fig. 7 Average performance over budget level of five tuners on the 10 case studies of cPSO. Each of the five
tuners uses one of the sampling methods: BOBYQA, CMAES, MADS, IRS, or URS. Each tuner handles the
stochasticity using nr = 5; BOBYQA, CMAES, and MADS use restart and post-selection. Each plot shows
the average cost measured on the test instances with respect to four budget levels in each case study. Each
row presents results for a same number of parameters, from two (top) to five (bottom)

using automated tuning procedures one can obtain much better performing algorithms than
by setting parameters based on rules of thumb and human expertise.

5.5.2 The number of parameters to be tuned

In practice, when using tuning tools, we are often facing the question of how many param-
eters should be tuned. Our computational results in Tables 5 and 6 indicate that there is a
tradeoff between the number of the parameters to be tuned and the tuning budget. If we
consider the largest available tuning budget in the case studies of MMAS, it is clear that
the more parameters are tuned, the better is the performance. In fact, in Table 5 the tuned
performance generally improves as the number of parameters increases. A similar (but less
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Fig. 8 Ranking comparison of five tuners for tuning M MAS (left column) and cPSO (right column). Each
of the five tuners uses one of the sampling methods, namely BOBYQA, CMAES, MADS, IRS, and URS.
Each tuner handles the stochasticity using nr = 5; BOBYQA, CMAES, and MADS use restart and post-se-
lection. The first row shows the comparisons across all possible case studies; from the second to the sixth row,
it shows the results on the problems of a certain number of parameters from two to six
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Fig. 8 (Continued)

Fig. 9 Average ranks over numbers of parameters of five tuners on case studies of M MAS (left) and cPSO
(right). Each of the five tuners uses one of the sampling methods BOBYQA, CMAES, MADS, IRS, or URS.
Each tuner handles the stochasticity using restart and post-selection with nr = 5

strong) trend can be observed from Table 6 in the case studies of cPSO. Differently from the
MMAS case studies, in the cPSO case studies the best tuned performance is not obtained
by the largest number of free parameters (five), but in the case of (χ φ1 φ2). If we consider
limitations on the tuning budget in the case studies of MMAS of, say, no more than 1 000
runs, the best results in Table 5 would be obtained by tuning only three parameters, namely,
α, β , and m. Therefore, as maybe expected, if the tuning budget is limited, less parameters
should be tuned.
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Table 5 Average percentage
improvement of the parameter
configurations tuned by CMAES
with post-selection and nr = 5
compared to the default
parameter configuration of
M MAS applied to the TSP

Budget (α β) (ρ m) (γ nn) Mean

240 10.43 3.931 6.04 6.80

480 10.69 3.980 6.23 6.97

960 10.77 4.356 6.23 7.12

1920 10.96 4.392 6.26 7.21

Budget (α β m) (β ρ nn) (ρ γ nn) Mean

320 11.66 10.72 6.35 9.58

640 11.81 10.75 6.44 9.67

1280 11.85 10.59 6.29 9.58

2560 11.85 10.89 6.28 9.67

Budget (α β ρ m) (α β γ nn) (ρ m γ nn) Mean

400 11.62 10.13 7.36 9.70

800 11.59 10.28 7.71 9.86

1600 11.83 10.38 7.72 9.98

3200 11.85 10.65 7.97 10.16

Budget (α β ρ m nn) (α β ρ m γ ) (α β m γ nn) Mean

480 11.35 11.53 11.37 11.42

960 11.43 11.50 11.45 11.46

1920 11.72 11.53 11.53 11.59

3840 11.76 11.76 11.68 11.73

Budget (α β ρ m γ nn) (α β ρ m γ q0) (α β ρ m nn q0) Mean

560 11.42 11.60 11.65 11.56

1120 11.67 11.73 11.57 11.66

2240 11.73 11.92 11.68 11.78

4480 12.02 12.00 12.10 12.04

However, if less parameters are tuned, the selection of which parameters to tune becomes
critical. For example, if the important parameters φ1 and φ2 of cPSO are not among the
tuned ones, such as in case studies (N p) and (χ N p), or when tuning MMAS without
the most influential parameters α and β , such as in case studies (ρ m) and (γ nn), relatively
small improvements over the default settings are obtained. In other words, knowledge on
the impact of the parameters on algorithm performance is particularly useful in a situation
of strongly limited tuning budget. Nevertheless, if a significantly large tuning budget is
available, we would recommend to leave more parameters free for tuning. This incurs less
risk regarding a wrong selection of the parameters to be tuned. An additional reason for
leaving more parameters to be tuned is that the tuning algorithm can potentially better take
parameter interactions into account.
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Table 6 Average percentage
improvement of the parameter
configurations tuned by CMAES
with post-selection and nr = 5
compared to the default
parameter configuration of cPSO
applied to a family of Rastrigin
functions

Budget (χ φ1) (φ1 φ2) (N p) Mean

240 45.45 46.17 37.50 43.04

480 46.17 48.27 38.38 44.27

960 46.85 49.61 38.62 45.03

1920 48.54 49.60 38.47 45.54

Budget (χ φ1 φ2) (φ1 φ2 N ) (χ N p) Mean

320 47.66 38.28 39.80 41.91

640 48.77 38.53 39.75 42.35

1280 48.57 46.20 42.02 45.60

2560 50.19 48.68 42.23 47.03

Budget (χ φ1 φ2 N ) (χ φ1 φ2 p) (φ1 φ2 N p) Mean

400 30.56 42.83 42.84 38.74

800 36.66 46.11 46.69 43.15

1600 39.36 49.58 47.22 45.39

3200 46.32 49.91 47.04 47.76

Budget (χ φ1 φ2 N p) Mean

480 44.38 44.38

960 46.32 46.32

1920 48.16 48.16

3840 48.38 48.38

6 Parameter landscape analysis

We have performed a parameter landscape analysis for the swarm intelligence algorithms
considered in this article. This study helps to understand better the tuning problem, and
enriches our knowledge about the studied swarm intelligence algorithms.

6.1 The parameter landscape for two parameters

We first examine four case studies with two parameters to be tuned: (α β), (ρ m) of MMAS,
and (χ φ1), (N p) of cPSO. For each case, we define a 100 × 100 grid on the parameter
space. Each grid vertex, which corresponds to a parameter configuration, is evaluated on
the same 25 randomly selected instances, and the average evaluation value is computed. For
each instance, a common random seed is used in order to reduce variance.

The parameter landscapes of the four case studies are visualized in the contour plots given
in Fig. 10. They contain a single global optimal region, where by optimal region we refer to
the first two levels of the contours, where all the good points lie. In the cPSO-(N p) case,
there appear to be multiple local optima within the optimal region, but this may be caused
by noise due to the small number of evaluations for each parameter configuration. This uni-
modality of parameter landscapes for two parameters has also been observed in Steinmann
et al. (1997), and shown analytically for a one-parameter space (Mengshoel 2008).
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Fig. 10 Contour plots for the parameter landscapes of four case studies with two parameters to be tuned.
Top-left: M MAS-(α β); top-right: M MAS-(ρ m); bottom-left: cPSO-(χ φ1); bottom-right: cPSO-(N p).
The darker the region is, the better those points are. Note that in the plot of cPSO-(χ φ1), the region close to
the χ -axis and close to the φ1-axis appears to be dark because of the contour lines. It is the same case for the
region close the ρ-axis in the plot of M MAS-(ρ m)

The size of the optimal region of the parameter space, depends on the particular problem.
For example, if we compare the contour plots of cPSO-(χ φ1) with cPSO-(N p), the optimal
region of the former lies in a very narrow valley, where φ1 takes values from 2 to 4 and χ

takes values from 0.5 to 0.8; the latter has a large optimal region, where p takes values
between 0.1 and 0.8 and N takes values between 100 and 300. MMAS-(α β) has a large
optimal region at the top triangle area between the three points (0.75, 10), (1, 5) and (3, 10);
for MMAS-(ρ m), the optimal region is relatively harder to locate at the corner where ρ

takes values between 0.2 and 0.45 and m takes small values no more than 150.
The contour plots also give an indication of the relative influence of the parameters on

algorithm performance. A typical example is MMAS-(α β): most of the contour lines are
parallel to the α-axis, which shows that the parameter β is more influential than α: as long as
α takes a value greater than or equal to 1, the algorithm performance is much more sensitive
to the variation of β . The same conclusion can be drawn in case study cPSO-(N p): as long
as p takes a value between 0.1 and 0.8, the algorithm performance is more sensitive to the
variation of parameter N , therefore N is more influential than p in this case study.

Finally, we also observed an interesting parameter correlation in case study cPSO-(χ φ1),
where the optimal region appears to be linearly correlated: the higher the acceleration factor
φ1, the smaller the constriction factor χ should be. In fact, here we fixed the parameter φ2
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Table 7 The best parameter configuration found by CMAES with post-selection and nr = 5, variation coef-
ficient, and fitness distance correlation for each case study of M MAS

(α β) (ρ m) (γ nn)

Best (1 8) (0.35 77) (0.57 5)

VC/FDC 0.22/0.70 0.082/0.49 0.051/0.79

(α β m) (β ρ nn) (ρ γ nn)

Best (1 7 180) (9 0.6 17) (0.42 4.8 7)

VC/FDC 0.20/0.74 0.37/0.60 0.13/0.62

(α β ρ m) (α β γ nn) (ρ m γ nn)

Best (1 9 0.49 210) (1 8 3 22) (0.6 150 2.6 5)

VC/FDC 0.20/0.57 0.41/0.52 0.21/0.79

(α β ρ m nn) (α β ρ m γ ) (α β m γ nn)

Best (1 9 0.77 180 17) (1 8 0.52 260 0.35) (1 7.7 270 2.2 17)

VC/FDC 0.44/0.50 0.21/0.53 0.44/0.54

(α β ρ m γ nn) (α β ρ m γ q0) (α β ρ m nn q0)

Best (1.1 9 0.47 310 3.7 12) (1 8.5 0.56 330 3.1 0.41) (1 7 0.72 270 21 0.54)

VC/FDC 0.44/0.35 0.14/0.50 0.30/0.35

to 2.05; a linear correlation between χ and φ1 + φ2 can be observed from Fig. 11 and it is
further discussed in Sect. 6.2.

6.2 The parameter landscape of all case studies

In the following, we extended our parameter landscape analysis to all 25 case studies from
MMAS and cPSO. To avoid the exponential growth of the number of grid points with the
number of parameters, we uniformly at random sampled 4999 points in the parameter space.
The 5000th point is the best parameter configuration out of the ten trials at the highest budget
level of CMAES with post-selection and nr = 5. Each of the sampled points is evaluated on
25 instances (as in Sect. 6.1), and the average evaluation value over the 25 instances is
computed.

In Tables 7 and 8 we show the best parameter configurations found by CMAES with
post-selection and nr = 5 for problem class MMAS and cPSO, respectively,2 as well as
the variation coefficient (VC) and the fitness distance correlation (FDC). The VC is a scale-
invariant measure for the variability computed as the ratio of the standard deviation over the
mean. High values of it often indicate that the algorithm performance is very sensitive to
the setting of parameter values, and a careful tuning is important; low values often indicate
lower sensitivity. The FDC (Jones and Forrest 1995) is the correlation coefficient between

2Note that the best parameter configuration found by CMAES in most of the case studies differs from the
best one out of 5000 sampled points. Nevertheless, we list the former instead of the latter as the “best known”
parameter configuration in Tables 7 and 8 because the former is selected from the tuning process based on
many more than 25 instances.
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Table 8 The best parameter
configuration found by CMAES
with post-selection and nr = 5,
variation coefficient, and fitness
distance correlation for each case
study of cPSO

(χ φ1) (φ1 φ2) (N p)

Best (0.53 3.8) (3.3 1.6) (180 0.2)

VC/FDC 0.29/0.52 0.40/0.47 0.29/0.68

(χ φ1 φ2) (φ1 φ2 N ) (χ N p)

Best (0.68 0.63 4) (0.43 3.8 10) (0.78 14 0.84)

VC/FDC 0.32/0.37 0.39/0.11 0.45/0.18

(χ φ1 φ2 N ) (χ φ1 φ2 p) (φ1 φ2 N p)

Best (0.66 1.9 3.7 13) (0.67 3.7 1.7 0.76) (0.54 3.8 6 0.59)

VC/FDC 0.38/0.18 0.36/0.17 0.32/0.46

(χ φ1 φ2 N p)

Best (0.68 3.8 1.2 110 0.81)

VC/FDC 0.41/0.072

the fitness of the sampled points and their distance to the best points. It is usually used as
a measure of the search difficulty of a problem. In minimization problems, a high positive
FDC coefficient means that the lower the cost of a solution, the closer it is, on average, to
the global optima. In the following, we discuss some conclusions from these results.

Observing the best parameter configurations in MMAS, it is noteworthy that the best
values for α and β usually take integer values (see Table 7). More specifically, α usually
takes value 1 (with one exception where it is 1.1) and β takes values 7, 8, or 9 (with two
exceptions where it takes values 7.7 and 8.5). In fact, there is a reason why α and β are
usually integers: exponentiation by integers is typically handled by compilers as multipli-
cations while exponentiation by non-integers uses a computationally much heavier Taylor
series expansion. Since the term τα

ij · η
β

ij of (1) is computed very frequently, using integer
values leads to a significant speedup of MMAS, which, experimentally, can be up to 40%.

Noteworthy effects for other parameters are as follows. Firstly, the candidate list size
parameter nn has a strong interaction with β: the correlation coefficient is 0.83. If β takes
its default value 2, then nn takes a very small value; especially in case studies (γ nn) and
(ρ m γ nn), it takes the value of its tuning lower bound, which is 5. This corresponds to a
strong restriction of the size of the candidate list to compensate for the lack of greediness
caused by small β . In other case studies, where β takes a large value, the best nn value
increases to around its default value 20. The best values for parameter m appear to be much
larger than the default setting 25.

Observing the best parameter configurations in cPSO from Table 8, the most remarkable
insight is that there is a strong negative linear correlation between the best values of param-
eter χ and φ1 + φ2 as shown in Fig. 11 (correlation coefficient is −0.86). This means that
the higher the sum of the acceleration factors, the lower the constriction factor should be.

Observing the VC values, in MMAS, the parameter landscape is particularly variant
when parameters β and nn are simultaneously tuned, which is indicated by the high VC
value of these cases in Table 7. This means that the algorithm performance is very sensitive
to the combination of β and nn. In general, we observed the tendency that the value of VC
increases as the number of parameters increases, that is, the parameter landscape becomes
more variant as more free parameters enter the tuning process. However, there are excep-
tions. In case studies (α β ρ m γ q0) and (α β ρ m nn q0), the introduction of parameter q0
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Fig. 11 Correlation plots
between φ1 + φ2 and χ of cPSO.
The correlation coefficient is
−0.86

Fig. 12 Correlation plots
between the FDC and the number
of parameters in case studies of
M MAS and cPSO. The
correlation coefficient is −0.70
for M MAS, and −0.71 for
cPSO

results in smaller VC than when fixing q0 to 0. Our interpretation is that the introduction of
ACS’s pseudo-random proportional action choice rule into MMAS by setting q0 > 0 com-
pensates the lack of exploitation if other parameters take poor values, making MMAS’s
performance more robust. It is also worth noting that, in general, the VC in the case studies
of cPSO is higher than in MMAS, since nine out of 15 case studies of MMAS have lower
VC than the lowest value 0.29 in cPSO. This indicates a more variant parameter landscape
for cPSO.

The FDC values, in general, as depicted in Fig. 12, decrease as the number of parameters
increases. The correlation coefficient is −0.70 for MMAS, and −0.71 for cPSO. This
indicates that the tuning problems become more difficult with more parameters to be tuned.
Moreover, the FDC values are lower in the cPSO case studies than in the MMAS case
studies (five out of 10 case studies in cPSO have lower FDC values than the lowest value
0.35 in MMAS); this suggests that cPSO is more difficult to tune than MMAS.

7 Conclusions

In this paper, we have studied a number of algorithms for tuning numerical parameters.
We have compared three state-of-the-art algorithms for continuous optimization, CMAES,
BOBYQA and MADS, together with uniform random sampling (URS) and the underlying
sampling mechanism in iterated F-Race (IRS). These continuous optimization algorithms
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are improved by a restart mechanism, and CMAES is extended with a uniform random
sampling in the first iteration. All the above mentioned continuous optimization algorithms
adopt a post-selection mechanism. The basic idea of applying the post-selection mechanism
is to first identify a set of elite configurations through a small number of evaluations on each
configuration, and then use F-Race in the final phase of the tuning process to carefully select
best configuration among the set of elite configurations. Our experiments have proved that
the post-selection mechanism is very effective in handling the stochastic nature of the tuning
problem.

The experiments show that BOBYQA performs best in the case studies with two or three
parameters to be tuned, but its performance degrades with more parameters. CMAES ap-
pears to be a rather robust algorithm across all numbers of parameters that we considered.

In future work, we plan to integrate continuous optimization algorithms with tuning al-
gorithms that work on categorical parameters. The hybrid tuner that would result from this
integration can be very effective to handle complex tuning problems. In addition, we will
also analyze more thoroughly the proposed post-selection mechanism and we will explore
the possibility of devising alternative ones.
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